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Weyl law Classical case: Suppose that Ω ⊆ R
2 is a bounded domain. The Laplace operator

is given by ∆ = ∂2

∂x2 + ∂2

∂y2 , and the eigenfunctions are the solutions of (∆ + λ)f = 0 with

boundary conditions. The corresponding eigenvalues (with multiplicities) are 0 = λ0 < λ1 ≤
λ2 ≤ · · · .

Question. What is the asymptotic behavior of the λj
′s? Weyl showed that

♯{λj ≤ T} ∼ area(Ω)

4π
T.

Much more generally, if M is a compact surface with Riemann metric, ∆ is the Laplace

operator which is unbounded on L2(Γ\H) with discrete spectrum. Then we have

♯{λj ≤ T} ∼ area(Ω)

4π
T.

If M is not compact, then we can not expect such an asymptotic.

What happens for Γ\H (say Γ = SL2(Z))? Problem: discrete eigenvalues are embedded in

the continuous ones. Discrete spectrum : λj = 1
4
+ t2j , tj ∈ R∪ [− i

2
, i

2
], continuous spectrum

: 1
4

+ r2, r ∈ R. How to separate the discrete spectrum from the continuous spectrum?

Selberg Trace Formula gives an expression

∞
∑

j=0

h(tj) −
1

4π

∫

R

φ′

φ
(
1

2
+ ir)h(r)dr

for any “nice” test function h (λj = 1
4

+ t2j ). Roughly, we would like

h(t) = χ[−T,T ]∪[− i
2
, i
2
].

That would give

♯{λj ≤ T} − 1

4π

∫ T

−T

φ′

φ
(
1

2
+ ir)h(r)dr

with λj ≤ T 2+ 1
4
. Such h is not permissible in the trace formula, we need a smooth substitute.

We will follow the method of Hörmander as used by Duistermint-Kolk-Vardarajar.
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Recall STF, for SL2(Z), we have

∞
∑

j=0

h(tj) −
1

4π

∫

R

φ′

φ
(
1

2
+ ir)h(r)dr

=
area(Γ\H)

4π

∫

R

h(r)r tanh πrdr

+ 2
∑

P

∞
∑

l=1

g(l log p)

p
l
2 − p−

l
2

log p

+
∑

R

∑

0<l≤m

1

2m sin πl
m

∫

R

h(r)
cosh π(1 − 2l

m
)r

cosh πr
dr

+
h(0)

4
(1 − φ(

1

2
)) − g(0) log 2 − 1

2π

∫

R

h(r)
Γ′

Γ
(1 + ir)dr,

where h(t) =
∫

R
eirtg(r)dr is an entire function.

Fix an even function g ∈ C∞
c (R) such that

(i) g(0) = 1;

(ii) h ≥ 0 on R ∪ [− i
2
, i

2
];

(iii) h > 0 on [−1, 1].

For any t ∈ R, we consider gt(x) = cos(tx)g(x), ht(r) = 1
2
[h(t− r) + h(t + r)], we want to

use the trace formula for (gt, ht), for any t.

Lemma.

φ′

φ
(
1

2
+ it) ≥ c

for some c and all t ∈ R.
Proof. Applying Maass-Selberg relation

0 ≤ ||ET (
1

2
+ it)||2 = −φ′

φ
(
1

2
+ it) + 2 log T + Im

φ(1
2
− it)T 2it

t

and |φ(1
2

+ it)| = 1, we get the result.

Spectral side:

[

∑

tj : |tj−t|≤1

1 −
∫ t+1

t−1

φ′

φ
(
1

2
+ ir)dr

]

min
[−1,1]

h + O(1).

This just follows from the non-negativity of h and Lemma 1.

Geometric side:
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Main term is

area(Γ\H)

4π

∫

R

ht(r)r tanh πrdr ≤ area(Γ\H)

4π

∫

R

h(t − r)rdr

=
area(Γ\H)

4π

∫

R

h(r)(t − r)dr

≪ t.

Hyperbolic contribution: Only fixed ♯ of terms. It is independent of t, so the contribution is

O(1). ( By shrinking the support of g, no contribution at all.)

Elliptic contribution: Using the trivial bound

∣

∣

∣

cosh π(1 − 2l
m

)

cosh πr

∣

∣

∣
≤ 1,

we get the contribution is O(1). In fact, the elliptic contribution is O(e−αt).

The remaining contribution: ht(0) = h(t) = O(1), gt(0) = g(t) = O(1) and
∫

R

ht(r)
Γ′

Γ
(1 + ir)dr =

∫

R

h(t − r)
Γ′

Γ
(1 + ir)dr

=

∫

R

h(r)
Γ′

Γ
(1 + ir + it)dr

≪
∫

R

log |r + t + 2|
(|r| + 1)2

dr

≪ log t

where h is rapidly decreasing, i.e., for any N > 0, h(t) ≪ (1 + |t|)−N , and we also use

Stirling’s formula

Γ′

Γ
(1 + it) ≪ log |r|.

Conclusion:

∑

|tj−t|≤1

−
∫ t+1

t−1

φ′

φ
(
1

2
+ ir)dr ≪ t + O(log t).

This gives a local estimate for the spectrum.

Lemma1 Let µ be a measure on R, s.t. µ([−t, t + 1]) ≪ t. Then

∫ T

−T

∫

R

h(t − r)dµ(r)dt = µ([−T, T ]) + O(T ).

Proof. Change the order of the integration in the LHS of the formula in Lemma 1, and
we get

LHS =

∫

R

[

∫ T

−T

h(t − r)dt
]

dµ(r) = µ([−T, T ]) + O(T ).
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Since h is rapidly decreasing, we have

∫ T

−T

h(t − r)dt =







1 + O
(

(1 + |T − r|)−N
)

, |r| ≤ T,

O
(

(1 + |T − r|)−N
)

, |r| > T.

So

LHS =

∫ T

−T

dµ(r) +

∫

R

O
(

(1 + |T − r|)−N
)

dµ(r).

The first integral is µ([−T, T ]), and the second integral ≪
∑ µ([T+n,T+n+1])

nN ≪ T .

In the trace formula we have expressions of the form

∫ T

−T

∫

R

h(t − r)dµ(r)dt

where dµ(r) has following forms : dµ(r) = r tanh πrdr, u =
∑

j δtj , dµ(r) = −φ′

φ
(1

2
+ ir),

dµ(r) = Γ′
Γ
(1+ ir). for the last two cases, we can deal by using local estimate following from

previous discussions.

Using the Lemma, we get that the spectral side is

♯{tj ≤ T} −
∫ T

−T

φ′

φ
(
1

2
+ ir)dr + O(T ),

the main term of geometric side is

∫ T

−T

r tanhπrdr + O(T ) =

∫ T

−T

r(1 + O(e−πr))dr + O(T )

= T 2 + O(T ),

parabolic term is

O(T ) +

∫ T

−T

Γ′

Γ
(1 + ir)dr = T log T + O(T ),

hyperbolic and elliptic terms are O(T ) by local estimate following from previous discussions.

Hence we have

discrete

♯{tj ≤ T} −
continuous

∫ T

−T

φ′

φ
(
1

2
+ ir)dr =

area(Γ\H)

4π
T 2 + T log T + O(T ).

Questions

1. What is the meaning of the continuous term?

2. Is it negligible?

3. Can we improve the error term?
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Weierstrass factorization. For n ∈ N, define

En(z) = exp(
n

∑

j=1

zj

j
)

(exp of truncation of power series of − log(1−z)). For any entire function, there is a function

n from the set of zeros of f to N and a entire function g, s.t.

f(z) = eg(z)zm(0)
∏

η 6=0

[

(1 − z

η
)m(η)En(η)(

z

η
)
]

where m(η) is the multiplicity of η.

Define: An entire function is of finite order if ∃ n s.t.

f(z) ≪ e|z|
n

.

Fact: f is of finite order ⇔ ∃ n s.t.

f(z) = eg(z)
∏

η

[

(1 − z

η
)m(η)En(

z

η
)
]

, (0.1)

where g(z) is a polynomial.

The minimal n for which the product converges is called the order of f . It is closely related
to

lim
log

(

∑

|η|<R
m(η)

)

log R
.

For this n we get Hadamard canonical product.

We say that a meromorphic function f is of finite order, if ∃ g, h entire function of finite

order, s.t.

f(z) =
g(z)

h(z)
.

Equivalently, f is of finite order iff ∃ n ∈ N and a polynomial g(z) s.t. (0.1) holds (m(η)

could be negative).

EX. We have

Γ(z) = z−1eγz

∞
∏

n=1

(

1 − z

n

)−1

e
z
n ,

where γ = Euler’s constant.

Blaschke product: Let {ηn}∞n=1 be complex numbers, Re(ηn) > 0 and

∑ Re(ηn)

|ηn|2
< ∞.
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Define

f(z) =
∏

η

z − η

z + η̄
.

EX. f(z) converges and meromorphic, whose zeros are {ηn} and poles are {−η̄n}. We also

have |f(z)| = 1 for Re(z) = 0. Note that f does not need to be of finite order.

Conversely, suppose that f is meromorphic, holomorphic near Re(s) ≥ 0, |f(s)| = 1 for Re(s) =

0 and f is of finite order. Then

f(s) = eg(s)
∏

η

s − η

s + η̄
,

where η goes through all zeros of f , g(s) is a polynomial satisfying Reg(s) = 0 for Re(s) = 0,

and we have

∑

η zeros

Re(ηn)

|ηn|2
< ∞.

If moreover,

f(s) ∼ 1 + o(1)√
s

for Re(s) > 2,

in particular, f has no zeros for Re(s) > 2, then g is constant.

φ(s) does not quite have these properties. But

φ(s)
∞
∏

j=1

s − sj

1 + s − sj

has these properties (even for Γ non-arithmetic), where {sj} are poles for Re(s) > 1
2
. There-

fore

φ′

φ
=

∑

sj

1

s − sj

− 1

s − 1 + s̄j

,

and
∑ Re(1−sj)

|sj|2
< ∞.

Note that Re(s) = 1
2
,

1

s − sj

− 1

s − 1 + s̄j

≥ 0 if Re(s) <
1

2
,

φ′

φ
≥ O(|s|2) on Re(s) =

1

2

and
∫ T

−T

φ′

φ
(
1

2
+ ir)dr = ♯ of poles φ with Im ≤ T + O(T ),
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noting that ♯ of poles φ with Im ≤ T = ♯ of zeros φ with Im ≤ T (We use that φ is of finite

order, this comes from general theory).

In the case of Γ = SL2(Z),

φ(s) =
ζ∗(2s − 1)

ζ∗(2s)

is of order 1, and
∫ T

−T

φ′

φ
∼ T log T.

Thus,

♯{tj ≤ T} =
area(Γ\H)

4π
T 2 + O(T log T ).

However, for a generic Γ one expects that ♯tj is finite. In particular, φ is of order 2.
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