Spectral analysis for I'\H

Erez Lapid

§8 Application of the Selberg Trace Formula (March 5, 2009)

Weyl law Classical case: Suppose that  C R? is a bounded domain. The Laplace operator
is given by A = 59—;2 + {f—;, and the eigenfunctions are the solutions of (A + \)f = 0 with
boundary conditions. The corresponding eigenvalues (with multiplicities) are 0 = Ag < A\; <
Ay < --e

Question. What is the asymptotic behavior of the \;'s? Weyl showed that
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A < T}~

Much more generally, if M is a compact surface with Riemann metric, A is the Laplace
operator which is unbounded on L?(T'\H) with discrete spectrum. Then we have

H < T ~ are4a(Q)T

If M is not compact, then we can not expect such an asymptotic.
What happens for I'\H (say I" = SL4(Z))? Problem: discrete eigenvalues are embedded in

the continuous ones. Discrete spectrum : \; = i%—t?, t; € RU [—%, %], continuous spectrum

: i + 72, r € R. How to separate the discrete spectrum from the continuous spectrum?

Selberg Trace Formula gives an expression

Z h(t;) — ﬁ : %(% + ir)h(r)dr

J=0

for any “nice” test function b (A; = 1 + t%). Roughly, we would like

That would give
1 :
Ij{)‘j S T} — 4— —(_ + ’H")h(’f’)dl'
T J_

with A; < T2+i. Such h is not permissible in the trace formula, we need a smooth substitute.

We will follow the method of Hormander as used by Duistermint-Kolk-Vardarajar.
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Recall STF, for SL?(Z), we have
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where h(t) = [, €"g(r)dr is an entire function.

Fix an even functlon g € C*(R) such that

(1) 9(0) = 1;

(ii) o > 0 on RU [—3, 5];

(iii) A > 0 on [—1,1].

For any t € R, we consider g,(x) = cos(tz)g(x), hy(r) = 3[h(t —r) + h(t + )], we want to
use the trace formula for (g, hy), for any t.

Lemma.
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for some ¢ and all t € R.
Proof. Applying Maass-Selberg relation

1 / 1 _ )2t
0 < 1E°C il = -2t i)+ 21097 4 2E DT
2 o2 ;
and |<Z5( +it)| = 1, we get the result.
Spectral side:
t+1 (b/
[ Z 1— - ¢(2+Zr)dr}[mlmh+0()

tj: |tj—t|§1

This just follows from the non-negativity of A~ and Lemma 1.

Geometric side:
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Main term is

7%6&;71;\]}]1) /Rht(r)rtanhﬂrdr < 7%6&;71;\]1{) /Rh(t —7r)rdr
area(I"\H)

- T/Rh(r)(t—r)dr

< t.

Hyperbolic contribution: Only fixed f of terms. It is independent of ¢, so the contribution is
O(1). ( By shrinking the support of g, no contribution at all.)
Elliptic contribution: Using the trivial bound

‘COShﬂ'(l — %)‘

<1
cosh 7r

— )

we get the contribution is O(1). In fact, the elliptic contribution is O(e™*).
The remaining contribution: hy(0) = h(t) = O(1), ¢,(0) = g(t) = O(1) and

/

/ht(r)£(1+ir)dr:/h(t—r)£(1+z’r)dr
R r R r
F/
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(Ir[ + 1)
< logt

where h is rapidly decreasing, i.e., for any N > 0, h(t) < (1 + |t|)™", and we also use
Stirling’s formula

/

r
F(l +it) < log|r|.

Conclusion:
t+1 ¢/
Z - —(z +ir)dr < t+ O(logt).
-1 O 2

Itj—t|<1

This gives a local estimate for the spectrum.
Lemmal Let y be a measure on R, s.t. u([—t,t+ 1]) < ¢t. Then

// (t = r)du(r)dt = u([~T,T)) + O(T).

Proof. Change the order of the integration in the LHS of the formula in Lemma 1, and
we get

LHS = // t—rdt}du() w([=T,T]) + O(T).
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Since h is rapidly decreasing, we have

h(t —r)dt =

/T 1+O<(1+|T—r|)‘N), " < T,
r o((1+ |T—r\)_N>, 7| > T.

So
LHS = /_:; du(r) + /RO<(1 + |7 — 7’|)_N)du(r).

The first integral is u([—7, 7)), and the second integral < M < T.

In the trace formula we have expressions of the form

/_ Z /R h(t — r)dp(r)dt

where dp(r) has following forms : du(r) = rtanh7rdr, u = 7.6, du(r) = —%(% + ir),

du(r) = F(1+ir). for the last two cases, we can deal by using local estimate following from
previous discussions.
Using the Lemma, we get that the spectral side is

¢/

dy <= | 2G

+ir)dr + O(T),

the main term of geometric side is

/T rtanh7rdr+ O(T) = /T r(14+O(e™™))dr + O(T)

-T -T
= T?+0(T),

parabolic term is

T 17
O(T)—I—/ 1%(1+i7’)dr =TlogT+ O(T),
T

hyperbolic and elliptic terms are O(T') by local estimate following from previous discussions.
Hence we have

continuous

discrete ¢/ (

< Ty - . iy = area(I"\H)

T? + TlogT + O(T).
5 . +TlogT + O(T)
Questions

1. What is the meaning of the continuous term?

2. Is it negligible?

3. Can we improve the error term?



Weierstrass factorization. For n € N, define

4@2%

(exp of truncation of power series of —log(1—2z)). For any entire function, there is a function
n from the set of zeros of f to N and a entire function g, s.t.

f(z) = @O ] [(1 _ %)m(n)En(n)(%)
n#0
where m(n) is the multiplicity of 7.
Define: An entire function is of finite order if 4 n s.t.
f(z) < el

Fact: f is of finite order < 3 n s.t.

) =D T [ =20 B, ). (0.1)

. n n

where g(z) is a polynomial.
The minimal n for which the product converges is called the order of f. It is closely related
to

_og (X))
lim i
logIR

For this n we get Hadamard canonical product.

We say that a meromorphic function f is of finite order, if 3 g, h entire function of finite
order, s.t.

Equivalently, f is of finite order iff 3 n € N and a polynomial g(z) s.t. (0.1) holds (m(n)
could be negative).

EX. We have

where v = Euler’s constant.

Blaschke product: Let {n,}°2, be complex numbers, Re(7,) > 0 and

Z Re(nn> < 00

NE
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Define

i =1l

]I

EX. f(z) converges and meromorphic, whose zeros are {7, } and poles are {—7,}. We also
have |f(z)| = 1 for Re(z) = 0. Note that f does not need to be of finite order.

Conversely, suppose that f is meromorphic, holomorphic near Re(s) > 0, | f(s)| = 1 for Re(s) =
0 and f is of finite order. Then

s§—1
F(s) = 69(8)1_[ L
; s+n

where 7 goes through all zeros of f, g(s) is a polynomial satisfying Reg(s) = 0 for Re(s) = 0,
and we have

Re(n,,
Z 9(772) < oo
|77n|

7 Zeros
If moreover,

N 14 0(1)
\/g

in particular, f has no zeros for Re(s) > 2, then g is constant.

f(s)

for Re(s) > 2,

¢(s) does not quite have these properties. But
ad S — Sj
s —_—
¢( ) H 1+s5— Sj
J=1

has these properties (even for I' non-arithmetic), where {s;} are poles for Re(s) > 5. There-
fore
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Note that Re(s) =

N[

1 1
— — > 0if Re(s) <
s—s; s—1+35;

Y

N —

% > O(|s]?) on Re(s) %

and
T ¢/ 1
-T
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noting that £ of poles ¢ with Im < T = of zeros ¢ with Im < T (We use that ¢ is of finite
order, this comes from general theory).

In the case of I' = SLy(Z),

_(2s-1)
e
is of order 1, and
T
¢
/_T 5 TlogT.
Thus,
4t < T) = %?H)T? +O(TlogT).

However, for a generic I' one expects that fi¢; is finite. In particular, ¢ is of order 2.
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