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Maass-Selberg Relation:
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where s1,s, € C. The poles coming from the denominations cancel: s; + so = 1, 51 = 9.
We have

Ep(y)=y" + o(s)y' >,

where

o(s) = T o2s)

note that ¢(s) = ¢(5), and in particular, |¢(s)| = 1 for Res = 3, and hence holomorphic.

¢"(2s—1)
S

Take sy =51, s1 =0 +i1, 7 #0, 0 > 3,
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Recall F and ¢ has only simple pole at Res > % and they are all real.

What are the residues?
(i) ResE(s) is square-integrable € L*(T"\ H),
s=50

(ii)eigenfunction of A is A = so(1 — s0).
Proof.
(s —s0)AE(z;8) = (s — s9)s(1 — s)E(z; s),

take limit as s — sg and we get the second assert.

Ep(y) = y°+ ¢(s)y' > = (ResE(s))p = Reso(s)y' ™,

s=s0
since ResE(s) — (ResE(s))p is rapidly decreasing, so we have

ResE(s) € L*(F) « (ResE(s))p € L*(F).

+oo
/(yl_so)z dzdy :/ yz(l_s‘))%<+oo,
F y? 0 y?

where ¢ > 0, and —2sy < —1. Hence (ResE(s))p € L*(F).
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We have



Multiplying (1.1) on both sides by 72 and taking 7 — 0, we have

5 2
hr%ATTE(SO + ZT)H = ‘ ATResE
T— s=s0

T1-2s0 2
= Res¢p| + Reso.
1-— 280 8§=50

Taking T' — oo, We get

HATReSEH2 — ||ResE||iz(F\H) = Res¢.

In our case, the only pole (for Res > %) is at s = 1 and ResE = constant. This is true

whenever I' is a congruence subgroup, i.e.,
I' =Ker(SLy(Z) — SLy(Z/NZ)).

In other cases, there are additional residues. Let us see why Res is a constant. It is an

s=1
eigenfunction with eigenvalue 0 and it is in L?(I'\H). Therefore it is a constant.
Finally, we get

c= R_elsE(z, s) = R_els¢(s). (independent of z)

By (1.2)
c*vol(I'\H) = ¢ — ¢ = vol(I'\H) .
In the case of I' = SLy(Z), we have vol(I'\H) = Z.

Remark. We know that E(z;s) has a pole at s = 1 since F(z;s) is positive and does not
converge at s = 1.

Spectral Expansion for A on L*(T'\H).

On L, (P\H), A is discrete, so there exists an orthonormal basis of cusp forms {u;}5,

such that (A + Aj)u; = 0 and ¢ € L2, (T\H), ¢(2) = 352, (v, uy)uy, [oll” = 32 |(0, ).
Question. What about L2 (['\H)+?

cusp

It is the closure of By = 3" . \p f(Im7y2), f € C(Rso). Recall

+00 d
(Ey, o)rwm = i f(y)W(y)y—g-

Thus, if (Ef, ¢)ru = 0, Vf € C°(Rs), we have the right hand side = 0, then pp(y) = 0,
and so ¢ € L2 (T\H).

cusp

It remains to study the spectral theory of A on the space of Ey. Recall

Ey(z) = / IRCLER



provided that sq > 1. Also,

EE) = [ [0 =5+ 0(s)it)] ds

where

Shifting the contour to Res = %, we get

| A6 =)+ o9t ds+ZRes<z> (5))(5)

5=S§;
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where s,,,+ -+, 8, € R and sy, -, s, > 5 are the poles of ¢.

Clainl.
(D) f(s) [9(1 = 8) + 6(s)9(s)] = 5(Ey, E(s))r\a(E(s), E(g))ry;
(i) (s7) = (By, ResF/ [Res )
Proof. 1) We have computed
(Ef, E(s)) = f(1=3) + 6(s)f (5), (1.2)
and
(E(s), Eg) = g(1 = 5) + ¢(s)g(s).
For Res = 3, 1 —35 = s, |#(s)| = 1, combine the last two identities and we get (i).
2) Taking Res of (1.3), we have

(E;,ResE(s)) = Resof(s;),
using |[ResE||* = Res¢(s;), we get (ii).

Theorem. Let {u;}52, be an orthonormal basis of eigenfunctions of A, (A + Aj)u; = 0,
then for any ¢ € L*(T'\H), we have

Y= Z:;(% u;)u; + i /Res:; (p, E(-,5)) E(-, s)ds.

where
o
E ®, Ug
Jj=0

is the discrete part which contains the cuspidal forms and the residues of Eisenstein series
at s > %, and
1

E ) (‘va('aS))E("S)ds
Ros:§

is the continuous part which converges if ¢ is “nice”.
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We can write 0 = g < A < Xy < --- and
1
(vol(P\H))?

Ug =

which is a constant. For I' = SLy(Z), u;(j > 0) are cuspidal forms.
Special case: If k is a point-pair invariant function, recall

K(zw) = 3 k(z,7),

vyel’

In order to expand K (-,w), we write \; = s;(1 — s;), and s; = 5 + it;. we know that

K (z, w)u;(2)dpu(z) = h(t;)u;(w),

where h is the Selberg transform of k. Finally, we get

K(z,w) = Z h(t;)u;(2)u;(w) + i /Res_% h(r)E(z,s)E(w, s)ds,

s:%—Jrir'

which is the spectral expansion of the automorphic kernel.
Another way to work with the spectral expansion is Eisenstein transform

f o By = /0 Fr) B, 5 +ir)dr,

where f € C(Rsy), and

2
||Ef||L2(F\H) = ||f||L2(]R>())’

1
o= (o,us)u; + e /(% E)Eds,

1

(ouslrs = Sten ) o) + gz [ (o BOIEG), s

J

Continuous part of the spectrum of A on L?(I'\H) is well-understood. and it is —[§, +00),

2

E(: +it).

2

. L.
AE(§—|—1t)——‘<§+1t)

What about discrete part?
Question.
) #{j: N\ <T}~7
ii) What can A; be? \; controls the error term in various problems, such as hyperbolic

lattice point counting problem.
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Selberg eigenvalue conjecture.

ATy \H) >

|

i.e, cuspidal spectrum C continuous spectrum, where I'y = Ker(SLy(Z) — SL2(Z/NZ)).
One interesting thing is that forms with eigenvalue i are expected to come from arithmetic

(Galois representation).

Prop. (Selberg)

A1 (SLa(Z)\H) =

l\.’)IC«O

Proof. Let u; be a cusp form with |lui|| =1, w1 = 3, ca(y)e(nz),

A = — (A, )y = / V()] dpa(2),
f

where

(Aff) = IVFI.
Let

. 1

w=1 _4 ,

we have
]-“Uw]—" D {z e H,|Rez| < %,Imz > ?}

Then

d d
2>\:/ lyVus(2)]* dp(z / / lyVus(2)]? oy
FUwF

d dy
> 37 . Z|C" )|? y_3 / /\ul x+1y)| 2d:c—

> 37?2/ luy(2)]2du(z) = 372
f

This argument also gives A\; > i for other I'y for small N. But there are examples of s

(non-congruence), where A; < 1 (in fact, A; can be as arbitrarily close to 0).

Small application of Eisenstein series. Recall

1
E(z,s) = Z Qa((m,n))s

(m,n)eZ>\{(0,0)}

has an arithmetic meaning for special z (CM points, 22 +7z+q =0, r,q € Z).
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Suppose d is a square free number satisfying d = 1(mod4), d < 0. Denote V' as the set of
solutions of quadratic equations of discriminant d, and let A; = I'\V, then we have

3" E(z,8) = Ciy(s) = C(5)L(s, xa),

z€ENg
where K; = Q(V/d) is an imaginary quadratic number field. In fact,
Ay & ideal classes of Q(Vd)

<~ \ { binary quadratic forms of discriminat d} .

Consider

3" E(z:8) = Cry(s) = C(s) Lz, xa)-

z€EAy

Assume RH is FALSE, i.e., there exists sg, Resy > % such that ((sg) = 0, then we have

Z E(z;59) =0

z€hy

We will show that h(d) can not be 1 for d unbounded, i.e., there are only finitely many
imaginary quadratic fields with class number 1.

Proof. E(sg) — Ep(so) is rapidly decreasing as y — oo. If h(d) =1, Ay = {12—‘/&}, then
E(\g) = 0.

On the other hand,

E(Ag) = |d* + é(s0)|d[' > + O(|d| ™)
implies that
E(Ag) # 0

for d large, because Re(sg) > 1 and |d*| = dReo,

Deuning (1920s)

This argument was pushed by Siegel to show that h(d) ~ +/|d| ineffectively (clear under
GRH).

Goldfeld-Gross-Zagier (1980s) roughly proved that h(d) > logd effectively, the upper
bound h(d) < +/]d|logd is trivial.

Main impact. Existence of high order zeros at % for L-functions.



