Spectral analysis for I'\H
Erez Lapid

§2 Geometry and Analysis on the Hyperbolic Plane (February 19, 2009)
The upper-half plane. As a model of the hyperbolic plane we will use the upper half
plane:

H={z=z+1iy,y > 0}.

H is a Riemannian manifold with the metric derived from the Poincaré differential, ds = %,

it also can be written as ds®* = y~2(dz? + dy?). In the hyperbolic plane, the angle is the
same as in the Euclidean plane and the distance function on H is given explicitly by

|z —w| + |z — w|

p(z,w) = log o= —u|

For example, p(it,is) = |[log £|. We have

cosh p(z,w) = 1+ 2u(z,w),
where
|z — w?

u(z,w) = AlmzImw’

The group G = SLy(R) acts by isometries on H via Mdbius transformations:

a b az+b
gZ—(Cd)Z—m, VQEG

" . __Imz . _ Z— W
By the definition we can easily get Imgz = —|cz+d]2’ gz — guw = CET) CTET) and

[dgz| _ |dz|
Imgz = Imz-

Co={z€H:|cz+d| =1}.

d

1,97 = (cz +d)~*. Moreover, we have Consider

If ¢ # 0, this is a semi-circle centered at —¢ of radius |¢|~!. Therefore, ¢ acts on C,, as an
c 9 9

euclidean isometry.

FIGURE 1
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Matrix —I acts as the identity. Then in fact, PSLy(R) = G/{%1} of all M&bius transfor-
mations, acts on the whole compactified complex plane C=CuU {o0} by complex automor-
phism. C is a Riemann sphere and it splits into three G-invariant subspaces, namely H, H
and R = RU {o0}. By convention, a straight line is a circle with an infinite radius. Then any

Mobius transformation g takes circles to circles, C; ~» Csy, but the center of C; - the center
of Cs. G acts transitively on H. It acts simply transitively on {(z,w) € HxH : p(z,w) = a}
for any a > 0. Also G acts transitively on geodesics (e.g., iR is a geodesic).

Theorem. All geodesic semi-circles and straight lines are orthogonal to R.
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FIGURE 2

Given a geodesic C' and a point p outside C', then there are precisely two geodesics passing
through p which are tangent to C.

FIGURE 3

The hyperbolic circles {z € C : p(z,z9) = r} are also euclidean circles. If p(z,i) = r, we

ef—e "

. . 7‘ -r .
have |z — i coshr| = sinhr, where coshr = “E— and sinhr =

icoshr

i

FIGURE 4

It is easy to see that the M6bius transformations are isometries of the hyperbolic plane.
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The Classification of Motions. Notice that any g € G is conjugate to:

1 x ) t ) cosf siné L.

Another way to think it out this classification is according to the number of fixed points
on R. Because gz = z always has two solutions in @, so there are three cases:
e g has one fixed point in H, (elliptic case)
e ¢ has two distinct fixed points on I@, (hyperbolic case)
e ¢ has one double fixed point on R. (parabolic case)
(i) If g is elliptic, suppose zj is the fixed point of g, then g stabilizes p(zp, z) = r and g

moves points along circles around zy.(rotation)

FIGURE 5. elliptic

(i) If g is hyperbolic, there are two fixed points zy,xs € R and g moves points along
hyper-cycles in H (segments of circles in H passing through z, z2). Of the two fixed points,
one is repelling and the other is attracting.

£ 1 dLa

FIGURE 6. hyperbolic
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(iii) If g is parabolic, there is a double fixed point zy and g moves points along horocycles

circles in H which are tangent to R at zo.

ay

FIGURE 7. parabolic

Note that only elliptic ones g can be of finite order.

djj;iy and one can easily check it is G-invariant, where G = SLy(R).

EX. Area of a hyperbolic disc of radius r is 47 (sinh §)? and the Euclidean area is 7 (sinh r)?.

Let area measure duz =

The circumference (length of a circle) of radius r is 27 sinhr which is the same as the
Euclidean case.
For a disc of radius r, most of the area is near the boundary.

ve

FIGURE 8

There is a universal inequality between the area and the boundary length of a domain in
a Reimannian surface which is called the isoperimetric inequality; it asserts that

ATA — KA? < L2,

where A is the area, L is the length of the boundary, and K is the curvature.

In the Euclidean plane we have K = 0 and A < L2. On the other hand, in the hyperbolic

plane we have K = —1 and A < L. In fact, we can have A ~ L.
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The same classification can be also described in terms of trace, namely if g = < Z 2 ) =+

41, then
(i) g is elliptic <= |trg| < 2,
(ii) g is hyperbolic <= |trg| > 2,
(iii) g is parabolic <= [trg| = 2.

H as a Homogeneous Space.
Let H = G/K, and

K = Stab(i) — {( cosf) sinf ) :HER}.

—sinf cosf

Under this identification, G acts by left regular action. Suppose the rectangular coordinates

z = x + 1y, we have
Loz v 0 l=x+y ==z

Iwasawa Decomposition G = NAK. For GL,,, Gram-Schmidt process = Vg € GL,(R)
can be written uniquely as

NI

ay *
9= k,
0 Qn
where k € O(n,R), ay,...,a, > 0.
aq 0
GL, =G = NAK, where A = a1, .. .,a, >0 K = O(n,R) which
0 an
1 * ai *
is the maximal compact subgroup and N = , NA = A
0 1 0 ap

normalizes N.
The map

N xAx K — G, n,a, kv— nak

is the diffeomorphism of manifolds.

In our case,
fa b\ (1 x yz 0 cosf)  sind
9=\eca)~\o1 0 y—% —sinf cosf

is the unique decomposition.

Consider the measuredz;iy on G/K = H. Any locally compact group has a left invariant

Haar measure dg, say, which means that

[ s = [ siors
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for any test function integrable on GG. The left invariant measure is unique up to a constant;
therefore,

/f(gh)dg=5(h)/f(g)dg, o(h) >0,

where 6 : G — R, is a homomorphism of groups. G is called unimodular if § = 1 and dg is
right invariant. For example, any abelian and compact group are unimodular, and

{(3 ) )

is not unimodular. It is easy to check that

a/? o« .
5 ( O a’1/2 =a .

As above, for G = G L,, the Iwasawa decomposition is

G = NAK,

where
N:{n(x):(éf):xeR}ER,
Az{a(y)z(y(; yoé):y>0}%R,
and
cosf sind ~
K =<k() = Cdinf cosf 0 Ry =50(2).

The corresponding invariant measures on N, A, K are given by
dn(z) = dz, da(y) =y 'dy, dk(d) = (27)'d6,

where dx,dy,df are the Lebesgue measures. Since K is compact, we could normalize the
measure on K to have [, dk = 1.

Consider the following integral

/G f(g)dg = /A /N /K f(ank)dadndk,

we have known that G/K = H and G/K = NA = AN = P. Notice that A and N are
abelian, yet the following commutativity relation holds:

a(y)n(z) = n(zy)a(y).
In the following let us define a measure dp on P = AN by requiring that

/Pf(p)dp—/A/Nf(an)dadn,
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i.e., dp = y~'dady if p = a(y)n(z). We can show that dp is left invariant. Furthermore, by
Fubini’s theorem we derive the relation

/A /N f(an)dadn = /R N Flaly)n(z))y~‘dzdy
- / | f(n(ay)a(y))y™ dady

_ /R [ Jna)aly))ydrdy,

This shows that the modular function of P is equal to §(p) = y~' if p = n(x)a(y). Hence
the left invariant measure on P is equal to d(p)dp = y~2dzdy, which is just the Riemannian

measure on H.
Cartan Decomposition G = KAK. For GL,, given g € GL,(Q), g¢' is positive definite
aq
= Jk € K satisfying g¢' = ka’k™!, where a = ,ap > a, > 0= 3k €
an
K, g = kak’. We shall write any g € PSLy(R)/K uniquely as g = k(¢)a(e ")k(0), r > 0.

The pair (7, ¢) is called the geodesic polar coordinate of the point z, p(gi,7) = p(k(v)a(e™")k(0)) =

ple i, i) =r.

fa b\ (1 2 y2 0 cosf) sinf \ * *
9=\eca) \o1 0 y3 —sinf cos® ) \ —yisinh y2cosh )

(y,0 + %) are the polar coordinates of (c,d). The length element and the measure are

N|=

expressed as follows:
ds? = dr? + (2sinhr)2dp?, dpz = (2sinhr)drdy,
where coshr = 1 + 2u as above, we have
dpz = 4dudep.
The Laplace Operator. In rectangular coordinates,

0? 0?
A= QQ(@ + 8_y2)’

and in geodesic polar coordinates (7, ), the Laplace operator takes the form

0? N 1 0 N 1 02
Or?  tanhrdr = (2sinhr)? 9p?’

Denote by T, the following operator:
T, f(z) = f(g2).

Using the definition, we have
AT, =T,A, VgeG.
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EX. The ring of the differential operators on H which commutes with G is C[A].
Eigenfunctions of A. A function f : H — C with continuous partial derivatives of order
2 is an eigenfunction of A with eigenvalue \ € C if

(A+)N)f=0.

Question: How to construct? Obviously, y° is an eigenfunction with eigenvalue A = s(1 —
s). One basic trick: if f is an eigenfunction, then T} f is also an eigenfunction, moreover,
Jo Tofdu(g) is also an eigenfunction for any measure p on G.

Suppose that we want an eigenfunction of the form e(x)F'(27y), by separation of variables,
F satisfies

F'(y) + (™ = DF(y) =0, A=s(1—5s).

The basis of solutions are y_%Ks_% (v), yéls_% (y) which are asymptotic to e ¥, e¥ asy — o0,

respectively. Whittaker function is defined as

Wi(z) = Qy%st (2my)e(x).

1
2

Alternatively, we want f(nz) = x(n)f(z), x(n) = e(z). Starting with (Imz)* and averaging,

we obtain
/N)Z(n)(lmwnz)sdu:Ae(t)(lm(z__lt))sdt

+oo

= e()y' / (1+ ) e(ty)dt

o0

. . -1 :
Here the involution w = ( 1 ) was inserted to buy the absolute convergence, at least

if Res > %



