Erez Lapid

§8 Application of the Selberg Trace Formula (March 5, 2009)

Weyl law Classical case: Suppose that $\Omega \subseteq \mathbb{R}^2$ is a bounded domain. The Laplace operator is given by $\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$, and the eigenfunctions are the solutions of $(\Delta + \lambda)f = 0$ with boundary conditions. The corresponding eigenvalues (with multiplicities) are $0 = \lambda_0 < \lambda_1 \leq$ $\lambda_2 \leq \cdots$.

Question. What is the asymptotic behavior of the λ_j 's? Weyl showed that

$$\sharp\{\lambda_j \le T\} \sim \frac{\operatorname{area}(\Omega)}{4\pi}T.$$

Much more generally, if M is a compact surface with Riemann metric, Δ is the Laplace operator which is unbounded on $L^2(\Gamma \setminus \mathbb{H})$ with discrete spectrum. Then we have

$$\sharp\{\lambda_j \le T\} \sim \frac{\operatorname{area}(\Omega)}{4\pi}T.$$

If M is not compact, then we can not expect such an asymptotic.

What happens for $\Gamma \setminus \mathbb{H}$ (say $\Gamma = SL_2(\mathbb{Z})$)? Problem: discrete eigenvalues are embedded in the continuous ones. Discrete spectrum : $\lambda_j = \frac{1}{4} + t_j^2$, $t_j \in \mathbb{R} \cup [-\frac{i}{2}, \frac{i}{2}]$, continuous spectrum : $\frac{1}{4} + r^2$, $r \in \mathbb{R}$. How to separate the discrete spectrum from the continuous spectrum?

Selberg Trace Formula gives an expression

$$\sum_{j=0}^{\infty} h(t_j) - \frac{1}{4\pi} \int_{\mathbb{R}} \frac{\phi'}{\phi} (\frac{1}{2} + ir) h(r) \mathrm{d}r$$

for any "nice" test function $h(\lambda_j = \frac{1}{4} + t_j^2)$. Roughly, we would like

$$h(t) = \chi_{[-T,T]\cup[-\frac{i}{2},\frac{i}{2}]}.$$

That would give

$$\sharp\{\lambda_j \le T\} - \frac{1}{4\pi} \int_{-T}^T \frac{\phi'}{\phi} (\frac{1}{2} + ir) h(r) \mathrm{d}r$$

with $\lambda_j \leq T^2 + \frac{1}{4}$. Such h is not permissible in the trace formula, we need a smooth substitute. We will follow the method of Hörmander as used by Duistermint-Kolk-Vardarajar.

Recall STF, for $SL^2(\mathbb{Z})$, we have

$$\begin{split} &\sum_{j=0}^{\infty} h(t_j) - \frac{1}{4\pi} \int_{\mathbb{R}} \frac{\phi'}{\phi} (\frac{1}{2} + ir) h(r) \mathrm{d}r \\ &= \frac{\operatorname{area}(\Gamma \setminus \mathbb{H})}{4\pi} \int_{\mathbb{R}} h(r) r \tanh \pi r \mathrm{d}r \\ &+ 2 \sum_{P} \sum_{l=1}^{\infty} \frac{g(l \log p)}{p^{\frac{1}{2}} - p^{-\frac{l}{2}}} \log p \\ &+ \sum_{\mathcal{R}} \sum_{0 < l \le m} \frac{1}{2m \sin \frac{\pi l}{m}} \int_{\mathbb{R}} h(r) \frac{\cosh \pi (1 - \frac{2l}{m}) r}{\cosh \pi r} \mathrm{d}r \\ &+ \frac{h(0)}{4} (1 - \phi(\frac{1}{2})) - g(0) \log 2 - \frac{1}{2\pi} \int_{\mathbb{R}} h(r) \frac{\Gamma'}{\Gamma} (1 + ir) \mathrm{d}r, \end{split}$$

where $h(t) = \int_{\mathbb{R}} e^{irt} g(r) dr$ is an entire function.

Fix an even function $g \in C_c^{\infty}(\mathbb{R})$ such that

- (i) g(0) = 1;
- (ii) $h \ge 0$ on $\mathbb{R} \cup \left[-\frac{i}{2}, \frac{i}{2}\right]$;
- (iii) h > 0 on [-1, 1].

For any $t \in \mathbb{R}$, we consider $g_t(x) = \cos(tx)g(x)$, $h_t(r) = \frac{1}{2}[h(t-r) + h(t+r)]$, we want to use the trace formula for (g_t, h_t) , for any t.

Lemma.

$$\frac{\phi'}{\phi}(\frac{1}{2}+it) \ge c$$

for some c and all $t \in \mathbb{R}$.

Proof. Applying Maass-Selberg relation

$$0 \le ||E^{T}(\frac{1}{2} + it)||^{2} = -\frac{\phi'}{\phi}(\frac{1}{2} + it) + 2\log T + \operatorname{Im}\frac{\phi(\frac{1}{2} - it)T^{2it}}{t}$$

and $|\phi(\frac{1}{2}+it)| = 1$, we get the result.

Spectral side:

$$\left[\sum_{t_{j}: |t_{j}-t| \leq 1} 1 - \int_{t-1}^{t+1} \frac{\phi'}{\phi} (\frac{1}{2} + ir) \mathrm{d}r\right] \min_{[-1,1]} h + O(1).$$

This just follows from the non-negativity of h and Lemma 1.

Geometric side:

Main term is

$$\frac{\operatorname{area}(\Gamma \setminus \mathbb{H})}{4\pi} \int_{\mathbb{R}} h_t(r) r \tanh \pi r dr \leq \frac{\operatorname{area}(\Gamma \setminus \mathbb{H})}{4\pi} \int_{\mathbb{R}} h(t-r) r dr$$
$$= \frac{\operatorname{area}(\Gamma \setminus \mathbb{H})}{4\pi} \int_{\mathbb{R}} h(r) (t-r) dr$$
$$\ll t.$$

Hyperbolic contribution: Only fixed \sharp of terms. It is independent of t, so the contribution is O(1). (By shrinking the support of g, no contribution at all.)

Elliptic contribution: Using the trivial bound

$$\left|\frac{\cosh \pi (1-\frac{2l}{m})}{\cosh \pi r}\right| \le 1,$$

we get the contribution is O(1). In fact, the elliptic contribution is $O(e^{-\alpha t})$.

The remaining contribution: $h_t(0) = h(t) = O(1), g_t(0) = g(t) = O(1)$ and

$$\int_{\mathbb{R}} h_t(r) \frac{\Gamma'}{\Gamma} (1+ir) dr = \int_{\mathbb{R}} h(t-r) \frac{\Gamma'}{\Gamma} (1+ir) dr$$
$$= \int_{\mathbb{R}} h(r) \frac{\Gamma'}{\Gamma} (1+ir+it) dr$$
$$\ll \int_{\mathbb{R}} \frac{\log|r+t+2|}{(|r|+1)^2} dr$$
$$\ll \log t$$

where h is rapidly decreasing, i.e., for any N > 0, $h(t) \ll (1 + |t|)^{-N}$, and we also use Stirling's formula

$$\frac{\Gamma'}{\Gamma}(1+it) \ll \log |r|.$$

Conclusion:

$$\sum_{|t_j - t| \le 1} - \int_{t-1}^{t+1} \frac{\phi'}{\phi} (\frac{1}{2} + ir) \mathrm{d}r \ll t + O(\log t).$$

This gives a local estimate for the spectrum. Lemma1 Let μ be a measure on \mathbb{R} , s.t. $\mu([-t, t+1]) \ll t$. Then

$$\int_{-T}^{T} \int_{\mathbb{R}} h(t-r) d\mu(r) dt = \mu([-T,T]) + O(T).$$

Proof. Change the order of the integration in the LHS of the formula in Lemma 1, and we get

LHS =
$$\int_{\mathbb{R}} \left[\int_{-T}^{T} h(t-r) dt \right] d\mu(r) = \mu([-T,T]) + O(T).$$

Since h is rapidly decreasing, we have

$$\int_{-T}^{T} h(t-r)dt = \begin{cases} 1+O((1+|T-r|)^{-N}), & |r| \le T, \\ O((1+|T-r|)^{-N}), & |r| > T. \end{cases}$$

 So

LHS =
$$\int_{-T}^{T} d\mu(r) + \int_{\mathbb{R}} O\left((1+|T-r|)^{-N}\right) d\mu(r)$$

The first integral is $\mu([-T,T])$, and the second integral $\ll \sum \frac{\mu([T+n,T+n+1])}{n^N} \ll T$.

In the trace formula we have expressions of the form

$$\int_{-T}^{T} \int_{\mathcal{R}} h(t-r) d\mu(r) dt$$

where $d\mu(r)$ has following forms : $d\mu(r) = r \tanh \pi r dr$, $u = \sum_j \delta_{t_j}$, $d\mu(r) = -\frac{\phi'}{\phi}(\frac{1}{2} + ir)$, $d\mu(r) = \frac{\Gamma'}{\Gamma}(1+ir)$. for the last two cases, we can deal by using local estimate following from previous discussions.

Using the Lemma, we get that the spectral side is

$$#\{t_j \le T\} - \int_{-T}^T \frac{\phi'}{\phi} (\frac{1}{2} + ir) dr + O(T),$$

the main term of geometric side is

$$\int_{-T}^{T} r \tanh \pi r dr + O(T) = \int_{-T}^{T} r(1 + O(e^{-\pi r})) dr + O(T)$$
$$= T^{2} + O(T),$$

parabolic term is

$$O(T) + \int_{-T}^{T} \frac{\Gamma'}{\Gamma} (1+ir)dr = T\log T + O(T),$$

hyperbolic and elliptic terms are O(T) by local estimate following from previous discussions. Hence we have

$$\sharp \{ t_j^{\text{discrete}} \} - \int_{-T}^T \frac{\phi'}{\phi} (\frac{1}{2} + ir) dr = \frac{\operatorname{area}(\Gamma \setminus \mathbf{H})}{4\pi} T^2 + T \log T + O(T).$$

Questions

- 1. What is the meaning of the continuous term?
- 2. Is it negligible?
- 3. Can we improve the error term?

Weierstrass factorization. For $n \in \mathbb{N}$, define

$$E_n(z) = \exp(\sum_{j=1}^n \frac{z^j}{j})$$

(exp of truncation of power series of $-\log(1-z)$). For any entire function, there is a function n from the set of zeros of f to \mathbb{N} and a entire function g, s.t.

$$f(z) = e^{g(z)} z^{m(0)} \prod_{\eta \neq 0} \left[(1 - \frac{z}{\eta})^{m(\eta)} E_{n(\eta)}(\frac{z}{\eta}) \right]$$

where $m(\eta)$ is the multiplicity of η .

Define: An entire function is of finite order if $\exists n \text{ s.t.}$

$$f(z) \ll e^{|z|^n}$$

Fact: f is of finite order $\Leftrightarrow \exists n \text{ s.t.}$

$$f(z) = e^{g(z)} \prod_{\eta} \left[(1 - \frac{z}{\eta})^{m(\eta)} E_n(\frac{z}{\eta}) \right], \qquad (0.1)$$

where g(z) is a polynomial.

The minimal n for which the product converges is called the order of f. It is closely related to

$$\overline{\lim} \frac{\log\left(\sum_{|\eta|<\mathbb{R}} m(\eta)\right)}{\log \mathbb{R}}.$$

For this n we get Hadamard canonical product.

We say that a meromorphic function f is of finite order, if $\exists g, h$ entire function of finite order, s.t.

$$f(z) = \frac{g(z)}{h(z)}.$$

Equivalently, f is of finite order iff $\exists n \in \mathbb{N}$ and a polynomial g(z) s.t. (0.1) holds $(m(\eta))$ could be negative).

EX. We have

$$\Gamma(z) = z^{-1} e^{\gamma z} \prod_{n=1}^{\infty} \left(1 - \frac{z}{n}\right)^{-1} e^{\frac{z}{n}},$$

where $\gamma = \text{Euler's constant.}$

Blaschke product: Let $\{\eta_n\}_{n=1}^{\infty}$ be complex numbers, $\operatorname{Re}(\eta_n) > 0$ and

$$\sum \frac{\operatorname{Re}(\eta_n)}{|\eta_n|^2} < \infty.$$

Define

$$f(z) = \prod_{\eta} \frac{z - \eta}{z + \bar{\eta}}.$$

EX. f(z) converges and meromorphic, whose zeros are $\{\eta_n\}$ and poles are $\{-\bar{\eta}_n\}$. We also have |f(z)| = 1 for $\operatorname{Re}(z) = 0$. Note that f does not need to be of finite order.

Conversely, suppose that f is meromorphic, holomorphic near $\operatorname{Re}(s) \ge 0$, |f(s)| = 1 for $\operatorname{Re}(s) = 1$ 0 and f is of finite order. Then

$$f(s) = e^{g(s)} \prod_{\eta} \frac{s - \eta}{s + \bar{\eta}},$$

where η goes through all zeros of f, g(s) is a polynomial satisfying $\operatorname{Re} g(s) = 0$ for $\operatorname{Re}(s) = 0$, and we have

$$\sum_{\eta \text{ zeros}} \frac{\operatorname{Re}(\eta_n)}{|\eta_n|^2} < \infty$$

If moreover,

$$f(s) \sim \frac{1+o(1)}{\sqrt{s}}$$
 for $\operatorname{Re}(s) > 2$,

in particular, f has no zeros for $\operatorname{Re}(s) > 2$, then g is constant.

 $\phi(s)$ does not quite have these properties. But

$$\phi(s)\prod_{j=1}^{\infty}\frac{s-s_j}{1+s-s_j}$$

has these properties (even for Γ non-arithmetic), where $\{s_j\}$ are poles for $\operatorname{Re}(s) > \frac{1}{2}$. Therefore

$$\frac{\phi'}{\phi} = \sum_{s_j} \frac{1}{s - s_j} - \frac{1}{s - 1 + \bar{s_j}},$$

and $\sum \frac{\operatorname{Re}(1-s_j)}{|s_j|^2} < \infty$. Note that $\operatorname{Re}(s) = \frac{1}{2}$,

$$\frac{1}{s-s_j} - \frac{1}{s-1+\bar{s_j}} \ge 0 \text{ if } \operatorname{Re}(s) < \frac{1}{2},$$
$$\frac{\phi'}{\phi} \ge O(|s|^2) \text{ on } \operatorname{Re}(s) = \frac{1}{2}$$

and

$$\int_{-T}^{T} \frac{\phi'}{\phi} (\frac{1}{2} + ir) dr = \sharp \text{ of poles } \phi \text{ with Im} \le T + O(T),$$

noting that \sharp of poles ϕ with Im $\leq T = \sharp$ of zeros ϕ with Im $\leq T$ (We use that ϕ is of finite order, this comes from general theory).

In the case of $\Gamma = \mathrm{SL}_2(\mathbb{Z})$,

$$\phi(s) = \frac{\zeta^*(2s-1)}{\zeta^*(2s)}$$

is of order 1, and

$$\int_{-T}^{T} \frac{\phi'}{\phi} \sim T \log T.$$

Thus,

$$\sharp\{t_j \le T\} = \frac{\operatorname{area}(\Gamma \setminus \mathrm{H})}{4\pi} T^2 + O(T \log T).$$

However, for a generic Γ one expects that $\sharp t_j$ is finite. In particular, ϕ is of order 2.

References