Spectral analysis for $\Gamma \backslash \mathbb{H}$

Erez Lapid

§8 Application of the Selberg Trace Formula (March 5, 2009)

Weyl law Classical case: Suppose that $\Omega \subseteq \mathbb{R}^{2}$ is a bounded domain. The Laplace operator is given by $\Delta=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}$, and the eigenfunctions are the solutions of $(\Delta+\lambda) f=0$ with boundary conditions. The corresponding eigenvalues (with multiplicities) are $0=\lambda_{0}<\lambda_{1} \leq$ $\lambda_{2} \leq \cdots$.
Question. What is the asymptotic behavior of the $\lambda_{j}{ }^{\prime} s$? Weyl showed that

$$
\sharp\left\{\lambda_{j} \leq T\right\} \sim \frac{\operatorname{area}(\Omega)}{4 \pi} T .
$$

Much more generally, if M is a compact surface with Riemann metric, Δ is the Laplace operator which is unbounded on $L^{2}(\Gamma \backslash \mathbb{H})$ with discrete spectrum. Then we have

$$
\sharp\left\{\lambda_{j} \leq T\right\} \sim \frac{\operatorname{area}(\Omega)}{4 \pi} T .
$$

If M is not compact, then we can not expect such an asymptotic.
What happens for $\Gamma \backslash \mathbb{H}$ (say $\Gamma=S L_{2}(\mathbb{Z})$)? Problem: discrete eigenvalues are embedded in the continuous ones. Discrete spectrum : $\lambda_{j}=\frac{1}{4}+t_{j}^{2}, \quad t_{j} \in \mathbb{R} \cup\left[-\frac{i}{2}, \frac{i}{2}\right]$, continuous spectrum $: \frac{1}{4}+r^{2}, r \in \mathbb{R}$. How to separate the discrete spectrum from the continuous spectrum?

Selberg Trace Formula gives an expression

$$
\sum_{j=0}^{\infty} h\left(t_{j}\right)-\frac{1}{4 \pi} \int_{\mathbb{R}} \frac{\phi^{\prime}}{\phi}\left(\frac{1}{2}+i r\right) h(r) \mathrm{dr}
$$

for any "nice" test function $h\left(\lambda_{j}=\frac{1}{4}+t_{j}^{2}\right)$. Roughly, we would like

$$
h(t)=\chi_{[-T, T] \cup\left[-\frac{i}{2}, \frac{i}{2}\right]} .
$$

That would give

$$
\sharp\left\{\lambda_{j} \leq T\right\}-\frac{1}{4 \pi} \int_{-T}^{T} \frac{\phi^{\prime}}{\phi}\left(\frac{1}{2}+i r\right) h(r) \mathrm{dr}
$$

with $\lambda_{j} \leq T^{2}+\frac{1}{4}$. Such h is not permissible in the trace formula, we need a smooth substitute.
We will follow the method of Hörmander as used by Duistermint-Kolk-Vardarajar.

Recall STF, for $S L^{2}(\mathbb{Z})$, we have

$$
\begin{aligned}
& \sum_{j=0}^{\infty} h\left(t_{j}\right)-\frac{1}{4 \pi} \int_{\mathbb{R}} \frac{\phi^{\prime}}{\phi}\left(\frac{1}{2}+i r\right) h(r) \mathrm{d} r \\
& =\frac{\operatorname{area}(\Gamma \backslash \mathbb{H})}{4 \pi} \int_{\mathbb{R}} h(r) r \tanh \pi r \mathrm{~d} r \\
& +2 \sum_{P} \sum_{l=1}^{\infty} \frac{g(l \log p)}{p^{\frac{l}{2}}-p^{-\frac{l}{2}}} \log p \\
& +\sum_{\mathcal{R}} \sum_{0<l \leq m} \frac{1}{2 m \sin \frac{\pi l}{m}} \int_{\mathbb{R}} h(r) \frac{\cosh \pi\left(1-\frac{2 l}{m}\right) r}{\cosh \pi r} \mathrm{~d} r \\
& +\frac{h(0)}{4}\left(1-\phi\left(\frac{1}{2}\right)\right)-g(0) \log 2-\frac{1}{2 \pi} \int_{\mathbb{R}} h(r) \frac{\Gamma^{\prime}}{\Gamma}(1+i r) \mathrm{d} r,
\end{aligned}
$$

where $h(t)=\int_{\mathbb{R}} e^{i r t} g(r) \mathrm{d} r$ is an entire function.
Fix an even function $g \in C_{c}^{\infty}(\mathbb{R})$ such that
(i) $g(0)=1$;
(ii) $h \geq 0$ on $\mathbb{R} \cup\left[-\frac{i}{2}, \frac{i}{2}\right]$;
(iii) $h>0$ on $[-1,1]$.

For any $t \in \mathbb{R}$, we consider $g_{t}(x)=\cos (t x) g(x), h_{t}(r)=\frac{1}{2}[h(t-r)+h(t+r)]$, we want to use the trace formula for $\left(g_{t}, h_{t}\right)$, for any t.

Lemma.

$$
\frac{\phi^{\prime}}{\phi}\left(\frac{1}{2}+i t\right) \geq c
$$

for some c and all $t \in \mathbb{R}$.
Proof. Applying Maass-Selberg relation

$$
0 \leq\left\|E^{T}\left(\frac{1}{2}+i t\right)\right\|^{2}=-\frac{\phi^{\prime}}{\phi}\left(\frac{1}{2}+i t\right)+2 \log T+\operatorname{Im} \frac{\phi\left(\frac{1}{2}-i t\right) T^{2 i t}}{t}
$$

and $\left|\phi\left(\frac{1}{2}+i t\right)\right|=1$, we get the result.
Spectral side:

$$
\left[\sum_{t_{j}:\left|t_{j}-t\right| \leq 1} 1-\int_{t-1}^{t+1} \frac{\phi^{\prime}}{\phi}\left(\frac{1}{2}+i r\right) \mathrm{d} r\right] \min _{[-1,1]} h+O(1)
$$

This just follows from the non-negativity of h and Lemma 1.
Geometric side:

Main term is

$$
\begin{aligned}
\frac{\operatorname{area}(\Gamma \backslash \mathbb{H})}{4 \pi} \int_{\mathbb{R}} h_{t}(r) r \tanh \pi r \mathrm{~d} r & \leq \frac{\operatorname{area}(\Gamma \backslash \mathbb{H})}{4 \pi} \int_{\mathbb{R}} h(t-r) r \mathrm{~d} r \\
& =\frac{\operatorname{area}(\Gamma \backslash \mathbb{H})}{4 \pi} \int_{\mathbb{R}} h(r)(t-r) \mathrm{d} r \\
& \ll t
\end{aligned}
$$

Hyperbolic contribution: Only fixed \sharp of terms. It is independent of t, so the contribution is $O(1)$. (By shrinking the support of g, no contribution at all.)

Elliptic contribution: Using the trivial bound

$$
\left|\frac{\cosh \pi\left(1-\frac{2 l}{m}\right)}{\cosh \pi r}\right| \leq 1
$$

we get the contribution is $O(1)$. In fact, the elliptic contribution is $O\left(e^{-\alpha t}\right)$.
The remaining contribution: $h_{t}(0)=h(t)=O(1), g_{t}(0)=g(t)=O(1)$ and

$$
\begin{aligned}
\int_{\mathbb{R}} h_{t}(r) \frac{\Gamma^{\prime}}{\Gamma}(1+i r) \mathrm{d} r & =\int_{\mathbb{R}} h(t-r) \frac{\Gamma^{\prime}}{\Gamma}(1+i r) \mathrm{d} r \\
& =\int_{\mathbb{R}} h(r) \frac{\Gamma^{\prime}}{\Gamma}(1+i r+i t) \mathrm{d} r \\
& \ll \int_{\mathbb{R}} \frac{\log |r+t+2|}{(|r|+1)^{2}} \mathrm{~d} r \\
& \ll \log t
\end{aligned}
$$

where h is rapidly decreasing, i.e., for any $N>0, h(t) \ll(1+|t|)^{-N}$, and we also use Stirling's formula

$$
\frac{\Gamma^{\prime}}{\Gamma}(1+i t) \ll \log |r|
$$

Conclusion:

$$
\sum_{\left|t_{j}-t\right| \leq 1}-\int_{t-1}^{t+1} \frac{\phi^{\prime}}{\phi}\left(\frac{1}{2}+i r\right) \mathrm{d} r \ll t+O(\log t)
$$

This gives a local estimate for the spectrum.
Lemma1 Let μ be a measure on \mathbb{R}, s.t. $\mu([-t, t+1]) \ll t$. Then

$$
\int_{-T}^{T} \int_{\mathbb{R}} h(t-r) d \mu(r) d t=\mu([-T, T])+O(T)
$$

Proof. Change the order of the integration in the LHS of the formula in Lemma 1, and we get

$$
\text { LHS }=\int_{\mathbb{R}}\left[\int_{-T}^{T} h(t-r) d t\right] d \mu(r)=\mu([-T, T])+O(T) .
$$

Since h is rapidly decreasing, we have

$$
\int_{-T}^{T} h(t-r) d t= \begin{cases}1+O\left((1+|T-r|)^{-N}\right), & |r| \leq T \\ O\left((1+|T-r|)^{-N}\right), & |r|>T\end{cases}
$$

So

$$
\mathrm{LHS}=\int_{-T}^{T} d \mu(r)+\int_{\mathbb{R}} O\left((1+|T-r|)^{-N}\right) d \mu(r)
$$

The first integral is $\mu([-T, T])$, and the second integral $\ll \sum \frac{\mu([T+n, T+n+1])}{n^{N}} \ll T$.
In the trace formula we have expressions of the form

$$
\int_{-T}^{T} \int_{\mathrm{R}} h(t-r) d \mu(r) d t
$$

where $d \mu(r)$ has following forms : $d \mu(r)=r \tanh \pi r d r, u=\sum_{j} \delta_{t_{j}}, d \mu(r)=-\frac{\phi^{\prime}}{\phi}\left(\frac{1}{2}+i r\right)$, $d \mu(r)=\frac{\Gamma}{\Gamma}(1+i r)$. for the last two cases, we can deal by using local estimate following from previous discussions.

Using the Lemma, we get that the spectral side is

$$
\sharp\left\{t_{j} \leq T\right\}-\int_{-T}^{T} \frac{\phi^{\prime}}{\phi}\left(\frac{1}{2}+i r\right) d r+O(T),
$$

the main term of geometric side is

$$
\begin{aligned}
\int_{-T}^{T} r \tanh \pi r d r+O(T) & =\int_{-T}^{T} r\left(1+O\left(e^{-\pi r}\right)\right) d r+O(T) \\
& =T^{2}+O(T)
\end{aligned}
$$

parabolic term is

$$
O(T)+\int_{-T}^{T} \frac{\Gamma^{\prime}}{\Gamma}(1+i r) d r=T \log T+O(T)
$$

hyperbolic and elliptic terms are $O(T)$ by local estimate following from previous discussions. Hence we have

$$
\sharp\left\{t_{j} \leq T\right\}-\int_{-T}^{T} \frac{\text { discrete }}{\substack{\text { continuous } \\ \phi}}\left(\frac{1}{2}+i r\right) d r=\frac{\operatorname{area}(\Gamma \backslash \mathrm{H})}{4 \pi} T^{2}+T \log T+O(T) .
$$

Questions

1. What is the meaning of the continuous term?
2. Is it negligible?
3. Can we improve the error term?

Weierstrass factorization. For $n \in \mathbb{N}$, define

$$
E_{n}(z)=\exp \left(\sum_{j=1}^{n} \frac{z^{j}}{j}\right)
$$

(\exp of truncation of power series of $-\log (1-z)$). For any entire function, there is a function n from the set of zeros of f to \mathbb{N} and a entire function g, s.t.

$$
f(z)=e^{g(z)} z^{m(0)} \prod_{\eta \neq 0}\left[\left(1-\frac{z}{\eta}\right)^{m(\eta)} E_{n(\eta)}\left(\frac{z}{\eta}\right)\right]
$$

where $m(\eta)$ is the multiplicity of η.
Define: An entire function is of finite order if $\exists n$ s.t.

$$
f(z) \ll e^{|z|^{n}}
$$

Fact: f is of finite order $\Leftrightarrow \exists n$ s.t.

$$
\begin{equation*}
f(z)=e^{g(z)} \prod_{\eta}\left[\left(1-\frac{z}{\eta}\right)^{m(\eta)} E_{n}\left(\frac{z}{\eta}\right)\right] \tag{0.1}
\end{equation*}
$$

where $g(z)$ is a polynomial.
The minimal n for which the product converges is called the order of f. It is closely related to

$$
\varlimsup_{\lim }^{\log \left(\sum_{|\eta|<\mathbb{R}} m(\eta)\right)} \text { } \log \mathbb{R} \text {. }
$$

For this n we get Hadamard canonical product.
We say that a meromorphic function f is of finite order, if $\exists g$, h entire function of finite order, s.t.

$$
f(z)=\frac{g(z)}{h(z)}
$$

Equivalently, f is of finite order iff $\exists n \in \mathbb{N}$ and a polynomial $g(z)$ s.t. (0.1) holds ($m(\eta)$ could be negative).

EX. We have

$$
\Gamma(z)=z^{-1} e^{\gamma z} \prod_{n=1}^{\infty}\left(1-\frac{z}{n}\right)^{-1} e^{\frac{z}{n}},
$$

where $\gamma=$ Euler's constant.
Blaschke product: Let $\left\{\eta_{n}\right\}_{n=1}^{\infty}$ be complex numbers, $\operatorname{Re}\left(\eta_{n}\right)>0$ and

$$
\sum \frac{\operatorname{Re}\left(\eta_{n}\right)}{\left|\eta_{n}\right|_{5}^{2}}<\infty
$$

Define

$$
f(z)=\prod_{\eta} \frac{z-\eta}{z+\bar{\eta}}
$$

EX. $f(z)$ converges and meromorphic, whose zeros are $\left\{\eta_{n}\right\}$ and poles are $\left\{-\bar{\eta}_{n}\right\}$. We also have $|f(z)|=1$ for $\operatorname{Re}(z)=0$. Note that f does not need to be of finite order.

Conversely, suppose that f is meromorphic, holomorphic near $\operatorname{Re}(s) \geq 0,|f(s)|=1$ for $\operatorname{Re}(s)=$ 0 and f is of finite order. Then

$$
f(s)=e^{g(s)} \prod_{\eta} \frac{s-\eta}{s+\bar{\eta}}
$$

where η goes through all zeros of $f, g(s)$ is a polynomial satisfying $\operatorname{Re} g(s)=0$ for $\operatorname{Re}(s)=0$, and we have

$$
\sum_{\eta \text { zeros }} \frac{\operatorname{Re}\left(\eta_{n}\right)}{\left|\eta_{n}\right|^{2}}<\infty
$$

If moreover,

$$
f(s) \sim \frac{1+o(1)}{\sqrt{s}} \text { for } \operatorname{Re}(s)>2
$$

in particular, f has no zeros for $\operatorname{Re}(s)>2$, then g is constant.
$\phi(s)$ does not quite have these properties. But

$$
\phi(s) \prod_{j=1}^{\infty} \frac{s-s_{j}}{1+s-s_{j}}
$$

has these properties (even for Γ non-arithmetic), where $\left\{s_{j}\right\}$ are poles for $\operatorname{Re}(s)>\frac{1}{2}$. Therefore

$$
\frac{\phi^{\prime}}{\phi}=\sum_{s_{j}} \frac{1}{s-s_{j}}-\frac{1}{s-1+\bar{s}_{j}},
$$

and $\sum \frac{\operatorname{Re}\left(1-s_{j}\right)}{\left|s_{j}\right|^{2}}<\infty$.
Note that $\operatorname{Re}(s)=\frac{1}{2}$,

$$
\begin{gathered}
\frac{1}{s-s_{j}}-\frac{1}{s-1+\overline{s_{j}}} \geq 0 \text { if } \operatorname{Re}(s)<\frac{1}{2}, \\
\frac{\phi^{\prime}}{\phi} \geq O\left(|s|^{2}\right) \text { on } \operatorname{Re}(s)=\frac{1}{2}
\end{gathered}
$$

and

$$
\int_{-T}^{T} \frac{\phi^{\prime}}{\phi}\left(\frac{1}{2}+i r\right) d r=\sharp \text { of poles } \phi \text { with } \operatorname{Im} \leq T+O(T),
$$

noting that \sharp of poles ϕ with $\operatorname{Im} \leq T=\sharp$ of zeros ϕ with $\operatorname{Im} \leq T$ (We use that ϕ is of finite order, this comes from general theory).

In the case of $\Gamma=\mathrm{SL}_{2}(\mathbb{Z})$,

$$
\phi(s)=\frac{\zeta^{*}(2 s-1)}{\zeta^{*}(2 s)}
$$

is of order 1 , and

$$
\int_{-T}^{T} \frac{\phi^{\prime}}{\phi} \sim T \log T
$$

Thus,

$$
\sharp\left\{t_{j} \leq T\right\}=\frac{\operatorname{area}(\Gamma \backslash \mathrm{H})}{4 \pi} T^{2}+O(T \log T) .
$$

However, for a generic Γ one expects that $\sharp t_{j}$ is finite. In particular, ϕ is of order 2.

References

