Spectral analysis for $\Gamma \backslash \mathbb{H}$

Erez Lapid

§6 (February 27, 2009)

Maass-Selberg Relation:

$$
\begin{aligned}
\Lambda^{T} \varphi(z)=\varphi^{T}(z) & := \begin{cases}\varphi(z) & \operatorname{Im} z<T \\
\varphi(z)-\varphi_{P}(y) & \operatorname{Im} z>T\end{cases} \\
\left(E^{T}\left(\cdot, s_{1}\right), \overline{E^{T}\left(\cdot, s_{2}\right)}\right)_{\mathcal{F}} & =\frac{T^{s_{1}+s_{2}-1}}{s_{1}+s_{2}-1}+\frac{\phi\left(s_{1}\right) T^{s_{2}-s_{1}}}{s_{2}-s_{1}}+\frac{\phi\left(s_{2}\right) T^{s_{1}-s_{2}}}{s_{1}-s_{2}} \\
& +\frac{T^{1-s_{1}-s_{2}}}{1-s_{1}-s_{2}} \phi\left(s_{1}\right) \phi\left(s_{2}\right)
\end{aligned}
$$

where $s_{1}, s_{2} \in \mathbb{C}$. The poles coming from the denominations cancel: $s_{1}+s_{2}=1, s_{1}=s_{2}$. We have

$$
E_{P}(y)=y^{s}+\phi(s) y^{1-s}
$$

where

$$
\phi(s)=\frac{\zeta^{*}(2 s-1)}{\zeta^{*}(2 s)}
$$

note that $\overline{\phi(s)}=\phi(\bar{s})$, and in particular, $|\phi(s)|=1$ for Res $=\frac{1}{2}$, and hence holomorphic. Take $s_{2}=\overline{s_{1}}, s_{1}=\sigma+i \tau, \tau \neq 0, \sigma>\frac{1}{2}$,

$$
\begin{equation*}
\left\|\Lambda^{T} E(s)\right\|_{L^{2}(\mathcal{F})}^{2}=\frac{T^{2 \sigma-1}}{2 \sigma-1}+\frac{T^{1-2 \sigma}}{1-2 \sigma}|\phi(s)|^{2}+\frac{T^{2 i \tau}}{2 i \tau} \overline{\phi(s)}-\frac{T^{-2 i \tau}}{2 i \tau} \phi(s) \tag{1.1}
\end{equation*}
$$

Recall E and ϕ has only simple pole at $\operatorname{Re} s>\frac{1}{2}$ and they are all real.
What are the residues?
(i) $\operatorname{Res}_{s=s_{0}} E(s)$ is square-integrable $\in L^{2}(\Gamma \backslash \mathbb{H})$,
(ii)eigenfunction of Δ is $\lambda=s_{0}\left(1-s_{0}\right)$.

Proof.

$$
\left(s-s_{0}\right) \Delta E(z ; s)=\left(s-s_{0}\right) s(1-s) E(z ; s)
$$

take limit as $s \rightarrow s_{0}$ and we get the second assert.

$$
E_{P}(y)=y^{s}+\phi(s) y^{1-s} \Rightarrow(\operatorname{Res} E(s))_{P}=\underset{s=s_{0}}{\operatorname{Res}^{2}}(s) y^{1-s_{0}}
$$

since $\operatorname{Res} E(s)-(\operatorname{Res} E(s))_{P}$ is rapidly decreasing, so we have

$$
\operatorname{Res} E(s) \in L^{2}(\mathcal{F}) \leftrightarrow(\operatorname{Res} E(s))_{P} \in L^{2}(\mathcal{F})
$$

We have

$$
\int_{\mathcal{F}}\left(y^{1-s_{0}}\right)^{2} \frac{\mathrm{~d} x \mathrm{~d} y}{y^{2}}=\int_{0}^{+\infty} y^{2\left(1-s_{0}\right)} \frac{\mathrm{d} y}{y^{2}}<+\infty
$$

where $c>0$, and $-2 s_{0}<-1$. Hence $(\operatorname{Res} E(s))_{P} \in L^{2}(\mathcal{F})$.

Multiplying (1.1) on both sides by τ^{2} and taking $\tau \rightarrow 0$, we have

$$
\begin{aligned}
& \left\|\lim _{\tau \rightarrow 0} \Lambda^{T} \tau E\left(s_{0}+i \tau\right)\right\|^{2}=\left\|\Lambda^{T} \underset{s=s_{0}}{\operatorname{Res} E}\right\|^{2} \\
& =\frac{T^{1-2 s_{0}}}{1-2 s_{0}}\left|\underset{s=s_{0}}{\operatorname{Res} \phi}\right|^{2}+\operatorname{Res} \phi .
\end{aligned}
$$

Taking $T \rightarrow \infty$, We get

$$
\left\|\Lambda^{T} \operatorname{Res} E\right\|^{2} \longrightarrow\|\operatorname{Res} E\|_{L^{2}(\Gamma \backslash \mathbb{H})}^{2}=\operatorname{Res} \phi
$$

In our case, the only pole (for $\operatorname{Re} s>\frac{1}{2}$) is at $s=1$ and $\operatorname{Res} E=$ constant. This is true whenever Γ is a congruence subgroup, i.e.,

$$
\Gamma=\operatorname{Ker}\left(S L_{2}(\mathbb{Z}) \rightarrow S L_{2}(\mathbb{Z} / N \mathbb{Z})\right)
$$

In other cases, there are additional residues. Let us see why $\operatorname{Res}_{s=1}$ is a constant. It is an eigenfunction with eigenvalue 0 and it is in $L^{2}(\Gamma \backslash \mathbb{H})$. Therefore it is a constant.

Finally, we get

$$
c=\operatorname{Res}_{s=1} E(z, s)=\operatorname{Res}_{s=1} \phi(s) . \quad(\text { independent of } z)
$$

By (1.2)

$$
c^{2} \operatorname{vol}(\Gamma \backslash \mathbb{H})=c \rightarrow c=\operatorname{vol}(\Gamma \backslash \mathbb{H})^{-1} .
$$

In the case of $\Gamma=S L_{2}(\mathbb{Z})$, we have $\operatorname{vol}(\Gamma \backslash \mathbb{H})=\frac{\pi}{3}$.
Remark. We know that $E(z ; s)$ has a pole at $s=1$ since $E(z ; s)$ is positive and does not converge at $s=1$.

Spectral Expansion for Δ on $L^{2}(\Gamma \backslash \mathbb{H})$.
On $L_{\text {cusp }}^{2}(\Gamma \backslash \mathbb{H}), \Delta$ is discrete, so there exists an orthonormal basis of cusp forms $\left\{u_{j}\right\}_{j=1}^{\infty}$ such that $\left(\Delta+\lambda_{j}\right) u_{j}=0$ and $\varphi \in L_{\text {cusp }}^{2}(\Gamma \backslash \mathbb{H}), \varphi(z)=\sum_{j=1}^{\infty}\left(\varphi, u_{j}\right) u_{j},\|\varphi\|^{2}=\sum\left|\left(\varphi, u_{j}\right)\right|^{2}$. Question. What about $L_{\text {cusp }}^{2}(\Gamma \backslash \mathbb{H})^{\perp}$?

It is the closure of $E_{f}=\sum_{\gamma \in \Gamma_{\infty} \backslash \Gamma} f(\operatorname{Im} \gamma z), f \in C_{c}^{\infty}\left(\mathbb{R}_{>0}\right)$. Recall

$$
\left(E_{f}, \varphi\right)_{\Gamma \backslash \mathbb{H}}=\int_{0}^{+\infty} f(y) \overline{\varphi_{P}}(y) \frac{\mathrm{d} y}{y^{2}} .
$$

Thus, if $\left(E_{f}, \varphi\right)_{\Gamma \backslash \mathbb{H}}=0, \forall f \in C_{c}^{\infty}\left(\mathbb{R}_{>0}\right)$, we have the right hand side $=0$, then $\varphi_{P}(y) \equiv 0$, and so $\varphi \in L_{\text {cusp }}^{2}(\Gamma \backslash \mathbb{H})$.

It remains to study the spectral theory of Δ on the space of E_{f}. Recall

$$
E_{f}(z)=\int_{\substack{\operatorname{Re}=s_{0} \\ 2}} \hat{f}(s) E(z ; s) \mathrm{d} s
$$

provided that $s_{0}>1$. Also,

$$
\left(E_{f}, E_{g}\right)=\int_{\operatorname{Res}=s_{0}} \hat{f}(s)[\hat{\bar{g}}(1-s)+\phi(s) \hat{\bar{g}}(s)] \mathrm{d} s
$$

where

$$
\hat{f}(s)=\int_{\mathbb{R}>0} f(x) x^{-s} \frac{\mathrm{~d} x}{x} .
$$

Shifting the contour to $\operatorname{Re} s=\frac{1}{2}$, we get

$$
\int_{\operatorname{Re} s=\frac{1}{2}} \hat{f}(s)[\hat{\bar{g}}(1-s)+\phi(s) \hat{\bar{g}}(s)] \mathrm{d} s+\sum_{j=1}^{\infty} \operatorname{Res}_{s=s_{j}} \phi(s) \hat{f}\left(s_{j}\right) \hat{\bar{g}}\left(s_{j}\right)
$$

where $s_{n}, \cdots, s_{m} \in \mathbb{R}$ and $s_{n}, \cdots, s_{m}>\frac{1}{2}$ are the poles of ϕ.

Claim.

(i) $\hat{f}(s)[\hat{\bar{g}}(1-s)+\phi(s) \hat{\bar{g}}(s)]=\frac{1}{2}\left(E_{f}, E(s)\right)_{\Gamma \backslash \mathbb{H}}(E(s), E(g))_{\Gamma \backslash \mathbb{H}}$;
(ii) $\hat{f}\left(s_{j}\right)=\left(E_{f}, \operatorname{Res}_{s=s_{j}} E /\|\operatorname{Res} E\|^{2}\right)$.

Proof. 1) We have computed

$$
\begin{equation*}
\left(E_{f}, E(s)\right)=\hat{f}(1-\bar{s})+\bar{\phi}(s) \hat{f}(\bar{s}) \tag{1.2}
\end{equation*}
$$

and

$$
\left(E(s), E_{g}\right)=\hat{\bar{g}}(1-s)+\phi(s) \hat{\bar{g}}(s) .
$$

For $\operatorname{Re} s=\frac{1}{2}, 1-\bar{s}=s,|\phi(s)|=1$, combine the last two identities and we get (i).
2) Taking $\underset{s=s_{j}}{\text { Res }}$ of (1.3), we have

$$
\left(E_{f}, \operatorname{Res} E(s)\right)=\operatorname{Res} \phi \hat{f}\left(s_{j}\right)
$$

using $\|\operatorname{Res} E\|^{2}=\operatorname{Res} \phi\left(s_{j}\right)$, we get (ii).
Theorem. Let $\left\{u_{j}\right\}_{j=0}^{\infty}$ be an orthonormal basis of eigenfunctions of $\Delta,\left(\Delta+\lambda_{j}\right) u_{j}=0$, then for any $\varphi \in L^{2}(\Gamma \backslash \mathbb{H})$, we have

$$
\varphi=\sum_{j=0}^{\infty}\left(\varphi, u_{j}\right) u_{j}+\frac{1}{4 \pi} \int_{\operatorname{Res}=\frac{1}{2}}(\varphi, E(\cdot, s)) E(\cdot, s) \mathrm{d} s
$$

where

$$
\sum_{j=0}^{\infty}\left(\varphi, u_{j}\right) u_{j}
$$

is the discrete part which contains the cuspidal forms and the residues of Eisenstein series at $s>\frac{1}{2}$, and

$$
\frac{1}{4 \pi} \int_{\mathrm{Res}=\frac{1}{2}}(\varphi, E(\cdot, s)) E(\cdot, s) d s
$$

is the continuous part which converges if ϕ is "nice".

$$
-\Delta \varphi=\sum_{j=0}^{\infty} \lambda_{j}\left(\varphi, u_{j}\right) u_{j}+\frac{1}{4 \pi} \int_{\operatorname{Res}=\frac{1}{2}} s(1-s)(\varphi, E(\cdot, s)) E(\cdot, s) \mathrm{d} s
$$

We can write $0=\lambda_{0} \leq \lambda_{1} \leq \lambda_{2} \leq \cdots$ and

$$
u_{0}=\frac{1}{(\operatorname{vol}(\Gamma \backslash \mathbb{H}))^{\frac{1}{2}}}
$$

which is a constant. For $\Gamma=S L_{2}(\mathbb{Z}), u_{j}(j>0)$ are cuspidal forms.
Special case: If k is a point-pair invariant function, recall

$$
K(z, w)=\sum_{\gamma \in \Gamma} k\left(z, \gamma_{\omega}\right)
$$

In order to expand $K(\cdot, \omega)$, we write $\lambda_{j}=s_{j}\left(1-s_{j}\right)$, and $s_{j}=\frac{1}{2}+\mathrm{i} t_{j}$. we know that

$$
\int K(z, w) \overline{u_{j}(z)} d \mu(z)=h\left(t_{j}\right) \overline{u_{j}(\omega)}
$$

where h is the Selberg transform of k. Finally, we get

$$
K(z, \omega)=\sum_{j=0}^{\infty} h\left(t_{j}\right) u_{j}(z) \overline{u_{j}(\omega)}+\frac{1}{4 \pi} \int_{\substack{\text { Res }=\frac{1}{2} \\ s=\frac{1}{2}+\text { ir }}} h(r) E(z, s) \overline{E(\omega, s)} d s
$$

which is the spectral expansion of the automorphic kernel.
Another way to work with the spectral expansion is Eisenstein transform

$$
f \mapsto E_{f}=\int_{0}^{\infty} f(r) E\left(z, \frac{1}{2}+\mathrm{i} r\right) \mathrm{d} r
$$

where $f \in C\left(\mathbb{R}_{>0}\right)$, and

$$
\begin{gathered}
\left\|E_{f}\right\|_{L^{2}(\Gamma \backslash \mathbb{H})}^{2}=\|f\|_{L^{2}\left(\mathbb{R}_{>0}\right)}, \\
\varphi=\sum\left(\varphi, u_{j}\right) u_{j}+\frac{1}{4 \pi} \int(\varphi, E) E d s, \\
\left(\varphi_{1}, \varphi_{2}\right)_{\Gamma \backslash \mathbb{H}}=\sum_{j}\left(\varphi_{1}, u_{j}\right)\left(u_{j}, \varphi_{2}\right)+\frac{1}{4 \pi} \int_{\operatorname{Res}=\frac{1}{2}}\left(\varphi_{1}, E(s)\right)\left(E(s), \varphi_{2}\right) \mathrm{d} s .
\end{gathered}
$$

Continuous part of the spectrum of Δ on $L^{2}(\Gamma \backslash \mathbb{H})$ is well-understood. and it is $-\left[\frac{1}{4},+\infty\right)$,

$$
\Delta E\left(\frac{1}{2}+\mathrm{i} t\right)=-\left|\left(\frac{1}{2}+\mathrm{i} t\right)\right|^{2} E\left(\frac{1}{2}+i t\right) .
$$

What about discrete part?

Question.

i) $\sharp\left\{j: \lambda_{j} \leq T\right\} \sim ?$
ii) What can λ_{1} be? λ_{1} controls the error term in various problems, such as hyperbolic lattice point counting problem.

Selberg eigenvalue conjecture.

$$
\lambda_{1}\left(\Gamma_{N} \backslash \mathbb{H}\right) \geq \frac{1}{4}
$$

i.e, cuspidal spectrum \subseteq continuous spectrum, where $\Gamma_{N}=\operatorname{Ker}\left(S L_{2}(\mathbb{Z}) \longrightarrow S L_{2}(\mathbb{Z} / N \mathbb{Z})\right)$.

One interesting thing is that forms with eigenvalue $\frac{1}{4}$ are expected to come from arithmetic (Galois representation).

Prop. (Selberg)

$$
\lambda_{1}\left(S L_{2}(\mathbb{Z}) \backslash \mathbb{H}\right) \geq \frac{3}{2} \pi^{2}
$$

Proof. Let u_{1} be a cusp form with $\left\|u_{1}\right\|=1, u_{1}=\sum_{n \neq 0} c_{n}(y) e(n x)$,

$$
\lambda_{1}=-\left(\Delta u_{1}, u_{1}\right)_{\Gamma \backslash \mathbb{H}}=\int_{\mathcal{F}}\left|y \nabla u_{1}(z)\right|^{2} \mathrm{~d} \mu(z),
$$

where

$$
(\Delta f, f)=\|\nabla f\|^{2}
$$

Let

$$
\omega=\left(\begin{array}{ll}
& 1 \\
-1 &
\end{array}\right)
$$

we have

$$
\mathcal{F} \bigcup \omega \mathcal{F} \supseteq\left\{z \in \mathbb{H},|\operatorname{Re} z|<\frac{1}{2}, \operatorname{Im} z>\frac{\sqrt{3}}{2}\right\}
$$

Then

$$
\begin{aligned}
2 \lambda & =\int_{\mathcal{F} \cup \omega \mathcal{F}}\left|y \nabla u_{1}(z)\right|^{2} \mathrm{~d} \mu(z) \geq \int_{\frac{\sqrt{3}}{2}}^{\infty} \int_{0}^{1}\left|y \nabla u_{1}(z)\right|^{2} \frac{\mathrm{~d} x \mathrm{~d} y}{y^{2}} \\
& \geq 3 \pi^{2} \int_{\frac{\sqrt{3}}{2}}^{+\infty} \sum_{n \neq 0}\left|c_{n}(y)\right|^{2} \frac{\mathrm{~d} y}{y^{2}}=3 \pi^{2} \int_{\frac{\sqrt{3}}{2}}^{\infty} \int_{0}^{1}\left|u_{1}(x+i y)\right|^{2} \mathrm{~d} x \frac{\mathrm{~d} y}{y^{2}} \\
& \geq 3 \pi^{2} \int_{\mathcal{F}}\left|u_{1}(z)\right|^{2} \mathrm{~d} \mu(z)=3 \pi^{2} .
\end{aligned}
$$

This argument also gives $\lambda_{1}>\frac{1}{4}$ for other Γ_{N} for small N. But there are examples of $\Gamma^{\prime} s$ (non-congruence), where $\lambda_{1}<\frac{1}{4}$ (in fact, λ_{1} can be as arbitrarily close to 0).

Small application of Eisenstein series. Recall

$$
E(z, s)=\sum_{(m, n) \in \mathbb{Z}^{2} \backslash\{(0,0)\}} \frac{1}{Q_{2}((m, n))^{s}}
$$

has an arithmetic meaning for special $z\left(\mathrm{CM}\right.$ points, $\left.z^{2}+r z+q=0, r, q \in \mathbb{Z}\right)$.

Suppose d is a square free number satisfying $d \equiv 1(\bmod 4), d<0$. Denote V as the set of solutions of quadratic equations of discriminant d, and let $\Lambda_{d}=\Gamma \backslash V$, then we have

$$
\sum_{z \in \Lambda_{d}} E(z, s)=\zeta_{K_{d}}(s)=\zeta(s) L\left(s, \chi_{d}\right)
$$

where $K_{d}=\mathbb{Q}(\sqrt{d})$ is an imaginary quadratic number field. In fact,

$$
\begin{aligned}
\Lambda_{d} & \Leftrightarrow \text { ideal classes of } \mathbb{Q}(\sqrt{d}) \\
& \Leftrightarrow \sim \backslash\{\text { binary quadratic forms of discriminat } \mathrm{d}\}
\end{aligned}
$$

Consider

$$
\sum_{z \in \Lambda_{d}} E(z ; s)=\zeta_{K_{d}}(s)=\zeta(s) L\left(x, \chi_{d}\right)
$$

Assume RH is FALSE, i.e., there exists $s_{0}, \operatorname{Res}_{0}>\frac{1}{2}$ such that $\zeta\left(s_{0}\right)=0$, then we have

$$
\sum_{z \in \Lambda_{d}} E\left(z ; s_{0}\right)=0 .
$$

We will show that $h(d)$ can not be 1 for d unbounded, i.e., there are only finitely many imaginary quadratic fields with class number 1.

Proof. $E\left(s_{0}\right)-E_{P}\left(s_{0}\right)$ is rapidly decreasing as $y \rightarrow \infty$. If $h(d)=1, \Lambda_{d}=\left\{\frac{1+\sqrt{d}}{2}\right\}$, then $E\left(\lambda_{d}\right)=0$.

On the other hand,

$$
E\left(\lambda_{d}\right)=|d|^{s_{0}}+\phi\left(s_{0}\right)|d|^{1-s_{0}}+O\left(|d|^{-N}\right)
$$

implies that

$$
E\left(\lambda_{d}\right) \neq 0
$$

for d large, because $\operatorname{Re}\left(\mathrm{s}_{0}\right)>\frac{1}{2}$ and $\left|d^{s_{0}}\right|=d^{\operatorname{Res}_{0}}$.
Deuning (1920s)
This argument was pushed by Siegel to show that $h(d) \sim \sqrt{|d|}$ ineffectively (clear under GRH).

Goldfeld-Gross-Zagier (1980s) roughly proved that $h(d) \gg \log d$ effectively, the upper bound $h(d) \ll \sqrt{|d|} \log d$ is trivial.

Main impact. Existence of high order zeros at $\frac{1}{2}$ for L-functions.

