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In memory of Professor Armand Borel with whom we worked together
at the University of Hong Kong over a three-year period

This article is an introduction to the Petersson trace formula and Kuznetsov
trace formula, both of which are now important, standard techniques in analytic
number theory. To illustrate their applications to modular forms, we will explain
their role in a proof of subconvexity bounds for Rankin-Selberg L-functions L(s, f⊗
g) on the critical line σ = 1/2, where here and throughout, we write s = σ + it
for s ∈ C. Here f is a cusp form whose weight (if f is holomorphic) or Laplace
eigenvalue (if f is nonholomorphic) tends to∞, while g is a fixed cusp form. There
are nine sections:

1. Introduction
2. Poincaré series
3. The Petersson trace formula
4. Maass forms
5. The Kuznetsov trace formula
6. Automorphic L-functions
7. Number theoretical background
8. Subconvexity bounds for Rankin-Selberg L-functions
9. Kuznetsov formula in the proof of subconvexity bounds

1. Introduction

Let f be a holomorphic cusp form of weight k for a Hecke congruence subgroup,
and af (n) its nth Fourier coefficient. Petersson [14] in 1932 expressed the sum of
af (n)āf (m) over f in terms of the Bessel function Jk−1 and Kloosterman sum.
This Petersson formula actually gives the arithmetic information contained in the
Kloosterman sum a spectral expansion over holomorphic cusp forms. In some sense,
this is the first relative trace formula, about 24 years earlier than the trace formula
which was proved by Selberg [21].

In 1980 Kuznetsov [10] established a similar spectral expansion over Maass cusp
forms for the arithmetic information contained in Kloosterman sums. The spectral
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side also contains a continuous spectrum over Eisenstein series. This Kuznetsov
formula is a relative trace formula of a new type.

The Petersson and Kuznetsov trace formulas have important applications in
number theory. They are now standard techniques in the theory of modular forms.
In this article, we will give one example to illustrate their applications. We will
outline their applications in a proof of subconvexity bounds for Rankin-Selberg
L-functions. From this proof, one can see that in order to use the Petersson or
Kuznetsov trace formula, we have to do an averaging argument which results in
huge waste in estimation. Then we will see that the Petersson and Kuznetsov
formulas are so powerful that even after this waste, we can still obtain nontrivial
bounds.

This article has therefore two purposes in mind. The first is to give the reader
an introduction to the Petersson (§3) and Kuznetsov (§5) trace formulas. We will
prove the Petersson formula but only state the Kuznetsov formula without proof.

The second purpose is to illustrate the role played by the Kuznetsov trace
formula in the proof of a subconvexity bound for Rankin-Selberg L-functions for
cusp forms. We will take this opportunity to point out that using a recent result
of Blomer [2], a subconvexity bound for Rankin-Selberg L-functions L(s, f ⊗ g) for
cusp forms f and g can be improved to the same bound as in the case when f
is Maass and g is holomorphic. We also want to point out that the subconvexity
bound we proved in [11] for Maass cusp form f with Laplace eigenvalue 1/4 + k2

and a fixed holomorphic cusp form g is actually

(1.1) L

(
1
2

+ it, f ⊗ g
)
� k(15+2θ)/16+ε,

where θ = 7/64 and ε > 0 is arbitrarily small. See §9 for detailed computation.
The parameter θ in (1.1) is indeed the exponent in a bound toward the Gen-

eralized Ramanujan Conjecture (GRC) (see (8.2) below). The trivial bound has
θ = 1/2. The trivial, i.e., so-called convexity bound for L(1/2 + it, f ⊗ g) is O(k).
Therefore, any nontrivial θ < 1/2 toward Ramanujan in (8.2) will give us a nontriv-
ial, subconvexity bound for the Rankin-Selberg L-functions in (1.1). In this sense,
the Ramanujan conjecture is irrelevant to subconvexity bounds for our Rankin-
Selberg L-functions, according to our Theorems 8.1 and 8.4.

This is an important observation. Indeed, it is also believed (Sarnak [20]) that
the Ramanujan conjecture is irrelevant to the Lindelöf Hypothesis which predicts

(1.2) L

(
1
2

+ it, f ⊗ g
)
� kε.

Recall that for an L-function L(s, π) beyond GL2(Q), the only known nontrivial θ
toward Ramanujan is θ = 1/2− 1/(m2 + 1), when π is an automorphic irreducible
cuspidal representation of GLm (Rudnick and Sarnak [16] and Luo, Rudnick, and
Sarnak [12]). Any subconvexity bound for L-functions beyond GL2(Q) might there-
fore require an estimate like ours. This is indeed the meaning of our theorems, while
a mere improvement of a subconvexity bound is not deemed important.

In this article we will not give definitions and basic properties of holomorphic
forms. These will be covered by a separate article in this volume. We will not give
a complete proof of Kuznetsov trace formula either. For a detailed proof see e.g.,
Iwaniec [4] and Motohashi [13].
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2. Poincaré series

Fix a Hecke congruence subgroup

Γ = Γ0(N) =
{(a b

c d

)
∈ SL2(Z); c ≡ 0 (modN)

}
.

When N = 1, Γ0(1) = SL2(Z) is the modular group. One can prove that

[Γ0(1) : Γ0(N)] = N
∏

p|N

(
1 +

1
p

)
.

We will consider holomorphic cusp forms of weight k for the Hecke congruence
subgroup Γ0(N); denote their space by Sk

(
Γ0(N)

)
. There is a dimension formula

for this space. It is known that

dim Sk
(
Γ0(N)

)} � kN
∏

p|N

(
1 +

1
p

)
.

In particular when N = 1,

dim Sk
(
Γ0(1)

)
=

k

12
+O(1).

The actual dimension formula depends on different cases of the weight k: (i) k
even, (ii) k odd, and (iii) 2k odd. The last case is the so-called half-integral weight,
which can only happen when 4|N . For details, see Sarnak [17] and Iwaniec [5].

We will in this section introduce a special kind of holomorphic cusp forms which
generate Sk

(
Γ0(N)

)
: Poincaré series. First we need an extension of the Legendre

symbol
(
a
d

)
(Shimura [23]): For b odd, we set

(i)
(
a
b

)
= 0 if (a, b) 6= 1;

(ii)
(
a
b

)
is the Legendre symbol if b is an odd prime;

(iii) for fixed b > 0,
(
a
b

)
as a function of a is a character mod b;

(iv) for fixed a 6= 0,
(
a
b

)
as a function of b is a character mod 4a;

(v)
(
a
−1

)
= 1 if a > 0, and = −1 if a < 0;

(vi)
(

0
±1

)
= 1.

Define
j(γ, z) =

( c
d

)
ε−1
d (cz + d)1/2

for γ =
(
a b
c d

)
∈ Γ, where for odd d, εd = 1 if d ≡ 1 (mod4), and = i if d ≡

3 (mod4).
Denote Γ∞ =

{(
1 b
0 1

)} ⊂ Γ0(N). The Poincaré series is defined by

(2.1) Pm(z, k) =
∑

γ∈Γ∞\Γ
j(γ, z)−2ke(mγz),

where e(z) = e2πiz.
We note that for m = 0, P0(z, k) is a holomorphic Eisenstein series. Conse-

quently for general m, the Poincaré series Pm(z, k) is dominated by the correspond-
ing non-holomorphic Eisenstein series and hence converges absolutely.

Note that the cusps for Γ0(1) are∞ and all the rational numbers, and they are
all equivalent to ∞. For N > 1, the cusps are still∞ and all rational numbers, but
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not all of them are now equivalent to∞ under Γ0(N). Indeed, the cusps equivalent
to ∞ are −d/c with (c, d) = 1 and c ≡ 0 (modN).

One can prove (cf. [17]) that the Poincaré series Pm(z, k) vanishes at every cusp
not equivalent to ∞. When m > 0, Pm(z, k) also vanishes at every cusp equivalent
to ∞, and hence is a cusp form in Sk

(
Γ0(N)

)
. The exceptional case is P0(z, k): It

is not a cusp form but an Eisenstein series as we pointed out previously.

Theorem 2.1. Poincaré series Pm(z, k), m > 0, span the space Sk
(
Γ0(N)

)
.

Our main goal in this section is to prove Theorem 2.1. Before we do that, a
natural question to ask is how to find a basis of Sk

(
Γ0(N)

)
consisting of Pm(z, k),

m > 0. For the case of modular group, it is known that Pm(z, k), 1 ≤ m ≤
dim Sk

(
Γ0(N)

)
, form a basis. For N > 1, this question is still open.

Proof of Theorem 2.1. Let f, g ∈ Sk
(
Γ0(N)

)
and z = x + iy ∈ H = {z ∈

C | y > 0}. Define the Petersson inner product

(2.2) 〈f, g〉 =
∫

Γ\H
f(z)ḡ(z)yk

dx dy

y2
.

This integral is well-defined because the integrand f(z)ḡ(z)yk and the measure
dx dy/y2 are both invariant under the action of Γ. This integral converges abso-
lutely because cusp forms are rapidly decreasing at each cusp.

For m > 0 we compute

(2.3) 〈Pm, f〉 =
∫

Γ\H
Pm(z, k)f̄(z)yk

dx dy

y2
.

Substituting the expansion of Pm(z, k) in (2.1) into (2.3), we get

〈Pm, f〉 =
∫

Γ\H

∑

γ∈Γ∞\Γ
j(γ, z)−2k e(mγz)f̄(z)yk

dx dy

y2

=
∫

Γ∞\H
e(mz)f̄(z)yk

dx dy

y2
.(2.4)

Now we use the Fourier expansion of f :

(2.5) f(z) =
∑

n≥1

af (n)e(nz).

Then (2.4) becomes

〈Pm, f〉 =
∫ ∞

0

∫ 1

0

e(mz)
∑

n≥1

āf (n)ē(nz)yk
dx dy

y2
.

The inner integral on [0, 1] is nonzero only if n = m. Consequently

(2.6) 〈Pm, f〉 = āf (m)
∫ ∞

0

e−4πmyyk
dx dy

y2
=

āf (m)
(4πm)k−1

Γ(k − 1).

From (2.6) we know that if a cusp form f is orthogonal to Pm(z, k) for a given
m > 0, then af (m) = 0. If f is orthogonal to every Pm(z, k) for m > 0, then
af (m) = 0 for every m > 0, and hence f = 0. This proves that Pm(z, k), m > 0,
span Sk

(
Γ0(N)

)
. �



PETERSSON AND KUZNETSOV TRACE FORMULAS 151

3. The Petersson trace formula

Now we compute Fourier coefficients of Poincaré series Pm(z, k):

P̂m(n) = lim
y→0+

∫ 1

0

Pm(z, k)e(−nx) dx

= lim
y→0+

∫ 1

0

∑

γ∈Γ∞\Γ
j(γ, z)−2k e(mγz)e(−nx) dx.

We note that γ ∈ Γ∞ \Γ implies γ =
(

1 0
0 1

)
or γ =

(
a b
c d

)
with c 6= 0. If

γ =
(

1 0
0 1

)
, then c = 0 and d = 1; hence

(
c
d

)
= 1, εd = 1, and j

((
1 0
0 1

)
, z
)

= 1.
Consequently

P̂m(n) = lim
y→0+

(∫ 1

0

e(mz)e(−nx) dx(3.1)

+
∑
γ

∫ 1

0

j(γ, z)−2k e(mγz)e(−nx) dx
)
,(3.2)

where the sum is taken over γ =
(
a b
c d

)
∈ Γ∞\Γ with c 6= 0 and c ≡ 0 (modN).

The integral in (3.1) equals
∫ 1

0

e
(
(m− n)x)e−2πmy dx = δm,ne

−2πmy.

For the expression in (3.2), we observe that
∑

r∈Z

∫ 1

0

j
(
γ
(1 r

0 1

)
, z
)−2k

e
(
mγ
(1 r

0 1

)
z − nx

)
dx

=
∫ ∞
−∞

j(γ, z)−2k e(mγz − nx) dx.

Consequently (3.2) becomes
∑ ∑

d mod c
(c,d)=1

( c
d

)−2k

ε2k
d

∫ ∞
−∞

(cz + d)−ke
(
m
az + b

cz + d
− nx

)
dx,

where the outer sum is taken over c > 0, c ≡ 0 (modN), and γ =
(
a b
c d

)
∈

Γ∞\Γ/Γ∞.
From (1 r

0 1

)(a b

c d

)
=
(a+ rc b+ rd

c d

)

we know that a and b are uniquely determined by c and d after taking the quotient
on the left by Γ∞. From

(a b

c d

)(1 r

0 1

)
=
( ∗ ∗
c d+ rc

)

we know that d is determined uniquely modulo c after taking a quotient on the
right by Γ∞. By

az + b

cz + d
=
a

c
− 1
c(cz + d)

,
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(3.2) equals
∑
c>0
N |c

∑

d ( mod c)
(c,d)=1

( c
d

)−2k

ε2k
d

∫ ∞
−∞

(cz + d)−ke
(ma
c
− m

c(cz + d)
− nx

)
dx

=
∑
c>0
N |c

c−k
∑

d ( mod c)
(c,d)=1

e
(ma
c

)( c
d

)−2k

ε2k
d

∫ ∞
−∞

(
z +

d

c

)−k
e
(
− m

c2(z + d/c)
− nx

)
dx.

Changing variables from x to x+ d/c, we get

(3.3)
∑
c>0
N |c

c−k
∑

d ( mod c)
(c,d)=1

e
(ma+ nd

c

)( c
d

)−2k

ε2k
d

∫ ∞
−∞

z−ke
(
− m

c2z
− nx

)
dx.

Taking y → 0 and writing d̄ = a with dd̄ ≡ 1 (modc), we can rewrite (3.3) and get

P̂m(n) =δm,n +
∑
c>0
N |c

c−k
∑

d ( mod c)
(c,d)=1

( c
d

)−2k

ε2k
d e
(md̄+ nd

c

)

× 2π
(nc2
m

)(k−1)/2

i−kJk−1

(4π
√
mn

c

)
.

Define a generalized Kloosterman sum

K(m,n; c) =
∑

d ( mod c)
(c,d)=1

( c
d

)−2k

ε2k
d e
(md̄+ nd

c

)
.

Note that if the weight k is even, then

K(m,n; c) =
∑

d ( mod c)
(c,d)=1

e
(md̄+ nd

c

)
= S(m,n; c),

the classical Kloosterman sum. Consequently for y = 0 and z = x, the nth Fourier
coefficient of the mth Poincaré series equals

(3.4) P̂m(n) =
( n
m

)(k−1)/2


δm,n + 2πi−k

∑
c>0
N |c

Jk−1

(
4π
√
mn

c

)
K(m,n; c)

c


 .

We can compute P̂m(n) in another way. Let F be an orthonormal basis of
Sk
(
Γ0(N)

)
with respect the Petersson inner product defined in (2.2). Take any

f ∈ F with Fourier expansion (2.5). Then from (2.6)

〈Pm, f〉 =
āf (m)

(4πm)k−1
Γ(k − 1)

we get a spectral expansion of the Poincaré series

(3.5) Pm(z, k) =
Γ(k − 1)

(4πm)k−1

∑

f∈F
āf (m)f(z).
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Computing the nth Fourier coefficient of the two sides of (3.5) we get

(3.6) P̂m(n) =
Γ(k − 1)

(4πm)k−1

∑

f∈F
āf (m)af (n).

Comparing the two expressions of P̂m(n) in (3.4) and (3.6), we complete the proof
of the Petersson trace formula.

Theorem 3.1. Let F be an orthonormal basis of Sk
(
Γ0(N)

)
. Then

Γ(k − 1)
(4πm)k−1

∑

f∈F
āf (m)af (n)

=
( n
m

)(k−1)/2


δm,n + 2πi−k

∑
c>0
N |c

Jk−1

(4π
√
mn

c

)K(m,n; c)
c


 .(3.7)

We call the left side of (3.7) the spectral side and the right side the geometric
side of the Petersson formula. Note that the spectral side is a finite sum.

4. Maass forms

The standard Laplace operator on the complex plane C is defined by

∆e =
∂2

∂x2
+

∂2

∂y2
,

but on the upper half plane H, the Laplace operator is given by

∆ = −y2
( ∂2

∂x2
+

∂2

∂y2

)
.

The operator ∆ is invariant under the action of SL2(R), i.e., for any z ∈ H and
any element g =

(
a b
c d

)
∈ SL2(R),

(4.1) (∆f)(gz) = ∆(f(gz))

where gz = (az+b)/(cz+d). It is well known that SL2(R) is generated by
(

0 −1
1 0

)

and
(

1 b
0 1

)
, b ∈ R. Thus in order to show (4.1), it is sufficient to check it for the

generators.

Definition 4.1. A real-analytic function f 6= 0 is called a Maass form for the
group SL2(Z) if it satisfies the following properties:

(i) For all g ∈ SL2(Z) and all z ∈ H,
f(gz) = f(z);

(ii) f is an eigenfunction of the non-Euclidean Laplace operator,

∆f = λf,

where λ is an eigenvalue of ∆;
(iii) There exists a positive integer N such that

f(z)� yN , y → +∞;
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(iv) If we want to consider square integrable Maass forms in L2
(
SL2(R)\H),

we further require
∫

Γ\H
|f(z)|2dz < +∞,

where dz = dxdy/y2 is the hyperbolic measure on H.

Definition 4.2. A Maass form f is said to be a cusp form if
∫ 1

0

f
(( 1 b

0 1

)
z
)
db =

∫ 1

0

f(z + b)db = 0

holds for all z ∈ H.

As an example of Maass forms, we consider non-analytic Eisenstein series

(4.2) E∗(z, s) =
π−s

2
Γ(s)

∑
m,n∈Z

(m,n) 6=(0,0)

ys

|mz + n|2s .

Let s = σ + it. Then we have

ys

|mz + n|2s �
|y|σ

(m|y|)2σ
� |y|−σm−2σ.

Thus (4.2) absolutely converges in σ > 1. But it is not analytic in z ∈ H.
We introduce E(z, s) by the following formula

E∗(z, s) = E(z, s)ξ(s),

where ξ(s) = π−sΓ(s)ζ(2s) and ζ(s) is the Riemann zeta-function. Then we have

E(z, s) = ys +
1
2

∑
(c,d)=1
c6=0

ys

|cz + d|2s =
1
2

∑

Γ∞\Γ
(Im gs)s,

where Γ∞ is the subgroup of SL2(Z) generated by
(

1 1
0 1

)
.

From the definition of E(z, s), it is easy to see that E(z, s) is invariant under
SL2(Z). We can also prove that E(z, s) is an eigenfunction of ∆ in σ > 1. In fact,
we have

∆ys = −y2
( ∂2

∂x2
+

∂2

∂y2

)
(ys) = s(1− s)ys,

so that ys is an eigenfunction of ∆ with eigenvalue λ = s(1−s). Since ∆ is invariant
under SL2(Z),

(Im gz)s =
ys

|cz + d|2s
is also an eigenfunction of ∆ with eigenvalue λ = s(1− s). Therefore

∆E(z, s) = s(1− s)E(z, s),

as required.
Now we introduce the Fourier expansion for Maass forms. Let f(z) be a Maass

form. Since f(gz) = f(z) for g =
(

1 1
0 1

)
∈ SL2(Z), i.e.

f(z + 1) = f(x+ 1 + iy) = f(z) = f(x+ iy),
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f(z) has the Fourier expansion

f(z) =
∑

n∈Z
cn(y)e2πinx =

∑

n∈Z
cn(y)e(nx).

Thus it remains to determine the coefficients cn(y).
By Definition 4.1, we have ∆f = λf , and hence cn(y) satisfies

−y2c′′n + 4π2n2y2cn = λcn.

If n 6= 0, this is a modified Bessel equation, which has the general solution

(4.3) cn(y) = an
√
yKiν(2π|n|y) + bn

√
yIiν(2π|n|y).

Here ν =
√
λ− 1/4, Kiν is the modified Bessel function of the third kind which is

rapidly decreasing when y →∞, and Iiν(y) in (4.3) is the modified Bessel function
of the first kind which is rapidly increasing. From (iii) in Definition 4.1, we see that
bn must equal zero.

If n = 0, the equation (4.3) has the solution c0(y) = y1/2+iν , where ν =
±
√
λ− 1/4. If λ ≥ 1/4, then ν is real, and consequently,

∫

Γ\H
|C0(y)|2dz ≥

∫ 1/2

−1/2

dx

∫ ∞
1

|y1+2iν |
y2

dy ≥
∫ ∞

1

dy

y
=∞.

For a square-integrable Maass form f ∈ L2(Γ\H), we then must have c0(y) = 0.
Therefore for λ ≥ 1/4, a square-integrable Maass form must be a cusp form, and
its Fourier expansion takes the form

f(z) =
∑

n6=0

an
√
yKiν(2π|n|y)e(nx).

It has been shown that the eigenvalue of any Maass cusp form for SL2(Z)
satisfies λ > 3π2/2, and the first eigenvalue can actually be computed: λ1 =
91.14 . . .. Selberg conjectured that the eigenvalue of any Maass cusp form for Γ0(N)
satisfies λ ≥ 1/4, and he proved λ ≥ 3/16.

5. The Kuznetsov trace formula

We state without proof the following Kuznetsov formula. Let {fj} be an or-
thonormal basis of the space of Maass forms for the Hecke congruence subgroup
Γ0(N). Denote by 1/4 + k2

j the Laplace eigenvalue for fj . Let

fj(z) = (y coshπkj)1/2
∑

n6=0

λj(n)Kikj (2π|n|y)e(nx)

be the Fourier expansion of fj . Denote ζN (s) =
∏
p|N (1− p−s)−1.

Theorem 5.1 (Kuznetsov [10]). Let h(r) be an even function of complex vari-
able, which is analytic in −∆ ≤ Im r ≤ ∆ for some ∆ ≥ 1/4. Assume in this
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region that h(r)� r−2−δ for some δ > 0 as r →∞. Then for any n, m ≥ 1,
∑

fj

h(kj)λj(m)λj(n) +
1
π

∫

R
dir(n)dir(m)h(r)

|ζN (1 + 2ir)|2
|ζ(1 + 2ir)|2 dr(5.1)

=
δn,m
π2

∫

R
tanh(πr)h(r)dr

+
2i
π

∑

c≥1

S(n,m; c)
c

∫

R
J2ir

(4π
√
mn

c

) h(r)r
cosh(πr)

dr,

where dv(n) =
∑
ab=|n|(a/b)

v, and S(m,n; c) is the classical Kloosterman sum.

Again the left side of (5.1) is the spectral side, and the right the geometric side
of the trace formula. The integral on the spectral side represents the continuous
spectrum of the Laplace operator. Indeed, the divisor function dir(n) is the Fourier
coefficients of Eisenstein series.

The integral on the left side converges absolutely. This is because first the
zeta-function ζ(s) does not vanish on the line σ = 1, and secondly |ζ(1 + 2ir)| ≥
c log−2/3(2+|r|) for some c > 0. The absolute convergence is then from the fact that
dir(n)�n 1 and h(r)� r−2−δ. The same bound for h(r) also give us convergence
of the first integral on the right side of (5.1).

Different from the Petersson formula, the sum of Fourier coefficients on the left
side of (5.1) is an infinite sum. For a proof of the Kuznetsov trace formula, as well
as a discussion of convergence, see Kuznetsov [10], Iwaniec [4], or Motohashi [13],
Chapter 2.

The normalization for fj is crucial here. Without suitable normalization of the
Maass forms fj , there would be no reason to have this sum convergent. In fact,
the Kuznetsov trace formula (5.1) is only valid for Maass forms fj which form an
orthonormal basis of the space of the Maass cusp forms.

6. Automorphic L-functions

First let us recall the Riemann zeta-function

ζ(s) =
∑

n≥1

1
ns

=
∏
p

(
1− 1

ps

)−1

for σ > 1. The zeta-function has a functional equation and analytic continuation to
the whole complex plane C, with only a simple pole at s = 1. It has simple zeros at
negative even integers, which are called trivial zeros. Other zeros of ζ(s) lie in the
critical strip 0 ≤ σ ≤ 1, and are called nontrivial zeros. The Riemann Hypothesis
predicts that all nontrivial zeros of ζ(s) are on the line σ = 1/2.

Note that

ζ(s)
(

1− 2
2s

)
=
∑

n≥1

1
ns
− 2

∑

n≥1

1
(2n)s

=
∑

n≥1

(−1)n−1

ns
.

Since the series on the right side converges for real s > 0, we get an expression of
ζ(s) for real s > 0

(6.1) ζ(s) =
(

1− 2
2s

)−1∑

n≥1

(−1)n−1

ns
.
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By a general argument on the convergence of Dirichlet series, the right side of (6.1)
also converges for all values of s with σ > 0 (cf. Titchmarsh [24], pp. 16-17).

Next let us look at Dirichlet L-functions. Let N be a positive integer, and χ a
character modulo N . Define χ(p) = 0 if p|N . The Dirichlet L-function in this case
is

L(s, χ) =
∑

n≥1

χ(n)
ns

=
∏
p

(
1− χ(p)p−s

)−1 =
∏

p-N

(
1− χ(p)p−s

)−1

for σ > 1. L(s, χ) also has a functional equation and analytic continuation to
C. L(s, χ) is entire when χ is not a principal character. When χ is the principal
character mod N , L(s, χ) is essentially the Riemann zeta function. Again, L(s, χ)
has trivial zeros and nontrivial zeros. The Generalized Riemann Hypothesis claims
that all nontrivial zeros have real part equal to 1/2.

Now we turn to L-functions attached to cusp forms for the Hecke congruence
subgroup Γ0(N). Let f ∈ Sk

(
Γ0(N)

)
be a holomorphic cusp form with Fourier

expansion

(6.2) f(z) =
∑

n≥1

n(k−1)/2λf (n)e(nz).

Or let f be a Maass cusp form with Laplace eigenvalue 1/4 + ν2 and Fourier
expansion

(6.3) f(z) =
∑

n6=0

√
yλf (n)Kiν(2π|n|y)e(nx).

in (6.2) and (6.3) we normalized f so that λf (1) = 1. Then the L-function attached
to f is defined as

L(s, f) =
∑

n≥1

λf (n)
ns

(6.4)

=
∏
p

(
1− λf (p)p−s + χ0(p)p−2s

)−1
,(6.5)

where χ0 is the principal character modulo N . Note that we have normalized f by
λf (1) = 1 so that its L-function has the first term equal to 1.

By a trivial bound for λf (p), the sum in (6.4) and product in (6.5) converge ab-
solutely for σ sufficiently large. Using the Rankin-Selberg method, one can further
prove that they indeed converge absolutely for σ > 1.

The product in (6.5) equals

L(s, f) =
∏

p-N

(
1− λf (p)p−s + χ0(p)p−2s

)−1 ∏

p|N

(
1− λf (p)p−s

)−1
.

For p - N , we define αf (p) and βf (p) by

αf (p) + βf (p) = λf (p), αf (p)βf (p) = 1.

For p|N , we set αf (p) = λf (p) and βf (p) = 0. Then the L-function can be written
as

L(s, f) =
∏
p

(
1− αf (p)p−s

)−1(1− βf (p)p−s
)−1

.
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The Ramanujan conjecture predicts that for unramified p, i.e., for p - N ,
|α(p)| = |β(p)| = 1. This conjecture was proved by Deligne for holomorphic cusp
forms, but is still open for Maass cusp forms.

The function L(s, f) has a functional equation and analytic continuation. It
is indeed an entire function. We also know that it is nonzero on σ = 1. The
Generalized Riemann Hypothesis predicts that all nontrivial zeros of L(s, f) are on
the line σ = 1/2.

The next L-function we will consider is the Rankin-Selberg L-function. Let
f and g be two cusp forms, either holomorphic or Maass. Their Rankin-Selberg
L-function is defined by

L(s, f ⊗ g) =
∏
p

(
1− αf (p)αg(p)p−s

)−1(1− αf (p)βg(p)p−s
)−1

× (1− βf (p)αg(p)p−s
)−1(1− βf (p)βg(p)p−s

)−1(6.6)

= ζ(2s)
∑

n≥1

λf (n)λg(n)
ns

.(6.7)

The product in (6.6) and the series in (6.7) are absolutely convergent for σ > 1.
Because of our normalization of f and g, the first term in L(s, f ⊗ g) is again equal
to 1.

The function L(s, f ⊗ g) has a functional equation and analytic continuation.
When f = g, it has a simple pole at s = 1.

When f ∈ Sk
(
Γ0(N)

)
and g ∈ Sl

(
Γ0(N)

)
are both holomorphic cusp forms,

the functional equation is

(6.8) L(s, f ⊗ g) = γ(s)L(1− s, f ⊗ g),

where

(6.9) γ(s) = (2π)4s−2 Γ(−s+ (k + l)/2)Γ(1− s+ (k − l)/2)
Γ(s− 1 + (k + l)/2)Γ(s+ (k − l)/2)

.

We will also need an approximate functional equation when l is fixed but k →∞.
Applying Stirling’s formula

Γ(z) = e−ze(z−1/2) log z(2π)1/2

(
1 +

z−1

12
+
z−2

288
+O(z−3)

)

to (6.9), we get

γ(s) =
(

16π2

(k + l − 2)(k − l + 2)

)2s−1 (
1 + ηk(s)

)

where ηk(s) → 0 when k → ∞. In fact, one can prove that ηk(s) � (1 + |s|)3/k2.
Then the approximate functional equation is

L(s, f ⊗ g) ∼
(

16π2

(k + l − 2)(k − l + 2)

)2s−1

L(1− s, f ⊗ g).

Similar functional equations and approximate functional equations exist for f
and g being both Maass, or one Maass and one holomorphic. Like in (6.1), we can
use these approximate functional equation to get an approximation to the central
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value of L(s, f ⊗ g) at s = 1/2:

(6.10) L
(1

2
, f ⊗ g

)
= 2

∑

b≥1

1
b

∑

a≥1

λf (a)λg(a)√
a

V
(ab2
X

)
+O(kε)

where X = (k + l − 2)(k − l + 2)/(16π2) and

(6.11) V (y) =
1

2πi

∫

σ=1

G(s)y−s
ds

s

for a good function G(s).

7. Number theoretical background

Gauss and Legendre conjectured that

(7.1)
∑

p≤x
1 ∼ x

log x
, x→∞,

which is called the prime number theorem. Riemann established a deep connection
between the distribution of primes and distribution of zeros of the zeta-function.
The following are some basic properties of the zeta-function.

The zeta-function satisfies the functional equation

ζ(s) = πs−1/2
Γ
(

1−s
2

)

Γ
(
s
2

) ζ(1− s).

This gives the analytic continuation of ζ(s) to the whole plane. {−2n}∞n=1 comprises
all the trivial zeros of ζ(s). There are infinitely many non-trivial zeros, all of which
lie in the critical strip 0 ≤ σ ≤ 1.

Let Λ(n) be the von Mangoldt function, i.e. Λ(n) = log p for n = pa with
a ≥ 1, and zero otherwise. Then the prime number theorem is equivalent to

(7.2)
∑

n≤x
Λ(n) ∼ x.

The connection between the Riemann zeta-function and primes is given by the
so-called explicit formula, which states that, for 2 ≤ T ≤ x,

(7.3)
∑

n≤x
Λ(n) = x−

∑

|γ|≤T

xρ

ρ
+O

(x log2 x

T

)
,

where the sum is taken over nontrivial zeros ρ = β + iγ of ζ(s) with |γ| ≤ T .
If there is a constant B < 1 such that all the non-trivial zeros satisfy β ≤ B,

then the sum over ρ in (7.3) is

�
∑

|γ|≤T

xβ

|ρ| ≤ x
B
∑

|γ|≤T

1
|ρ| � xB log2 x,

and this gives the prime number theorem in the form

(7.4)
∑

n≤x
Λ(n) = x+O(xB log2 x).

However, we cannot establish such zero-free region as above for β ≤ B < 1. In
1896, Hadamard and de la Vallée Poussin proved that ζ(1 + it) 6= 0. This weak
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information on the zeros of ζ(s) is sufficient to prove the prime number theorem
(7.2). De la Vallée Poussin proved that ζ(s) is zero-free in the region

σ ≥ 1− c

log(|t|+ 2)
.

The Riemann Hypothesis says that all non-trivial zeros of ζ(s) lie on the vertical
line σ = 1/2. This is equivalent to

∑

n≤x
Λ(n) = x+O(x1/2 log2 x).

By the Phragmén-Lindelöf method, we have

ζ

(
1
2

+ it

)
� |t|1/4+ε.

Consequently,

ζ

(
1
2

+ it

)
� |t|1/4

is called the convexity bound. In 1921, Weyl improved the bound to |t|1/6+ε. Over
the years, there have been many improvements. Under the Riemann Hypothesis,
one can get

ζ

(
1
2

+ it

)
� |t|ε,

which is known as the Lindelöf Hypothesis.

8. Subconvexity bounds for Rankin-Selberg L-functions

Let f and g be two cusp forms, either holomorphic or Maass. Recall their
Fourier expansions (6.2) and (6.3), and Rankin-Selberg L-function (6.6) and (6.7).

In the weight aspect of the holomorphic cusp form f , the convexity bound is,
for fixed g and t ∈ R,

L

(
1
2

+ it, f ⊗ g
)
� k,

as the weight k of f going to infinity. In [19], Sarnak established the subconvexity
bound

(8.1) L

(
1
2

+ it, f ⊗ g
)
� k576/601+ε.

Kowalski, Michel, and Vanderkam [9] proved a subconvexity bound for a Rankin-
Selberg L-function L(1/2 + it, f ⊗ g) as f varies over holomorphic new forms for
Γ0(N) as the level N tends to ∞, with fixed t, g, and the weight of f .

The following Theorem 8.1 was proved by the authors in [11], with the correct
subconvexity bound obtainable using the techniques there. First we need a bound
toward the Generalized Ramanujan Conjecture (GRC). In terms of representation
theory, let π be an automorphic cuspidal representation of GL2(QA) with unitary
central character and local Hecke eigenvalues α(j)

π (p) for p < ∞ and µ
(j)
π (∞) for

p =∞, j = 1, 2. Then bounds toward the GRC are
∣∣α(j)
π (p)

∣∣ ≤ pθ for p at which π is unramified,(8.2)
∣∣Re
(
µ(j)
π (∞)

)∣∣ ≤ θ if π is unramified at ∞.
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These bounds were proved for θ = 1/4 by Selberg and Kuznetsov [10], for θ = 1/5
by Shahidi [22] and Luo, Rudnick, and Sarnak [12], for θ = 1/9 by Kim and Shahidi
[8], and most recently for θ = 7/64 by Kim and Sarnak [7]. The GRC predicts that
θ = 0.

Theorem 8.1 (Liu and Ye [11]). Let g be a fixed holomorphic cusp form for
SL2(Z). Let f be a Maass cusp form for SL2(Z) with Laplace eigenvalue 1/4 + k2.
Then we have for any ε > 0 and t ∈ R that

L
(1

2
+ it, f ⊗ g

)
�ε,t,g k

(15+2θ)/16+ε,

where θ is given by (8.2) and we can take θ = 7/64.

Here we replaced the bound in [11] by a correct bound here. Note that L(s, f⊗
g) is indeed an L-function attached to a group representation of GL4 over Q. A
proof of Theorem 8.1 needs GL4 techniques. Sarnak [19] and the authors [11]
accomplished this by using (i) the Petersson or Kuznetsov trace formula once, which
is a GL2 technique, and (ii) an estimation of a shifted sum

∑
n λg(n)λ̄g(n + h) of

Fourier coefficients of cusp form g for h 6= 0. This estimation is again a GL2

technique, proved by Sarnak [19], Appendix.
More precisely, for ν1, ν2 > 0 let us define

Dg(s, ν1, ν2, h)(8.3)

=
∑

m,n>0,
ν1m−ν2n=h

λg(n)λ̄g(m)
( √

ν1ν2mn

ν1m+ ν2n

)l−1

(ν1m+ ν2n)−s,

if g is a holomorphic cusp form of weight l, and

Dg(s, ν1, ν2, h)(8.4)

=
∑

m,n6=0,
ν1m−ν2n=h

λg(n)λ̄g(m)

( √
ν1ν2|mn|

ν1|m|+ ν2|n|

)2il

(ν1|m|+ ν2|n|)−s,

if g is a Maass cusp form with Laplace eigenvalue 1/4 + l2.

Theorem 8.2 (Sarnak [19]). Let g be a holomorphic cusp form of even weight
l. For σ > 1, ν1, ν2 > 0, and h ∈ Z, define Dg(s, ν1, ν2, h) as above. Then assuming
(8.2) for θ we have that Dg(s) extends to a holomorphic function for σ ≥ 1/2+θ+ε,
for any ε > 0. Moreover, in this region it satisfies

(8.5) Dg(s, ν1, ν2, h)�g,ε (ν1ν2)−1/2+ε|h|1/2+θ+ε−σ(1 + |t|)3.

Theorem 8.3 (Sarnak [19]). Let g be a Maass cusp form of Laplace eigenvalue
1/4 + l2. For σ > 1, ν1, ν2 > 0, and h ∈ Z define Dg(s, ν1, ν2, h) as above. Then
assuming (8.2) for θ we have that Dg(s) extends to a holomorphic function for
σ ≥ 1/2 + θ + ε, for any ε > 0. Moreover, in this region it satisfies

(8.6) Dg(s, ν1, ν2, h)�g,ε (ν1ν2)−1/2+ε|h|1/2+θ+ε−σ(1 + |t|)3 + |h|1−σ.
Here we can take θ = 7/64 of Kim and Sarnak [7], and set σ = 1/2+θ+ε. Note

that there is an extra term on the right side of (8.6). Recently Blomer [2] removed
this extra term so that Theorem 8.3 now has the same bound as in (8.5). Because
of this progress, our Theorem 8.1 now holds for the case of g being a Maass cusp
form too.
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Theorem 8.4. Let g be a fixed Maass cusp form for Γ0(N). Let f be a Maass
cusp form for Γ0(N) with Laplace eigenvalue 1/4+k2. Then we have for any ε > 0
and t ∈ R that

L
(1

2
+ it, f ⊗ g

)
�ε,t,g,N k(15+2θ)/16+ε,

where θ is given by (8.2) and we can take θ = 7/64.

The proof of Theorem 8.4 as well as Theorem 8.1 follows from the following
theorem.

Theorem 8.5. Let g be a fixed holomorphic or Maass cusp form for Γ0(N).
Let f be a Maass cusp form for Γ0(N) with Laplace eigenvalue 1/4 + k2. Then we
have for any ε > 0 and t ∈ R that

(8.7)
∑

K−L≤k≤K+L

∣∣∣L
(1

2
+ it, f ⊗ g

)∣∣∣
2

�ε,t,g,N (KL)1+ε,

for K(7+2θ)/8+ε ≤ L ≤ K1−ε. Here θ is given by (8.2) and we can take θ = 7/64.

By Weyl’s law, which states that #{k : 1/4 + k2 ≤ T} ∼ cT , we have

#{k : K − L ≤ k ≤ K + L}
= #{k : 1/4 + (K − L)2 ≤ 1/4 + k2 ≤ 1/4 + (K + L)2}
∼ c((1/4 + (K + L)2)− (1/4 + (K − L)2)

)

= 4cKL.

Thus from Theorem 8.5, the generalized Lindelöf hypothesis L(1/2+ it, f⊗g)� kε

is true on average for K − L ≤ k ≤ K + L with L in the range K(7+2θ)/8+ε ≤ L ≤
K1−ε.

Now we derive Theorem 8.4 from Theorem 8.5. We take only one term from
the left side of (8.7) and get

∣∣∣∣L
(

1
2

+ it, f ⊗ g
)∣∣∣∣

2

� (KL)1+ε

for K − L ≤ k ≤ K + L and K(7+2θ)/8+ε ≤ L ≤ K1−ε. Taking K = k and
L = K(7+2θ)/8+ε, we prove Theorem 8.4.

Now let us turn to an application of our subconvexity bounds in Theorem 8.1
or 8.4. Let f be a Maass Hecke eigenform for Γ0(N) with Laplace eigenvalue λ.
Normalize f so that µf = |f(z)|2dxdy/y2 is a probability measure on Γ0(N)\H,
i.e., µf

(
Γ0(N)\H) = 1. The equidistribution conjecture (Rudnick and Sarnak [15])

predicts that

µf −→ vol
(
Γ0(N)\H)−1 dxdy

y2

as λ tends to infinity. According to Sarnak [18] and Watson [25], this conjecture
would follow from a subconvexity bound for L(1/2, f ⊗ f ⊗ g), where f is as above
and g is a fixed Maass Hecke eigenform. If f is a CM form corresponding to a
representation of the Weil group WQ, i.e., if L(s, f) = L(s, η) for some grossen-
character η on a quadratic number field, then the triple Rankin-Selberg L-function
can be factored as L(s, F ⊗ g)L(s, g⊗χ)L(s, g) for a fixed quadratic character χ of
conductor N . Here F is a Maass cusp form with Laplace eigenvalue 1/4 + (2k)2,



PETERSSON AND KUZNETSOV TRACE FORMULAS 163

if λ = 1/4 + k2. This way the equidistribution conjecture for CM Maass forms is
reduced to a subconvexity estimate of L(s, F⊗g). Our Theorem 8.1 or 8.4 therefore
implies the following theorem.

Theorem 8.6. The equidistribution conjecture is true for CM Maass forms.

9. Kuznetsov formula in the proof of subconvexity bounds

Similar to (6.10), for the central value of L-function L(s, f ⊗ g) with f being a
Maass cusp form, we have

L
(1

2
, f ⊗ g

)
= 2

∑

1≤b≤X1/2+ε

1
b

∑

a≥1

λf (a)λg(a)√
a

V
(ab2
X

)
(9.1)

+O(kε)

=
2√
X

∑

1≤b≤X1/2+ε

∑

a≥1

λf (a)λg(a)

× V
( a

X/b2

)√X/b2
a

+O(kε),

where X � (k2 − l2)/(8π2) � k2 and V is the same as in (6.11). Here the outer
sum is written as a finite sum because terms with b > X1/2+ε are negligible. The
estimation of (9.1) is thus reduced to that of

(9.2) SY (f) =
∑

a≥1

λf (a)λg(a)H
( a
Y

)
,

where Y = X/b2 and

H
( a
Y

)
= V

( a

X/b2

)√X/b2

a
.

By an argument of smooth dyadic subdivision we can assume that H is a smooth
function of compact support in [1, 2].

No one can get a nontrivial estimate for individual SY (f) directly. In order to
use the Kuznetsov trace formula, let us consider a smoothly weighted average

∑

fj

|SY (fj)|2
(
h

(
K − kj
L

)
+ h

(
K + kj
L

))

=
∑
m,n

λg(n)λ̄g(m)H
( n
Y

)
H
(m
Y

)

×
∑

fj

(
h

(
K − kj
L

)
+ h

(
K + kj
L

))
λj(n)λ̄j(m)
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Now the Kuznetsov trace formula (5.1) can be applied to the inner sum on the right
side above. This will give us

∑

fj

|SY (fj)|2
(
h
(K − kj

L

)
+ h
(K + kj

L

))
(9.3)

= −
∑
m,n

λg(n)λ̄g(m)H
( n
Y

)
H
(m
Y

)

×
∫

R

(
h
(K−r

L

)
+ h
(K+r

L

))
dir(n)dir(m)

|ζN (1 + 2ir)|2
|ζ(1 + 2ir)|2 dr(9.4)

+
∑
m,n

λg(n)λ̄g(m)H
( n
Y

)
H
(m
Y

)

× δn,m
π

∫

R
tanh(πr)

(
h
(K − r

L

)
+ h
(K + r

L

))
rdr(9.5)

+ 2i
∑
m,n

λg(n)λ̄g(m)H
( n
Y

)
H
(m
Y

)∑

c≥1

S(n,m; c)
c

×
∫

R
J2ir

(4π
√
nm

c

)(
h
(K − r

L

)
+ h
(K + r

L

)) rdr

cosh(πr)
.(9.6)

We note that (9.3) is positive, while the expression in (9.4) without the leading
negative sign is also positive. In fact, by change of variables, (9.4) equals

− 2L
π

∑
n,m

λg(n)λ̄g(m)H
( n
Y

)
H
(m
Y

)

×
∫

R
di(uL+K)(n)di(uL+K)(m)

h(u)du∣∣ζ(1 + 2i(uL+K))
∣∣2

= −2L
π

∫

R

∣∣∣∣∣
∑
n

λg(n)H
( n
Y

)
di(uL+K)(n)

∣∣∣∣∣

2
h(u)du∣∣ζ(1 + 2i(uL+K))

∣∣2 .

Therefore estimation of (9.3) is reduced to estimation of (9.5) and (9.6).
The expression in (9.5) is bounded by

O

(∑
n

∣∣λg(n)
∣∣2
∣∣∣H
( n
Y

)∣∣∣
2
∫

R

∣∣∣h
(K − r

L

)∣∣∣|r|dr
)
.

By the Rankin-Selberg method, we can get
∑
n

∣∣λg(n)
∣∣2
∣∣∣H
( n
Y

)∣∣∣
2

� Y 1+ε.

On the other hand,
∫

R

∣∣∣∣h
(K − r

L

)∣∣∣∣ |r|dr �
∫ K+cL

K−cL
rdr � KL.

Therefore (9.5) contributes at most O(LKY 1+ε).
Estimation of (9.6) is difficult. In fact, more than half of the pages in Liu and

Ye [11], and in Sarnak [19] for the case of holomorphic Rankin-Selberg L-functions,
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are devoted to (9.6). The techniques include an identity from Bateman [1], vol. 1,
p. 59, (

J2ir(x)− J−2ir(x)
sinh(πr)

)∧
(y) = −i cos

(
x cosh(πy)

)
,

and a Voronoi summation formula (see [19], p.435). The most important technique
in estimation of (9.6) is Sarnak’s bound for shifted sums of Fourier coefficients of
g, as given in Theorems 8.2 and 8.3, and Blomer’s improvement [2]. See [19] and
[11] for details.

Here we want to point out that all of these techniques reduce the estimation of
(9.6) to [11], (4.11):

(9.7)
Y (µ−j+1)/2

L2ν−1

∑

0≤k≤N

1
k!

( L2

2π
√
Y

)k ∑

c≤Y/(LK1−ε)

cj+k−µ
∑

|h|<Y

∣∣P (c, h, Y )
∣∣,

for 0 ≤ 2µ ≤ ν < N and 0 ≤ j < 2N , where according to [11], (4.21),

(9.8) P (c, h, Y )� KY (µ−j−k−1)/2+σ
(( |h|

c

)5

+ · · ·+ 1
)
|h|1/2+θ+ε−σ.

By Blomer’s recent results, (9.8) now is valid for holomorphic as well as Maass cusp
form g. By [11], §4.12, we can take the innermost sum in (9.7) over |h| ≤ K2+εc2/Y .
By Sarnak’s Theorems 8.2 and 8.3, we can take σ = 1/2 + θ + ε in (9.8).

Consequently the innermost sum in (9.7) is bounded by
∑

|h|≤K2+εc2/Y

∣∣P (c, h, Y )
∣∣

�
∑

|h|≤K2+εc2/Y

KY (µ−j−k)/2+θ+ε
(( |h|

c

)5

+ 1
)
|h|ε

� K13+εY (µ−j−k)/2−6+θ+εc7+ε.

Then the sum with respect to c in (9.7) is bounded by

K13+εY (µ−j−k)/2−6+θ+ε
∑

c≤Y/(LK1−ε)

cj+k−µ+7+ε

� K13+εY (µ−j−k)/2−6+θ+ε
( Y

LK1−ε

)j+k−µ+8+ε

� Kµ−j−k+5+εY (j+k−µ)/2+2+θ+ε

Lj+k−µ+8+ε
.

Now (9.7) is bounded by

(9.9)
Kµ−j+5+εY 5/2+θ+ε

Lj−µ+2ν+7+ε

∑

0≤k≤N

1
k!

( L

2πK

)k
.

Note that as L being a smaller power of K, we have L/(2πK) < 1 and the sum
in (9.9) is bounded by e. Recall that 0 ≤ 2µ ≤ ν < N and 0 ≤ j < 2N . We get
(LK)µ/L2ν ≤ 1 when L ≥ K1/3. Consequently (9.9) and hence (9.7) and (9.6) are
bounded by

K5+εY 5/2+θ+ε

L7
� LKY 1+ε · K

4Y 3/2+θ

L8
.
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This is the desired O(LKY 1+ε), the same bound as for (9.5), if

(9.10) K4Y 3/2+θ ≤ L8.

Note that we need

(9.11) Y � K2+ε.

Therefore (9.10) is true when K7+2θ+ε ≤ L8, i.e., when

(9.12) K(7+2θ)/8+ε ≤ L ≤ K2−δ

for arbitrarily small δ > 0 and ε > 0. Here θ is given by (8.2), and we may take
θ = 7/64.

Consequently,

∑

fj

|SY (fj)|2
(
h
(K − kj

L

)
+ h
(K + kj

L

))
� LKY 1+ε,

and hence

(9.13)
∑

K−L≤kj≤K+L

|SY (fj)|2 � LKY 1+ε

under (9.11) and (9.12). According to the approximation formula of the central
value of the L-function in (9.1), we have

∑

K−L≤kj≤K+L

∣∣∣∣L
(

1
2

+ it, fj ⊗ g
)∣∣∣∣

2

�
∑

K−L≤kj≤K+L

∣∣∣∣∣∣
∑

1≤b≤K1+ε

1
b

∑

a≥1

λj(a)λg(a)√
a

V

(
ab2

K2

)∣∣∣∣∣∣

2

� 1
K2

∑

K−L≤kj≤K+L

∣∣∣∣∣∣
∑

a≥1

λj(a)λg(a)
∑

1≤b≤K1+ε

V (ab2/K2)√
ab2/K2

∣∣∣∣∣∣

2

.

Applying smooth dyadic subdivisions to the function

∑

1≤b≤K1+ε

V (ab2/K2)√
ab2/K2

,

we get

∑

K−L≤kj≤K+L

∣∣∣∣L
(

1
2

+ it, fj ⊗ g
)∣∣∣∣

2

� logK
K2

∑

K−L≤kj≤K+L

max
1≤B≤K2+ε

∣∣∣∣∣∣
∑

a≥1

λj(a)λg(a)H
(

a

K2/B

)∣∣∣∣∣∣

2

,
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where H is a fixed smooth function of compact support in [1, 2]. Using the bound
in (9.13) with Y = K2/B, we see that the maximum is from B = 1 and hence

∑

K−L≤kj≤K+L

∣∣∣∣L
(

1
2

+ it, fj ⊗ g
)∣∣∣∣

2

� logK
K2

∑

K−L≤kj≤K+L

∣∣SK2(fj)
∣∣2

� logK
K2

LK(K2)1+ε � (LK)1+ε

for L as in (9.12). This proves Theorem 8.5.
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