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Maass-Selberg Relation:

ΛT ϕ(z) = ϕT (z) :=

{

ϕ(z) Imz < T ;
ϕ(z) − ϕP (y) Imz > T.

(

ET (·, s1), ET (·, s2)
)

F
=

T s1+s2−1

s1 + s2 − 1
+

φ(s1)T
s2−s1

s2 − s1

+
φ(s2)T

s1−s2

s1 − s2

+
T 1−s1−s2

1 − s1 − s2

φ(s1)φ(s2)

where s1, s2 ∈ C. The poles coming from the denominations cancel: s1 + s2 = 1, s1 = s2.

We have

EP (y) = ys + φ(s)y1−s,

where

φ(s) =
ζ∗(2s − 1)

ζ∗(2s)
,

note that φ(s) = φ(s), and in particular, |φ(s)| = 1 for Res = 1
2
, and hence holomorphic.

Take s2 = s1, s1 = σ + iτ , τ 6= 0, σ > 1
2
,

∥

∥ΛT E(s)
∥

∥

2

L2(F)
=

T 2σ−1

2σ − 1
+

T 1−2σ

1 − 2σ
|φ(s)|2 +

T 2iτ

2iτ
φ(s) − T−2iτ

2iτ
φ(s). (1.1)

Recall E and φ has only simple pole at Res > 1
2

and they are all real.

What are the residues?
(i) Res

s=s0

E(s) is square-integrable ∈ L2(Γ \ H),

(ii)eigenfunction of ∆ is λ = s0(1 − s0).

Proof.

(s − s0)∆E(z; s) = (s − s0)s(1 − s)E(z; s),

take limit as s → s0 and we get the second assert.

EP (y) = ys + φ(s)y1−s ⇒ (ResE(s))P = Res
s=s0

φ(s)y1−s0,

since ResE(s) − (ResE(s))P is rapidly decreasing, so we have

ResE(s) ∈ L2(F) ↔ (ResE(s))P ∈ L2(F).

We have
∫

F

(

y1−s0
)2 dxdy

y2
=

∫ +∞

0

y2(1−s0)dy

y2
< +∞,

where c > 0, and −2s0 < −1. Hence (ResE(s))P ∈ L2(F).
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Multiplying (1.1) on both sides by τ 2 and taking τ → 0, we have

∥

∥

∥
lim
τ→0

ΛT τE(s0 + iτ)
∥

∥

∥

2

=

∥

∥

∥

∥

ΛT Res
s=s0

E

∥

∥

∥

∥

2

=
T 1−2s0

1 − 2s0

∣

∣

∣

∣

Res
s=s0

φ

∣

∣

∣

∣

2

+ Resφ.

Taking T → ∞, We get

∥

∥ΛT ResE
∥

∥

2 −→ ‖ResE‖2
L2(Γ\H) = Resφ.

In our case, the only pole (for Res > 1
2
) is at s = 1 and ResE = constant. This is true

whenever Γ is a congruence subgroup, i.e.,

Γ = Ker(SL2(Z) → SL2(Z/NZ)).

In other cases, there are additional residues. Let us see why Res
s=1

is a constant. It is an

eigenfunction with eigenvalue 0 and it is in L2(Γ\H). Therefore it is a constant.

Finally, we get

c = Res
s=1

E(z, s) = Res
s=1

φ(s). (independent of z)

By (1.2)

c2vol(Γ\H) = c → c = vol(Γ\H)−1.

In the case of Γ = SL2(Z), we have vol(Γ\H) = π
3
.

Remark. We know that E(z; s) has a pole at s = 1 since E(z; s) is positive and does not

converge at s = 1.

Spectral Expansion for ∆ on L2(Γ\H).

On L2
cusp(Γ\H), ∆ is discrete, so there exists an orthonormal basis of cusp forms {uj}∞j=1

such that (∆ + λj)uj = 0 and ϕ ∈ L2
cusp(Γ\H), ϕ(z) =

∑∞
j=1(ϕ, uj)uj, ‖ϕ‖2 =

∑

|(ϕ, uj)|2.
Question. What about L2

cusp(Γ\H)⊥?

It is the closure of Ef =
∑

γ∈Γ∞\Γ f(Imγz), f ∈ C∞
c (R>0). Recall

(Ef , ϕ)Γ\H =

∫ +∞

0

f(y)ϕP (y)
dy

y2
.

Thus, if (Ef , ϕ)Γ\H = 0, ∀f ∈ C∞
c (R>0), we have the right hand side = 0, then ϕP (y) ≡ 0,

and so ϕ ∈ L2
cusp(Γ\H).

It remains to study the spectral theory of ∆ on the space of Ef . Recall

Ef (z) =

∫

Res=s0

f̂(s)E(z; s)ds,
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provided that s0 > 1. Also,

(Ef , Eg) =

∫

Res=s0

f̂(s)
[

ĝ(1 − s) + φ(s)ĝ(s)
]

ds,

where

f̂(s) =

∫

R>0

f(x)x−s dx

x
.

Shifting the contour to Res = 1
2
, we get

∫

Res= 1

2

f̂(s)
[

ĝ(1 − s) + φ(s)ĝ(s)
]

ds +

∞
∑

j=1

Res
s=sj

φ(s)f̂(sj)ĝ(sj),

where sn, · · · , sm ∈ R and sn, · · · , sm > 1
2

are the poles of φ.

Claim.

(i) f̂(s)
[

ĝ(1 − s) + φ(s)ĝ(s)
]

= 1
2
(Ef , E(s))Γ\H(E(s), E(g))Γ\H;

(ii) f̂(sj) = (Ef , Res
s=sj

E/ ‖ResE‖2).

Proof. 1) We have computed

(Ef , E(s)) = f̂(1 − s̄) + φ̄(s)f̂(s̄), (1.2)

and

(E(s), Eg) = ĝ(1 − s) + φ(s)ĝ(s).

For Res = 1
2
, 1 − s = s, |φ(s)| = 1, combine the last two identities and we get (i).

2) Taking Res
s=sj

of (1.3), we have

(Ef , ResE(s)) = Resφf̂(sj),

using ‖ResE‖2 = Resφ(sj), we get (ii).

Theorem. Let {uj}∞j=0 be an orthonormal basis of eigenfunctions of ∆, (∆ + λj)uj = 0,

then for any ϕ ∈ L2(Γ\H), we have

ϕ =
∞

∑

j=0

(ϕ, uj)uj +
1

4π

∫

Res= 1

2

(ϕ, E(·, s))E(·, s)ds.

where
∞

∑

j=0

(ϕ, uj)uj

is the discrete part which contains the cuspidal forms and the residues of Eisenstein series

at s > 1
2
, and

1

4π

∫

Res= 1

2

(ϕ, E(·, s))E(·, s)ds

is the continuous part which converges if φ is “nice”.
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−∆ϕ =
∞

∑

j=0

λj(ϕ, uj)uj +
1

4π

∫

Res= 1

2

s(1 − s) (ϕ, E(·, s))E(·, s)ds.

We can write 0 = λ0 ≤ λ1 ≤ λ2 ≤ · · · and

u0 =
1

(vol(Γ\H))
1

2

which is a constant. For Γ = SL2(Z), uj(j > 0) are cuspidal forms.

Special case: If k is a point-pair invariant function, recall

K(z, w) =
∑

γ∈Γ

k(z, γω),

In order to expand K(·, ω), we write λj = sj(1 − sj), and sj = 1
2

+ itj . we know that
∫

K(z, w)uj(z)dµ(z) = h(tj)uj(ω),

where h is the Selberg transform of k. Finally, we get

K(z, ω) =
∞

∑

j=0

h(tj)uj(z)uj(ω) +
1

4π

∫

Res=1
2

s=1
2
+ir

h(r)E(z, s)E(ω, s)ds,

which is the spectral expansion of the automorphic kernel.

Another way to work with the spectral expansion is Eisenstein transform

f 7→ Ef =

∫ ∞

0

f(r)E(z,
1

2
+ ir)dr,

where f ∈ C(R>0), and

‖Ef‖2
L2(Γ\H) = ‖f‖L2(R>0) ,

ϕ =
∑

(ϕ, uj)uj +
1

4π

∫

(ϕ, E)Eds,

(ϕ1, ϕ2)Γ\H =
∑

j

(ϕ1, uj)(uj, ϕ2) +
1

4π

∫

Res= 1

2

(ϕ1, E(s))(E(s), ϕ2)ds.

Continuous part of the spectrum of ∆ on L2(Γ\H) is well-understood. and it is −[1
4
, +∞),

∆E(
1

2
+ it) = −

∣

∣

∣

∣

(

1

2
+ it

)
∣

∣

∣

∣

2

E(
1

2
+ it).

What about discrete part?

Question.

i) ♯{j : λj ≤ T} ∼?

ii) What can λ1 be? λ1 controls the error term in various problems, such as hyperbolic

lattice point counting problem.
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Selberg eigenvalue conjecture.

λ1(ΓN\H) ≥ 1

4
,

i.e, cuspidal spectrum ⊆ continuous spectrum, where ΓN = Ker(SL2(Z) −→ SL2(Z/NZ)).

One interesting thing is that forms with eigenvalue 1
4

are expected to come from arithmetic

(Galois representation).

Prop. (Selberg)

λ1 (SL2(Z)\H) ≥ 3

2
π2.

Proof. Let u1 be a cusp form with ‖u1‖ = 1, u1 =
∑

n 6=0 cn(y)e(nx),

λ1 = −(∆u1, u1)Γ\H =

∫

F
|y∇u1(z)|2 dµ(z),

where

(∆f, f) = ‖∇f‖2.

Let

ω =

(

1
−1

)

,

we have

F
⋃

ωF ⊇ {z ∈ H, |Rez| <
1

2
, Imz >

√
3

2
}.

Then

2λ =

∫

F
⋃

ωF
|y∇u1(z)|2 dµ(z) ≥

∫ ∞

√
3

2

∫ 1

0

|y∇u1(z)|2 dxdy

y2

≥ 3π2

∫ +∞

√
3

2

∑

n 6=0

|cn(y)|2dy

y2
= 3π2

∫ ∞

√
3

2

∫ 1

0

|u1(x + iy)|2dx
dy

y2

≥ 3π2

∫

F
|u1(z)|2dµ(z) = 3π2.

This argument also gives λ1 > 1
4

for other ΓN for small N . But there are examples of Γ′s

(non-congruence), where λ1 < 1
4

(in fact, λ1 can be as arbitrarily close to 0).

Small application of Eisenstein series. Recall

E(z, s) =
∑

(m,n)∈Z2\{(0,0)}

1

Q2((m, n))s

has an arithmetic meaning for special z (CM points, z2 + rz + q = 0, r, q ∈ Z).
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Suppose d is a square free number satisfying d ≡ 1(mod 4), d < 0. Denote V as the set of

solutions of quadratic equations of discriminant d, and let Λd = Γ\V , then we have
∑

z∈Λd

E(z, s) = ζKd
(s) = ζ(s)L(s, χd),

where Kd = Q(
√

d) is an imaginary quadratic number field. In fact,

Λd ⇔ ideal classes of Q(
√

d)

⇔ ∼ \{ binary quadratic forms of discriminat d} .

Consider
∑

z∈Λd

E(z; s) = ζKd
(s) = ζ(s)L(x, χd).

Assume RH is FALSE, i.e., there exists s0, Res0 > 1
2

such that ζ(s0) = 0, then we have
∑

z∈Λd

E(z; s0) = 0.

We will show that h(d) can not be 1 for d unbounded, i.e., there are only finitely many

imaginary quadratic fields with class number 1.

Proof. E(s0) − EP (s0) is rapidly decreasing as y → ∞. If h(d) = 1, Λd = {1+
√

d
2

}, then

E(λd) = 0.

On the other hand,

E(λd) = |d|s0 + φ(s0)|d|1−s0 + O(|d|−N)

implies that

E(λd) 6= 0

for d large, because Re(s0) > 1
2

and |ds0| = dRes0.

Deuning (1920s)

This argument was pushed by Siegel to show that h(d) ∼
√

|d| ineffectively (clear under

GRH).

Goldfeld-Gross-Zagier (1980s) roughly proved that h(d) ≫ log d effectively, the upper

bound h(d) ≪
√

|d| log d is trivial.

Main impact. Existence of high order zeros at 1
2

for L-functions.
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