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In these lectures, we shall describe Harman’s “alternative sieve” and some of the twists in its applications to
additive problems involving primes. We start with an example from Diophantine approximation, which illus-
trates the basic ideas behind Harman’s sieve in a relatively simple setting. We then discuss the variations and
adjustments needed when the method is applied in the typical setting for additive problems involving primes.

LECTURE 1: THE DISTRIBUTION OF αp MODULO ONE. VAUGHAN’S IDENTITY

We want to address the following question.

Question. Suppose that α is an irrational real number. For what θ > 0 does the Diophantine inequality

(1) ‖αp‖ < p−θ

have infinitely many solutions with p prime?

Let X be a large real number and Φ be a smooth function supported in [−X −θ, X −θ] and such that

0 ≤Φ(x) ≤ 1,
∫
R
Φ(x)d x = X −θ.

Then Ψ(x) =Φ(‖x‖) is 1-periodic and has a Fourier expansion of the form

Ψ(x) = X −θ+ ∑
h 6=0

che(hx),

with Fourier coefficients satisfying

(2) |ch |¿k
X −θ(

1+X −θ|h|)k
(k ≥ 1).

We now use Ψ and its Fourier expansion to count the solutions of (1) with X /2 < p ≤ X . Let Sα(X ) be the
number of such p. Then

Sα(X ) ≥ ∑
p∼X

Ψ(αp) = ∑
p∼X

(
X −θ+ ∑

h 6=0
che(αhp)

)
,

where we write p ∼ X for the condition X /2 < p ≤ X . Let H = X θ+ε. By (2) with k sufficiently large, the contribu-
tion to the last sum from h with |h| > H is tiny. Hence,

(3) Sα(X ) ≥ X 1−θ

2log X
(1+o(1))+ ∑

0<|h|≤H
ch

∑
p∼X

e(αhp).

Thus, we have reduced the original problem to the estimation of an exponential sum. At this stage, it suffices to
show that

(4) max
0<|h|≤H

∣∣∣ ∑
p∼X

e(αhp)
∣∣∣¿ X 1−θ−ε,

and (3) will yield the estimate

Sα(X ) ≥ X 1−θ

2log X
(1+o(1)).
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In fact, with a little more care, we can even turn this lower bound into an asymptotic formula of the form

Sα(X ) = X 1−θ

log X
(1+o(1)).

Next, we turn attention to the exponential sum bound (4). How does one prove a bound like that? In 1937,
Vinogradov found that if one can estimate two types of double exponential sums, then one can also estimate an
exponential sum over primes such as that in (4). That is how he proved the Goldbach–Vinogradov theorem on
sums of three primes. To estimate the left side of (4), Vinogradov would consider double sums∑

m∼M

∑
mn∼X

ambne(αhmn)

of one of the following two types:

• Type I: |am |¿ 1, bn = 1, and M is not “too large”;
• Type II: |am |¿ 1, |bn |¿ 1, and M is neither “too small”, nor “too large”.

If Vinogradov was able to show that each of these double sums is ¿ X 1−θ−2ε, then he could use a rather technical
combinatorial technique that he developed to deduce (4). Vinogradov’s combinatorial technique was far from
transparent, and so for 40 years the estimation of exponential sums over primes remained the domain of a few
“specialists”.

In 1977, Vaughan discovered an identity which can be used instead of Vinogradov’s combinatorial method to
pass from estimates for Type I and Type II sums to estimates for sums over primes. Suppose that U is a parameter
to be chosen later with U ≤ X 1/2−ε. Then the simplest form of Vaughan’s identity gives∑

k∼X
Λ(k)e(αhk) = ∑

m≤U

∑
mn∼X

µ(m)(logn)e(αhmn)

− ∑
r,s≤U

∑
r st∼X

Λ(r )µ(s)e(αhr st )

− ∑
r,s>U

∑
r st∼X

Λ(r )µ(s)e(αhr st ).

If we put

am = ∑
r s=m
r,s≤U

Λ(r )µ(s), bn = ∑
r t=n
r>U

Λ(r ),

we can rewrite the above identity as∑
k∼X

Λ(k)e(αhk) = ∑
m≤U

∑
mn∼X

µ(m)(logn)e(αhmn)

− ∑
m≤U 2

∑
mn∼X

ame(αhmn)

− ∑
m,n>U

∑
mn∼X

µ(m)bne(αhmn).

Note that |am | ≤ logm and |bn | ≤ logn. Hence, the first two sums on the right side of the last identity can be split
into subsums of Type I with M ≤U 2, while the third sum can be split into subsums of Type II with U ≤ M ≤ X /U .
The question now is: Can we choose U ≤ X 1/2−ε so that we can estimate all those Type I and Type II sums?

Leaving the technical details out, we can report that when α is irrational and the large parameter X is chosen
“suitably”, we have ∑

m∼M

∑
mn∼X

ambne(αhmn) ¿ X 1−θ−2ε,

provided that one of the following holds:

• the sum is of Type I with M ≤ X 1−θ;
• the sum is of Type II with X θ ≤ M ≤ X 1−2θ or X 2θ ≤ M ≤ X 1−θ.
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Suppose first that θ < 1
4 . Then the two conditions for M in the Type II sum bound overlap. Hence, we can

estimate Type I sums with M ≤ X 1−θ and Type II sums with X θ ≤ M ≤ X 1−θ. Let us compare the constraints

(5) M ≤ X 1−θ , X θ ≤ M ≤ X 1−θ

with the ranges

(6) M ≤U 2, U ≤ M ≤ X /U

that emerged from the application of Vaughan’s identity. We notice that if we choose U = X θ, inequalities (5)
imply inequalities (6). Hence, when θ < 1

4 , we can apply Vaughan’s identity with U = X θ and the above double-
sum estimates to prove (4).

How do things change when θ > 1
4 ? Then we do not have an estimate for Type II sums with X 1−2θ ≤ M ≤ X 2θ,

and so there is no choice of U such that we can estimate all Type II sums with U ≤ M ≤ X /U . Thus, the above
strategy fails when θ > 1

4 . In other words, given the above Type I and Type II sum estimates, we can use Vaughan’s
identity to prove (4) only when θ < 1

4 .

LECTURE 2: THE DISTRIBUTION OF αp MODULO ONE. A SIMPLE SIEVE INSTEAD OF VAUGHAN’S IDENTITY

To summarize the state of our knowledge: When 0 < θ < 1
4 , we have an asymptotic formula

Sα(X ) = X 1−θ

log X
(1+o(1)),

whereas when θ > 1
4 , we have no result. Furthermore, the error term in the asymptotic formula comes in the

form ∑
M∈M

∣∣∣ ∑
m∼M

∑
mn∼X

a(M)
m b(M)

n e(αhmn)
∣∣∣,

where the double sums are either Type I or Type II and the set M of choices for M is “small”—having O(log X )
elements. When we deal with this error term, the difference between θ = 1

4 −ε and θ = 1
4 +ε is that in the former

case we can estimate all the double sums that arise, whereas in the latter we can estimate all the double sums
except for a small number of Type II sums with X 1/2−ε ≤ M ≤ X 1/2+ε. Yet, much to our frustration, even though
we have lost control over just a few double sums, we have lost the result completely.

Harman’s alternative sieve is designed to achieve further progress in situations such as that described above.
In this lecture, we demonstrate how to use Harman’s sieve to give an alternative proof of the result from Lecture
1. This alternative proof, however, will have the advantage that it makes transparent how one can turn reach
beyond θ = 1

4 if one replaces the above asymptotic formula with a lower bound.

The proof in Lecture 1 had two parts: harmonic-analytic (Fourier series) and combinatorial (Vaughan’s iden-
tity), and the harmonic analysis came first. This time we interchange the order of the harmonic and combinato-
rial analysis. That is, we start with the combinatorial analysis and apply it directly to

∑
pΨ(αp) (as opposed to

the exponential sums that appear in the harmonic analysis of this sum). For z ≥ 2, we now define the arithmetic
function

ψ(n, z) =
{

1 if n has no prime divisor p with p ≤ z,

0 otherwise.

It is also convenient to extend the definition of ψ(n, z) to all positive real n by setting ψ(n, z) = 0 when n ∉ Z.
In particular, for integers n with n ∼ X , ψ(n, X 1/2) is simply the indicator function of the primes—ψ(n, X 1/2) is 1
or 0 according as n is prime or composite. Hence,

(7)
∑

p∼X
Ψ(αp) = ∑

n∼X
ψ(n, X 1/2)Ψ(αn).

The combinatorial argument is based on Buchstab’s identity,

ψ(n, z2) =ψ(n, z1)− ∑
z1<p≤z2

ψ(n/p, p) (2 ≤ z1 < z2),
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which is merely a form of the inclusion-exclusion principle. Applying Buchstab’s identity to the right side of (7),
we get ∑

n∼X
ψ(n, X 1/2)Ψ(αn) = ∑

n∼X
ψ(n, z)Ψ(αn)− ∑

n∼X

∑
z<p≤X 1/2

ψ(n/p, p)Ψ(αn)

= ∑
n∼X

ψ(n, z)Ψ(αn)− ∑
z<p≤X 1/2

∑
mp∼X

ψ(m, p)Ψ(αmp)

=Σ1 −Σ2.

Let us now take a look at the double sum Σ2 in the above decomposition. Using the Fourier expansion of Ψ
and the bound (2) for its Fourier coefficients, we obtain

Σ2 =
∑

z<p≤X 1/2

∑
mp∼X

ψ(m, p)
(

X −θ+ ∑
0<|h|≤H

che(αhmp)
)
+O(1)

= X −θT2(0)+O
( ∑

0<|h|≤H

1

|h| |T2(h)|+1
)
,

where

T2(h) = ∑
z<p≤X 1/2

∑
mp∼X

ψ(m, p)e(αhmp).

The sum T2(0) that appears in the main term can be evaluated using standard results and techniques (mainly
the PNT and partial summation: see Exercise 2). We have

(8) T2(0) = X

2log X
(c2 +o(1)), c2 =

∫ 1/2

ζ
ω

(1− t

t

) d t

t 2 =
∫ 1/ζ

2
ω(u −1)du,

where z = X ζ and ω is Buchstab’s function, defined as the continuous solution of the differential delay equation{
ω(u) = 1/u when 1 ≤ u ≤ 2,

(uω(u))′ =ω(u −1) when u > 2.

The superficial technical details aside, the evaluation of the main term is considered “easy” and we are really
interested in the sums T2(h), with 0 < |h| ≤ H , appearing in the remainder term above. Those sums resemble
Type II sums but for one important detail: the coefficients ψ(m, p) are not products of the form ambp . Since that
structure of the coefficients of the Type II sum plays a central role in its estimation, this difference is an obstacle
to the direct estimation of T2(h). However, by a simple trick using Perron’s formula (see Exercise 3), we can show
that

T2(h) ¿ (log X )
∣∣∣ ∑

z<p≤X 1/2

∑
mp∼X

ambp e(αhmp)
∣∣∣,

where the coefficients am and bp are complex numbers with |am | ≤ 1 and |bp | ≤ 1. The latter sum can be split
into O(log X ) subsums, each of which is a genuine Type II sum with z ≤ M ≤ X 1/2. Therefore, when 0 < θ < 1

4 and

z ≥ X θ, we can use our Type II sum bound to deduce that

Σ2 = X 1−θ

2log X
(c2 +o(1)).

Is it possible to use the same approach to obtain an approximation for Σ1? If we were to try, we would discover
that we need an asymptotic formula similar to (8) for T1(0) and an upper bound for T1(h), with 0 < |h| ≤ H , where

T1(h) = ∑
n∼X

ψ(n, z)e(αhn).

Since T1(h) is not a double sum, it is neither of Type I nor of Type II, and thus, we currently know no bound for
it. It turns out, however, that we can derive a bound for this sum (and for more general sums) from bounds for
Type I and Type II sums. We shall defer the explanation how this is done and shall state a lemma that can be
deduced from the Type I and Type II sum estimates stated above.
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Lemma 1. Let α, X and h be as above. Suppose that M ≤ X 1−θ , z ≤ X 1−3θ, and (am) is a complex sequence, with
|am | ≤ 1. Then ∑

m∼M

∑
mn∼X

amψ(n, z)e(αhmn) ¿ X 1−θ−ε.

The kind of sum that appears in this lemma is not quite as general as a Type II sum, but it is more general
than a Type I sum. Indeed, if z = 1, ψ(n, z) = 1 and the above sum turns into a Type I sum. We shall refer to this
type of sum as a Type I/II sum. Note that the sum T1(h) above is a Type I/II sum with M = 1 (which is acceptable
in the lemma). Thus, if z ≤ X 1−3θ, we can use Lemma 1 to estimate T1(h) and to show

Σ1 = X 1−θ

2log X
(c1 +o(1)), c1 = ζ−1ω(1/ζ).

When 0 < θ < 1
4 , we can choose z = X 1/4 in the above analysis of Σ1 and Σ2 to obtain an alternative proof of

the asymptotic formula

(9)
∑

p∼X
Ψ(αp) = X 1−θ

2log X
(c1 − c2 +o(1)) = X 1−θ

2log X
(1+o(1)).

Sketch of the proof of Lemma 1. Let P (z) =∏
p≤z p. By the properties of the Möbius function, the given exponen-

tial sum is ∑
m∼M

∑
mn∼X

∑
d |(n,P (z))

amµ(d)e(αhmn) ¿ (log X )
∣∣∣ ∑

m∼M

∑
d |P (z)
d∼D

∑
mkd∼X

amµ(d)e(αhmkd)
∣∣∣,

for some D ¿ X /M . We consider two cases:

Case 1: MD ¿ X 1−θ. Then the above sum can be rewritten as a Type I sum.

Case 2: MD À X 1−θ. Then d = p1p2 · · ·ps , s ≥ 1, where the p j ’s are primes with

p1 < p2 < ·· · < ps ≤ z, mp1p2 · · ·ps À X 1−θ .

Let 1 ≤ t ≤ s be such that mp1p2 · · ·pt À X 1−θ À mp1p2 · · ·pt−1. Then

X 2θ ¿ mp1p2 · · ·pt−1 ¿ X 1−θ.

We can use this observation and Exercise 3 to bound the given sum by a linear combination of a O
(
(log X )c

)
Type II sums. �

We remark that the above proof is essentially Vinogradov’s original method for estimation of sums over primes.

LECTURE 3: THE DISTRIBUTION OF αp MODULO ONE. A SIMPLE LOWER-BOUND SIEVE

Since we already had a result for θ < 1
4 , we should ask whether we have gained any insight by recasting the

proof in an alternative form. Let us consider again how things change as θ crosses over the 1
4 threshold. When

θ > 1
4 , we no longer can choose z with X θ ≤ z ≤ X 1−3θ , so we set z = X 1−3θ. The analysis of Σ1 then remains the

same for θ < 1
3 . We now write

Σ2 =
{ ∑

z<p<X θ

+ ∑
X θ≤p≤X 1−2θ

+ ∑
X 1−2θ<p≤X 1/2

} ∑
mp∼X

ψ(m, p)Ψ(αmp)

=Σ3 +Σ4 +Σ5.

We can use our Type II sum bound to evaluate Σ4 similarly to how we evaluated the entire Σ2 in the case θ < 1
4 .

This yields

Σ4 = X

2log X
(c4 +o(1)), c4 =

∫ 1−2θ

θ
ω

(1− t

t

) d t

t 2 .
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We now turn to Σ3. The harmonic analysis of this sum produces exponential sums of Type II that we cannot
estimate. However, we can apply Buchstab’s identity to Σ3 to get

Σ3 =
∑

z<p<X θ

∑
mp∼X

ψ(m, z)Ψ(αmp)− ∑
z<p<X θ

∑
mp∼X

∑
z<q≤p

ψ(m/q, q)Ψ(αmp)

= ∑
z<p<X θ

∑
mp∼X

ψ(m, z)Ψ(αmp)− ∑
z<q≤p<X θ

∑
kpq∼X

ψ(k, q)Ψ(αkpq) =Σ6 −Σ7;

here q denotes a prime number too. Note that Σ6 is a Type I/II sum, which can be evaluated similarly to Σ1; we
have

Σ6 = X

2log X
(c6 +o(1)), c6 = 1

1−3θ

∫ θ

1−3θ
ω

( 1− t

1−3θ

) d t

t
.

We can give a similar further decomposition for Σ5. However, before we do that, we note that in the case of
Σ5, the only integers m with mp ∼ X and ψ(m, p) 6= 0 are the primes q ∼ X /p. Hence, on writing Yp = (X /p)1/2,
we have

Σ5 =
∑

X 1−2θ<p≤X 1/2

∑
mp∼X

ψ(m,Yp )Ψ(αmp)

= ∑
X 1−2θ<p≤X 1/2

∑
mp∼X

ψ(m, z)Ψ(αmp)− ∑
X 1−2θ<p≤X 1/2

z<q≤Yp

∑
kpq∼X

ψ(k, q)Ψ(αkpq) =Σ8 −Σ9.

Again, Σ8 is a Type I/II sum and we have

Σ8 = X

2log X
(c8 +o(1)), c8 = 1

1−3θ

∫ 1/2

1−2θ
ω

( 1− t

1−3θ

) d t

t
.

Combining all the decompositions and evaluations, we now obtain

(10)
∑

p∼X
Ψ(αp) = X 1−θ

2log X
(c1 − c4 − c6 − c8 +o(1))+Σ7 +Σ9.

We still do not know how to evaluate Σ7 and Σ9, but they have one important advantage over their exponential
sum counterparts—they are non-negative! Hence, (10) gives

(11)
∑

p∼X
Ψ(αp) ≥ X 1−θ

2log X
(c1 − c4 − c6 − c8 +o(1)),

which is non-trivial whenever c1 − c4 − c6 − c8 > 0. It is easy to see that this already supersedes the earlier result.
Indeed, when θ = 1

4+ε, with ε> 0 small, one can show that the sum c4+c6+c8 is close to c2, whence c1−c4−c6−c8

is close to 1. Thus, we can get a result with θ = 1
4 +ε for some ε> 0. Furthermore, using numerical integration to

evaluate the above integrals, we find that when θ = 0.28,

c1 − c4 − c6 − c8 ≥ 0.32.

Therefore, we conclude that (1) has infinitely many solutions in prime p for θ ≤ 0.28.

In fact, we can easily do even better. Before we get to that though, let us analyze the constant c1 − c4 − c6 − c8

appearing in the lower bound (11). We decomposed the left side of (11) as

Σ1 −Σ4 −Σ6 +Σ7 −Σ8 +Σ9.

We expect that

Σi = X 1−θ

2log X
(ci +o(1))

for all six values of i that appear in the above decomposition, but we can prove those asymptotic formulas only
for i = 1,4,6, and 8. For Σ7 and Σ9, we expect such asymptotic formulas with

c7 =
∫ θ

1−3θ

∫ u

1−3θ
ω

(1−u − v

v

) d v du

uv2 and c9 =
∫ 1/2

1−2θ

∫ (1−u)/2

1−3θ
ω

(1−u − v

v

) d v du

uv2 ,
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respectively, but we cannot prove them. However, it follows easily from our combinatorial decomposition that

c1 − c4 − c6 + c7 − c8 + c9 = 1,

whence

c1 − c4 − c6 − c8 = 1− c7 − c9.

We note that c7 and c9 are the constants in the main terms of the two expected asymptotic formulas that we
missed. One may think of this as follows: Each sum (like Σ7 and Σ9 above) which we cannot evaluate and esti-
mate trivially results in a “loss” being subtracted from the expected asymptotic formula for the original sum; the
resulting lower bound is non-trivial if the total of such losses does not exceed the expected main term (which has
a constant coefficient equal to 1). This observation is useful in the final stage of the application of the method
where numeric integration is needed.

LECTURE 4: THE DISTRIBUTION OF αp MODULO ONE. A FULL-SCALE LOWER-BOUND SIEVE

In the analysis in Lecture 3, we discarded Σ7 and Σ9 entirely, thus incurring losses that were larger than nec-
essary. We now describe the basic tools used to reduce those losses. For example, let us take a closer look at Σ9.
For convenience, we assume that 1

4 < θ < 3
10 . Then, we have Yp ≤ X 1−2θ , and the sum

Σ10 =
∑

X 1−2θ<p≤X 1/2

X θ≤q≤Yp

∑
kpq∼X

ψ(k, q)Ψ(αkpq)

is a part of Σ9 that can be evaluated using our estimates for Type II sums. Hence,

Σ10 = X 1−θ

2log X
(c10 +o(1)), c10 =

∫ 1/2

1−2θ

∫ (1−u)/2

θ
ω

(1−u − v

v

) d v du

uv2 .

Note that c10 is a part of the integral defining c9. Similarly, we can evaluate the part of Σ9 where

z < q < X θ , X 2θ ≤ pq ≤ X 1−θ.

Thus,

(12) Σ9 ≥ X 1−θ

2log X
(c9 −`9 +o(1)),

where `9 is the constant in the expected asymptotic formula for the unevaluated parts of Σ9. Hence,

`9 =
Ï

D9

ω
(1−u − v

v

) du d v

uv2 ,

where D9 is the part of the uv-plane subject to the constraints,

1−2θ < u < 1/2, 1−3θ < v < θ, u + v ∉ [2θ,1−θ].

If we use (12) instead of the trivial bound Σ9 ≥ 0 to estimate the right side of (10), we can replace (11) by∑
p∼X

Ψ(αp) ≥ X 1−θ

2log X
(1− c7 −`9 +o(1)),

Next, let us take a second look at

Σ7 =
∑

z<p2≤p1<X θ

∑
kp1p2∼X

ψ(k, p2)Ψ(αkp1p2).

Here too, we find a subsum that we can evaluate using our Type II sum bound—that is the part of Σ7 where

z < p2 ≤ p1 < X θ, X θ ≤ p1p2 ≤ X 1−2θ .

This leaves two parts of Σ7 which we cannot evaluate and which are subject to the conditions

p1p2 < X θ and p1p2 > X 1−2θ ,
7



respectively. Let Σ11 denote the part of Σ7 subject to p1p2 > X 1−2θ . The sum with p1p2 < X θ may be empty (it is
empty when θ ≤ 2

7 ), but even when this sum is non-empty we can evaluate most of it by further use of Buchstab’s
identity. Two more appeals to Buchstab’s identity yield∑

z<p2≤p1

p1p2<X θ

∑
mp1p2∼X

ψ(m, p2)Ψ(αmp1p2) = ∑
z<p2≤p1

p1p2<X θ

∑
mp1p2∼X

ψ(m, z)Ψ(αmp1p2)

− ∑
z<p3≤p2≤p1

p1p2<X θ

∑
mp1p2p3∼X

ψ(m, z)Ψ(αmp1p2p3)

+ ∑
z<p4≤p3≤p2≤p1

p1p2<X θ

∑
mp1···p4∼X

ψ(m, p4)Ψ(αmp1 · · ·p4).

Note that the first two sums on the right can be evaluated using our Type I/II sum bound. Furthermore, we can
use a Type II sum estimate to evaluate any part of the quintuple sum over m, p1, . . . , p4 in which a subproduct
of p1p2p3p4 lies between X θ and X 1−2θ. The remaining (“bad”) parts of the quintuple sum we shall call Σ12.
Combining the asymptotic formulas for all the parts of Σ7 which we can evaluate, we find that

(13) Σ7 ≥ X 1−θ

2log X
(c7 −`11 −`12 +o(1)),

where `11 and `12 are the constants in the expected asymptotic formulas for Σ11 and Σ12, respectively. For the
record, we have

`11 =
∫ θ

1/2−θ

∫ u

1−2θ−u
ω

(1−u − v

v

) d v du

uv2 ,

`12 =
∫∫∫∫

D12

ω
(1−u1 −·· ·−u4

u4

) du1 · · ·du4

u1u2u3u2
4

,

where D12 is the set of points (u1, . . . ,u4) in R4 subject to the inequalities

1−3θ < u4 < ·· · < u1 < θ, u1 +u2 < θ,
∑
j∈J

u j ∉ [θ,1−2θ] for any set J ⊆ {1,2,3,4}.

Note that when 1
4 < θ < 3

10 , the last condition is equivalent to the inequality u2 +u3 +u4 > 1−2θ.

Using both (12) and (13) to estimate the right side of (10), we replace (11) by

(14)
∑

p∼X
Ψ(αp) ≥ X 1−θ

2log X
(1−`9 −`11 −`12 +o(1)).

This bound is non-trivial when `9+`11+`12 < 1. A quick numeric calculation shows that the last inequality holds
when θ = 0.299 but fails when θ = 0.2995, so we barely miss a result for all θ < 3

10 . Can we “push” a little further?...

When θ = 3
10 , we have

`9 ≈ 0.473, `11 ≈ 0.606, `12 < 0.001,

so the biggest “loss” comes from the trivial estimate for Σ11. Can we estimate some part of Σ11 non-trivially?
Indeed, we can. Let Σ13 and Σ14 be the parts of Σ11 subject to

p1p2
2 > X 1−θ and p1p2

2 ≤ X 1−θ,

respectively. We shall eventually estimate Σ13 trivially, which will lead to a loss of

`13 =
∫ θ

(1−θ)/3

∫ u

(1−θ−u)/2
ω

(1−u − v

v

) d v du

uv2 ≈ 0.113 when θ = 0.3.
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We decompose Σ14 further by applying Buchstab’s identity two more times, and we get

Σ14 =
∑

p1,p2

∑
mp1p2∼X

ψ(m, z)Ψ(αmp1p2)(15)

− ∑
p1,p2

∑
z<p3≤p2

∑
mp1p2p3∼X

ψ(m, z)Ψ(αmp1p2p3)

+ ∑
p1,p2

∑
z<p4≤p3≤p2

∑
mp1···p4∼X

ψ(m, p4)Ψ(αmp1 · · ·p4),

where in all three sums the primes p1 and p2 satisfy the conditions

z < p2 ≤ p1 < X θ , p1p2 > X 1−2θ , p1p2
2 ≤ X 1−θ.

The first two sums on the right side of (15) lead to Type I/II sums, so they can be evaluated as before. Note that
it is here that we need the condition p1p2

2 ≤ X 1−θ that we imposed on Σ14. Without that assumption, there can
be parts of the second sum on the right side of (15) which are not acceptable as Type I/II sums. We can also use
Type II estimates to evaluate any part of the quintuple sum over m, p1, . . . , p4 where a subproduct of p1p2p3p4

lies in one of the ranges [X θ, X 1−2θ] or [X 2θ, X 1−θ]. Let us call the remaining parts of the quintuple sum (where
no evaluation is possible) Σ15, and let `15 be the constant in the expected asymptotic formula for that sum. We
then have

(16) Σ11 ≥ X 1−θ

2log X
(`11 −`13 −`15 +o(1)),

where

`15 =
∫∫∫∫

D15

ω
(1−u1 −·· ·−u4

u4

) du1 · · ·du4

u1u2u3u2
4

,

where D15 is the set of points (u1, . . . ,u4) in R4 subject to the inequalities

1−3θ < u4 < ·· · < u1 < θ, u1 +2u2 < 1−θ, u1 +u2 > 1−2θ,∑
j∈J

u j ∉ [θ,1−2θ]∪ [2θ,1−θ] for any set J ⊆ {1,2,3,4}.

When 2
7 < θ < 3

10 , the condition on the subsums of
∑

j u j implies that

(17) u1 +u2 +u3 +u4 > 1−θ, u2 +u3 +u4 > 1−2θ, u1 +u2 +u3 < 2θ.

In addition, u1, . . . ,u4 must satisfy one of the following four sets of conditions:

(1) u1 +u3 < θ, u1 +u2 > 1−2θ;
(2) u1 +u4 < θ, u1 +u3 > 1−2θ;
(3) u2 +u3 < θ, u1 +u4 > 1−2θ;
(4) u3 +u4 < θ, u1 +u4 > 1−2θ, u2 +u3 > 1−2θ.

However, when 2
7 < θ < 3

10 , three of these four sets of inequalities are incompatible with (17). For example, in
case (4), we must have

u1 = (u1 +u2 +u3)− (u2 +u3) < 4θ−1,

whence

u1 +u4 < 2u1 < 8θ−2 < 1−2θ,

a contradiction. In fact, only case (3) is consistent with the other conditions on u1, . . . ,u4. Hence, D15 reduces to
the set of points (u1, . . . ,u4) such that

1−2.5θ < u1 < θ, (1−θ−u1)/3 < u2 < u1 +3θ−1,

(1−θ−u1 −u2) < u3 < min(u2,θ−u2), 1−θ−u1 −u2 −u3 < u4 < u3.

After that, a quick numeric calculation shows that

`15 < 0.002 when θ = 0.3.
9



When θ = 3
10 , we have reduced the loss from Σ11 from approximately 0.606 to less than 0.12. Therefore, we can

use (16) to strengthen (14) to

(18)
∑

p∼X
Ψ(αp) ≥ X 1−θ

2log X
(1−`9 −`12 −`13 −`15 +o(1)),

and the constant on the right is ≥ 0.4 when θ = 3
10 . In this way, we have proved that (1) has infinitely many

solutions when θ < 3
10 .

What happens when we cross over θ = 3
10 ? The immediate effect will be that a whole lot of additional cases

will appear in the combinatorial analysis. For example, it is then possible to find points (u1, . . . ,u4) such that

1−3θ < u4 < u3 < u2, u2 +u3 +u4 < θ.

This and other similar possibilities will make the quadruple integral `15 much more complicated. However, since
`15 is a continuous function of θ, its value will not change drastically if we change the value of θ from 0.3 to 0.3+ε.
This allows us to claim the above result not only for θ < 3

10 but, in fact, for θ ≤ 3
10 . It is also clear that if we are

willing to work our way through the more complicated combinatorial and numerical arguments that will follow,
we can actually find some θ0 > 0.3 such that the numerical constant on the right side of (18) is positive for θ = θ0

but it turns negative when θ = θ0 +0.001 (similarly to what happened earlier with θ = 0.298). The work involved
in that will, however, be too much to discuss here and will not be instructive anyways.

LECTURE 5: EXCEPTIONAL SETS FOR SUMS OF SQUARES OF PRIMES. THE CIRCLE METHOD

In this lecture, we consider the following question.

Question. Let x be a large real, and write

E(X ) = #
{
n ∼ X : n ≡ 4 (mod 24), n 6= p2

1 +·· ·+p2
4

}
.

For what θ > 0 does the inequality E(X ) ¿ X θ hold?

Let E=E(X ) denote the set of integers counted by E(X ). To estimate E(X ), we set

R(n) = ∑
p2

1+···+p2
4=n

pi∼N

1, N = 2
3 X 1/2.

For each n ∼ X , we have

R(n) =
∫ 1

0
f (α)4e(−αn)dα, f (α) = ∑

p∼N
e(αp2).

Suppose that 1 ≤ P ≤Q ≤ X , and define the sets of major and minor arcs by

M= ⋃
1≤q≤P

⋃
1≤a≤q
(a,q)=1

( a

q
− 1

qQ
,

a

q
+ 1

qQ

)
, m= [

Q−1,1+Q−1]−M.

First, we estimate the contribution from the major arcs, which produces the main term in the expected as-
ymptotic formula for R(n). For any fixed A > 4, we have

(19)
∫
M

f (α)4e(−αn)dα= κn N 2(log N )−4 +O
(
N 2(log N )−A)

provided that PQ is “close” to N 2. Here, κn is a function of n which satisfies

1 ¿ κn ¿ loglog X

for n ≡ 4 (mod 24) with n ∼ X . When P = (log N )B1 and Q = N 2(log N )−B2 , the proof of this result is an exercise
using the Siegel–Walfisz theorem and partial summation. Using ideas from the last decade, we can take the major
arcs considerably larger, though the proof is much longer and much more technical. Here, we simply report that
we can choose any P and Q such that

P ≤ N 9/20−ε, Q ≥ N 31/20+ε, PQ ≤ N 2.
10



The difficulty of the proof aside, we view (19) as the “easy” part of R(n), similar to the contribution from the
zeroth Fourier coefficient in the study of αp modulo one.

The estimation of the contribution from the minor arcs is harder, and we can obtain a bound only on average
over n. We first note that, for any exceptional n ∈E, we have

−
∫
m

f (α)4e(−αn)dα=
∫
M

f (α)4e(−αn)dαÀ N 2(log N )−4.

Hence,

(20) −
∫
m

f (α)4Z (α)dα=− ∑
n∈E

∫
m

f (α)4e(−αn)dαÀ E(X )N 2(log N )−4,

where

Z (α) = ∑
n∈E

e(−αn).

We now estimate the left side of (20) from above. We have∫
m

f (α)4Z (α)dα¿ (
max
α∈m | f (α)|)(∫ 1

0
| f (α)|4 dα

)1/2(∫ 1

0
| f (α)Z (α)|2 dα

)1/2
(21)

¿ (
max
α∈m | f (α)|)N 1+ε(E(X )1/2N 1/2 +E(X )

)
,

for any fixed ε> 0. Therefore, if we assume an exponential sum bound of the form

max
α∈m | f (α)|¿ N 1−σ

for some fixed σ> 0, we can combine (20) and (21) to show that

E(X ) ¿ N−2(log N )4N 5/2−σ+εE(X )1/2 ¿ N 1/2−σ+3ε/2E(X )1/2,

whence, upon readjusting the choice of ε,

(22) E(X ) ¿ X 1/2−σ+ε.

This reduces the problem of estimating E(X ) to that of estimating the exponential sum f (α) on the minor
arcs. The best known estimate for f (α) has the form

f (a/q +β) ¿ N 1+ε(q−1/2 +N−1/8),

provided that β is “small” (essentially, |β| < q−2). Therefore, if we choose P,Q in the definition of the minor arcs
so that

N 1/4 ¿ P ¿ N 9/20−ε, Q = N 2P−1,

the above argument will yield a bound (22) with σ= 1
8 . Can we use a sieve to do better than that?

LECTURE 6: EXCEPTIONAL SETS FOR SUMS OF SQUARES OF PRIMES. AN “EASY” ALTERNATIVE SIEVE

The standard estimation of f (α) on the minor arc uses ideas similar to the estimation of the exponential sum
in Lecture 1. This time, we can show that: for Type II sums,∑

m∼M

∑
mn∼N

ambne(αm2n2) ¿ N 1−σ+ε,

if X 2σ¿ M ¿ X 1−4σ or X 4σ¿ M ¿ X 1−2σ; and for Type I sums,∑
m∼M

∑
mn∼N

ame(αm2n2) ¿ N 1−σ+ε,

if M ¿ X 1/2−σ. When 0 <σ< 1
8 , the two ranges for M in our Type II sum estimate overlap, and we can combine

the above estimates to obtain bounds for:

• Type I sums with M ¿ N 1−2σ;
• Type II sums with N 2σ¿ M ¿ N 1−2σ.

11



Thus, we can use Vaughan’s identity in a similar way to Lecture 1 to derive a bound for f (α). When σ> 1
8 , how-

ever, the situation has changed compared to earlier, and not for the better. Indeed, when σ> 1
8 , we can estimate

neither a Type I nor a Type II sum with N 1−4σ ¿ M ¿ N 4σ. Compare this to the situation at the beginning of
Lecture 2, where the Type II information required by Vaughan’s identity disappeared, but Type I sum bounds
were still available.

In general, such breakdowns in analytic information pose significant problems to Harman’s alternative sieve.
Here, however, we can avoid those problems, since there is a “non-standard” Type I sum bound. We can combine
that alternative Type I sum bound with the standard bound mentioned earlier to get∑

m∼M

∑
mn∼N

ame(αm2n2) ¿ N 1−σ+ε,

for M ¿ N 1−3σ. When σ< 1
7 , we can even combine this with our Type II sum bound to extend the range for M

further to M ¿ N 1−2σ. Once we have estimates for Type I sums with such large M , we can argue similarly to
Lemma 1 to show that ∑

m∼M

∑
mn∼N

amψ(n, z)e(αm2n2) ¿ N 1−σ+ε,

for M ¿ N 1−2σ and z ≤ N 1−6σ.

So, we now assume that 1
8 <σ< 1

7 and try to apply the alternative sieve using:

• bounds for Type I/II sums with M ¿ N 1−2σ and z ≤ X 1−6σ;
• bounds for Type II sums with N 2σ¿ M ¿ N 1−4σ or N 4σ¿ M ¿ N 1−2σ.

By Buchstab’s identity,

R(n) = ∑
m2+p2

1+p2
2+p2

3=n
m,pi∼N

ψ
(
m, N 1/2)(23)

= ∑
m2+p2

1+p2
2+p2

3=n
m,pi∼N

(
ψ(m, z)− ∑

z<p≤N 1/2

ψ(m/p, p)
)

= ∑
m2+p2

1+p2
2+p2

3=n
m,pi∼N

(
ψ(m, z)− ∑

z<p≤N 1/2

ψ(m/p, z)+ ∑
z<q≤p≤N 1/2

pq2≤N

ψ(m/pq, q)
)
,

where z = N 1−6σ. We now want to evaluate the sums on the right side of (23) using the circle method, similarly
to Lecture 5.

Let us consider, for example,

R1(n) = ∑
m2+p2

1+p2
2+p2

3=n
m,pi∼N

ψ(m, z).

We have

R1(n) =
∫ 1

0
f (α)3g1(α)e(−αn)dα, g1(α) = ∑

m∼N
ψ(m, z)e(αm2).

Similarly to (21), we have∫
m

f (α)3g1(α)Z (α)dα¿ (
max
α∈m |g1(α)|)(∫ 1

0
| f (α)|4 dα

)1/2(∫ 1

0
| f (α)Z (α)|2 dα

)1/2
(24)

¿ N 1−σ+εN 1+ε(E(X )1/2N 1/2 +E(X )
)
,

since g1(α) is an admissible Type I/II sum.

Earlier, we declared the integral over the major arcs the “easy” one. That is only partially true, since its eval-
uation requires some delicate technical work (see Exercise 4). How is that work affected when we replace one of

12



the exponential sums f (α) by g1(α)? The proof of (19) has two stages. The first, where the bulk of the effort is
spent is to show that

(25)
∫
M

(
f (α)4 − f ∗(α)4)e(−αn)dα¿ N 2(log N )−A

for any fixed A > 4. Here, f ∗(α) is the expected major arc approximation to f (α), defined for α= a/q +β by

f ∗(a/q +β) =φ(q)−1
( ∑

h∈Z∗
q

e(ah2/q)
) ∑

m∼N

e(βm2)

logm
.

Once we have (25), it is relatively easy to show that

(26)
∫
M

f ∗(α)4e(−αn)dα≈ κn N 2(log N )−4.

In the analysis of R1(n), (25) and (26) are replaced by∫
M

(
f (α)3g1(α)− f ∗(α)3g∗

1 (α)
)
e(−αn)dα¿ N 2(log N )−A ,(27) ∫

M
f ∗(α)3g∗

1 (α)e(−αn)dα≈ c1κn N 2(log N )−4,(28)

respectively. Here, g∗
1 (α) is the expected major arc approximation to g1(α), defined for α= a/q +β by

g∗
1 (a/q +β) =φ(q)−1

( ∑
h∈Z∗

q

e(ah2/q)
) ∑

m∼N

e(βm2)

log z
ω

(
logm

log z

)
,

where ω is Buchstab’s function and c1 = ζ−1ω(1/ζ) with ζ = 1 − 6σ. The constant c1 in (28) is similar to the
constants ci ,` j in Lectures 2–4 and is such that

(29)
∑

m∼N

e(βm2)

log z
ω

(
logm

log z

)
≈ c1

∑
m∼N

e(βm2)

logm

for small β.

Between (27) and (28), (28) is the easier by far. Indeed, it is an easy exercise to deduce (28) from (26) and (29).
The proof of (27) is another story. To explain the issues that arise, we need to sketch some of the highlights in
the proof of (25). That proof, like the proof of the Bombieri–Vinogradov theorem, relies on two main facts about
the primes:

(P1) Primes are well-distributed in arithmetic progressions with small moduli. The analytic formulation of
this fact, the Siegel–Walfisz theorem, states: For any fixed A,B > 0, and any primitive Dirichlet character
χ with a modulus ≤ (log N )B , one has∑

p∼N
χ(p) = δχ

∑
m∼N

(logm)−1 +O
(
N (log N )−A)

,

where δχ is 1 when χ is the trivial character, and δχ = 0 otherwise.
(P2) We can convert a sum over primes to a linear combination of Type I and Type II-like triple sums. More

precisely, to achieve the major arcs mentioned above using the ideas outlined in Exercise 4, we require
that the sum ∑

p∼N
Φ(p)

can be decomposed into a small number (say, ¿ (log N )c ) sums of the form∑
u∼U

∑
v∼V

∑
uv w∼N

αuβvγwΦ(uv w),

where |αu | ≤ 1, |βv | ≤ 1, |γw | ≤ 1, max(U ,V ) ≤ N 11/20, and either UV ≥ N 27/35 or γw = 1 for all w .

The analogous properties of the sieve weight λ(m) =ψ(m, z) are:
13



(S1) For any fixed A,B > 0, and any non-principal Dirichlet character χ with a modulus ≤ (log N )B , and any
interval I⊂ (N /2, N ], one has ∑

m∈I
χ(m)λ(m) ¿ N (log N )−A .

(S2) There is a smooth function δ(m) such that: for any fixed A > 0 and any interval I⊂ (N /2, N ], one has∑
m∈I

λ(m) = ∑
m∈I

δ(m)+O
(
N (log N )−A)

.

(S3) We can express λ(m) as the linear combination of ¿ (log N )c arithmetic functions of the form∑
u∼U

∑
v∼V

∑
uv w=m

αuβvγw ,

where |αu | ≤ 1, |βv | ≤ 1, |γw | ≤ 1, max(U ,V ) ≤ N 11/20, and either UV ≥ N 27/35 or γw = 1 for all w .

Hypotheses (S1) and (S2) are used as a replacement for the Siegel–Walfisz theorem in the proof of (27); hypothesis
(S3) is used in the same way as (P2) is used for primes. The truth of these three hypotheses for λ(m) =ψ(m, z)
and similar functions follows easily from the standard results on the distribution of primes.

There is one additional issue that arises in the presence of sieve weights. The transition from f (α) and g1(α)
to their major arc approximations f ∗(α) and g∗

1 (α) begins with an application of the orthogonality property of
the Dirichlet characters. For example, if α= a/q +β, with β small and q ≤ P , we write∑

p∼N
e(αp2) = ∑

h∈Z∗
q

e(ah2/q)
∑

p∼N
p≡h (mod q)

e(βp2)

=φ(q)−1
∑

χ mod q

∑
h∈Z∗

q

χ̄(h)e(ah2/q)
∑

p∼N
χ(p)e(βp2).

This is justified, because when P < N /2, the primes p ∼ N fall only in residue classes h mod q with (h, q) = 1. The
latter, however, is not true for the support of the sieve weights. For example, if p0 is a prime with z < p0 ≤ P , then
there will be moduli q , z < q ≤ P which are divisible by p0, and for such moduli g1(α) will include terms with
(m, q) = p0. When z ≥ Nσ, it is relatively easy to solve this problem. Define the function θ(m,α) on the major
arcs by

θ(m,α) =
{

0 if α= a/q +β and (m, q) ≥ Nσ,

1 otherwise;

then set
g̃1(α) = ∑

m∼N
ψ(m, z)θ(m,α)e(αm2), h1(α) = g1(α)− g̃1(α).

When z ≥ Nσ and α= a/q +β, the sum g̃1(α) is supported on integers with (m, q) = 1, so

g̃1(α) = ∑
h∈Z∗

q

e(ah2/q)
∑

m∼N
m≡h (mod q)

ψ(m, z)θ(m,α)e(βm2)(30)

=φ(q)−1
∑

χ mod q

∑
h∈Z∗

q

χ̄(h)e(ah2/q)
∑

m∼N
χ(m)ψ(m, z)e(βm2).

Note that after the characters have been introduced the weights θ(m,α) become trivial and can be dropped.
Thus, we can use the generating function g̃1(α) (note that this function is not an exponential sum) in place of
g1(α) in the treatment of the major arcs to show that∫

M

(
f (α)3 g̃1(α)− f ∗(α)3g∗

1 (α)
)
e(−αn)dα¿ N 2(log N )−A

instead of (27). This leaves ∫
M

f (α)3h1(α)e(−αn)dα.

This last integral can be estimated, on average over n, in a similar way to the integral over the minor arcs. Indeed,
for α= a/q +β,

|h1(α)| ≤ ∑
p|q

p≥Nσ

∑
m∼N
p|m

1 ¿ N 1−σ,
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whence ∫
M

f (α)3h1(α)Z (α)dα¿ N 1−σ+εN 1+ε(E(X )1/2N 1/2 +E(X )
)
.

These tricks suffice to deal with the major arcs when z ≥ Nσ. When z < Nσ, we must include additional terms to
the right side of (30) and things get considerably more complicated (see [Harman & Kumchev, J. Number Theory
130 (2010)]). Observe that the condition z ≥ Nσ means that σ< 1

7 , so it is currently satisfied.

We conclude that when 1
8 <σ< 1

7 , we have

R1(n) ≈ c1κn N 2(log N )−4,

with ¿ X 1/2−σ+ε exceptions for n ∼ X . We then obtain similar results for

R2(n) = ∑
m2+p2

1+p2
2+p2

3=n
m,pi∼N

∑
z<p≤N 1/2

ψ(m/p, z)

and

R3(n) = ∑
m2+p2

1+p2
2+p2

3=n
m,pi∼N

∑†

z<q≤p≤N 1/2

pq2≤N

ψ(m/pq, q)
)
,

where in R3(n) the primes p and q are such that either p, or q , or pq lies in the ranges [N 2σ, N 1−4σ] or [N 4σ, N 1−2σ].
Consequently, by (23),

R(n) ≥ (1−`)κn N 2(log N )−4,

with ¿ X 1/2−σ+ε exceptions for n ∼ X , where

`=
(∫ 1/2

1−4σ

∫ (1−u)/2

1−2σ−u
+

∫ 2σ

1/2−2σ

∫ u

1−4σ−u

)
ω

(1−u − v

v

)d vdu

uv2 .

When σ= 1
7 , we have `< 0.3, so this suffices to show that

E(X ) ¿ X 5/14+ε.

We conclude this lecture with the remark that the limitation σ< 1
7 appeared in two places above: in the proof

of the extended Type I/II bound and in the treatment of the major arcs (see (30)). Neither of these restrictions is
critical and can be overcome when σ > 1

7 at the expense of a much messier proof: see [Harman & Kumchev, J.

Number Theory 130]. The fix, however, is only temporary and another obstruction appears when σ= 3
20 , though

that obstruction seems to be non-critical too.

LECTURE 7: EXCEPTIONAL SETS FOR SUMS OF SQUARES OF PRIMES. A “HARD” ALTERNATIVE SIEVE

In the last lecture, we were lucky to have the alternative Type I bound. In many applications to additive
problems, we have no such luck. To demonstrate how one can deal with such situations, we go back to the same
problem, but this time we shall make the problem harder by ignoring the alternative Type I sum bound. Thus,
we now assume that 1

8 <σ< 1
7 and try to apply the alternative sieve using:

• bounds for Type I/II sums with M ¿ N 1−4σ and z ≤ X 1−6σ;
• bounds for Type II sums with N 2σ¿ M ¿ N 1−4σ or N 4σ¿ M ¿ N 1−2σ.

Under these constraints, we can no longer evaluate all of R2(n). Yet, since R2(n) contributes a negative amount
to R(n), we cannot ignore its “bad” part (where p > N 1−4σ) either. So far, we have

(31) R(n) ≥ R1(n)−R ′
2(n)−R ′′

2 (n)+R3(n),

where R ′
2(n) and R ′′

2 (n) are the parts of R2(n) subject to p ≤ N 1−4σ and p > N 1−4σ, respectively. The methods
from the previous section can be used to evaluate R1(n),R ′

2(n) and R3(n). To complete the estimation of R(n),
we combine those evaluations with an upper bound for R ′′

2 (n).
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To estimate R ′′
2 (n) from above, we shall apply the same sieve ideas to one of the other primes. Let

λ2(m) = ∑
N 1−4σ<p≤N 1/2

ψ(m/p, p).

Then

R ′′
2 (n) = ∑

m2+p2
1+p2

2+p2
3=n

m,pi∼N

λ2(m) = ∑
m2+k2+p2

1+p2
2=n

m,k,pi∼N

λ2(m)ψ(k, N 1/2)

= ∑
m2+k2+p2

1+p2
2=n

m,k,pi∼N

λ2(m)
(
ψ(k, z)− ∑

z<p≤N 1/2

ψ(k/p, p)
)

≤ ∑
m2+k2+p2

1+p2
2=n

m,k,pi∼N

λ2(m)
(
ψ(k, z)− ∑

z<p≤N 1/2−2σ

ψ(k/p, p)− ∑
N 2σ≤p≤N 1−4σ

ψ(k/p, p)
)

= R ′′
2,1(n)−R ′′

2,2(n)−R ′′
2,3(n), say.

We can evaluate R ′′
2,1(n) and R ′′

2,3(n) similarly to R1(n) using a Type I/II and a Type II sum bound, respectively.

We now give a further decomposition of R ′′
2,2(n). We have

R ′′
2,2(n) = ∑

m2+k2+p2
1+p2

2=n
m,k,pi∼N

λ2(m)
∑

z<p≤N 1/2−2σ

(
ψ(k/p, z)− ∑

z<q≤p≤N 1/2−2σ

ψ(k/pq, q)
)

= R ′′
2,4(n)−R ′′

2,5(n);

here q denotes a prime. Inserting this into the decomposition of R ′′
2 (n), we find that

R ′′
2 (n) ≤ R ′′

2,1(n)−R ′′
2,3(n)−R ′′

2,4(n)+R ′′
2,5(n).

Observe that when σ< 1
7 , we can evaluate R ′′

2,5(n) using our Type II sum bound, since

N 2σ ≤ z2 < pq ≤ N 1−4σ.

When we combine the upper bound for R ′′
2 (n) with the evaluations for R1(n), R ′

2(n) and R3(n), we deduce
using (31) that

R(n) ≥ (1−`−`2(1+`2 +`3))κn N 2(log N )−4,

with ¿ X 1/2−σ+ε exceptions for n ∼ X . Here,

`2 =
∫ 1/2

1−4σ
ω

(1−u

u

)du

u2 = log
( 4σ

1−4σ

)
;

`3 =
∫ 2σ

1/2−2σ
ω

(1−u

u

)du

u2 ≤ 0.66 when σ= 1
7 .

Hence, when σ< 1
7 , we have

R(n) ≥ 0.14κn N 2(log N )−4,

with ¿ X 1/2−σ+ε exceptions for n ∼ X . We have recovered our earlier result with a weaker lower bound for the
number of representations.
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EXERCISES

Exercise 1. (a) Let 0 <∆< 1
2 . Let Φ be a smooth function supported in [−∆,∆], such that

0 ≤Φ(x) ≤ 1,
∫
R
Φ(x)d x =∆,

and define Ψ(x) =Φ(‖x‖). Prove that Ψ has a Fourier expansion of the form

Ψ(x) =∆+ ∑
h 6=0

che(hx),

with Fourier coefficients satisfying

ch = Φ̂(h) ¿k
∆(

1+∆|h|)k
(k ≥ 1).

(b) Let X be a large real and Ψ be as in part (a). Suppose that (an) is a real sequence and (ξn) is a sequence of
complex numbers such that |ξn | ≤ n A for some A > 0. Then, for any fixed ε> 0,∑

n≤X
ξnΨ(an) =∆ ∑

n≤X
ξn + ∑

0<|h|≤H
ch

∑
n≤X

ξne(han)+Oε,A(∆X −1),

where H =∆−1−εX ε.

Exercise 2. For z ≥ 2, let ψ(n, z) be defined by

ψ(n, z) =
{

1 if n has no prime divisor p with p ≤ z,

0 otherwise.

Suppose that x is a large real and 0 < δ≤ ζ≤ 1−δ for some fixed δ> 0, and set k = bδ−1c. Show that∑
n≤x

ψ
(
n, xζ

)= ∑
n≤x

ψ
(
n, x1/k)+ ∑

xζ<p≤x1/k

∑
mp≤x

ψ(m, p).

Use this identity, the Prime Number Theorem, and induction on k to prove that, for any fixed A > 0,∑
n≤x

ψ
(
n, xζ

)= 1

log z

∑
n≤x

ω
( logn

log z

)
+O

(
x(log x)−A)

= x

log x

(
ζ−1ω(1/ζ)+O

(
(log x)−1)),

where ω is Buchstab’s function.

Exercise 3. (a) Let Φ :N→C satisfy |Φ(x)| ≤ X , let M , N ≥ 2, and define the bilinear form

A(M , N ) = ∑
m∼M

∑
n∼N

m<n

ambnΦ(mn),

where |am | ≤ 1, |bn | ≤ 1. Use Perron’s formula to show that

A(M , N ) = 1

2πi

∫ c+i T

c−i T

∑
m∼M

∑
n∼N

ambnΦ(mn)
( m

n −1/2

)s d s

s
+O(1),

for c > 0 and a suitable choice of T . Use this representation with a suitable choice of c > 0 to show that there
exist coefficient sequences (a′

m) and (b′
n) such that |a′

m |¿ |am |, |b′
n |¿ |bn |, and

A(M , N ) ¿ L

∣∣∣∣∣ ∑
m∼M

∑
n∼N

a′
mb′

nΦ(mn)

∣∣∣∣∣+1,

where L = log(2M N X ).

(b) Let Φ :N→C satisfy |Φ(x)| ≤ X , let M , N ≥ 2, with log N ¿ log M , and define the bilinear form

B(M , N ) = ∑
m∼M

∑
n∼N

amψ(n,m)Φ(mn),

where |am | ≤ 1. Use Buchstab’s identity to show that

B(M , N ) = ∑
m∼M

∑
n∼N

amψ(n, M/2)Φ(mn)− ∑
m∼M

∑
M/2<p≤m

∑
pq∼N

amψ(q, p)Φ(mpq).
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Then apply part (a) to deduce that there exist coefficient sequences (a′
m) and (b′

n) such that |a′
m |¿ |am |, |b′

n |¿ 1,
and

B(M , N ) ¿ L

∣∣∣∣∣ ∑
m∼M

∑
n∼N

a′
mb′

nΦ(mn)

∣∣∣∣∣+1,

where L = log(2M N X ).

Exercise 4 (Hard). Use Theorem 1.1 in [Choi & Kumchev, Acta Arith. 123 (2006), 125–142] instead of Lemma 5.6
in [Liu & Zhan, New Developments in the Additive Theory of Prime Numbers] to prove Theorem 6.1 in [Liu &
Zhan] for s = 4 and any fixed θ < 9

20 .

Exercise 5 (Hard). Use Theorem 1.1 in [Choi & Kumchev] instead of Lemma 5.6 in [Liu & Zhan] to prove Theo-
rem 6.1 in [Liu & Zhan] for s = 3 and any fixed θ < 9

20 .
[Hint: When s = 3, show that the right side of (6.16) in [Liu&Zhan] can be replaced by (n,r0)1/2r−1+ε

0 (log x)c . Then
follow the argument from Exercise 4 with some extra care. Lemma 1 in [Harman & Kumchev, J. Number Theory
130 (2010), 1969–2002] is useful to take full advantage of this sharper version of (6.16) in [Liu & Zhan].]
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