Spectral analysis for $\Gamma \setminus \mathbb{H}$

Erez Lapid

§2 Geometry and Analysis on the Hyperbolic Plane (February 19, 2009)

The upper-half plane. As a model of the hyperbolic plane we will use the upper half plane:

$$\mathbb{H} = \{ z = x + iy, y > 0 \}.$$

 \mathbb{H} is a Riemannian manifold with the metric derived from the Poincaré differential, $ds = \frac{|dz|}{y}$, it also can be written as $ds^2 = y^{-2}(dx^2 + dy^2)$. In the hyperbolic plane, the angle is the same as in the Euclidean plane and the distance function on \mathbb{H} is given explicitly by

$$\rho(z, w) = \log \frac{|z - \bar{w}| + |z - w|}{|z - \bar{w}| - |z - w|}$$

For example, $\rho(it, is) = |\log \frac{t}{s}|$. We have

$$\cosh \rho(z, w) = 1 + 2u(z, w),$$

where

$$u(z,w) = \frac{|z-w|^2}{4\mathrm{Im}z\mathrm{Im}w}$$

The group $G = SL_2(\mathbb{R})$ acts by isometries on \mathbb{H} via Möbius transformations:

$$gz = \begin{pmatrix} a & b \\ c & d \end{pmatrix} z = \frac{az+b}{cz+d}, \quad \forall g \in G.$$

By the definition we can easily get $\operatorname{Im} gz = \frac{\operatorname{Im} z}{|cz+d|^2}$, $gz - gw = \frac{z-w}{(cz+d)(cw+d)}$ and $\frac{\mathrm{d}}{\mathrm{d}z}gz = (cz+d)^{-2}$. Moreover, we have $\frac{|\mathrm{d}gz|}{\operatorname{Im}gz} = \frac{|\mathrm{d}z|}{\operatorname{Im}z}$. Consider $C_g = \{z \in \mathbb{H} : |cz+d| = 1\}.$

If $c \neq 0$, this is a semi-circle centered at $-\frac{d}{c}$ of radius $|c|^{-1}$. Therefore, g acts on C_g as an euclidean isometry.

FIGURE 1

Matrix -I acts as the identity. Then in fact, $PSL_2(\mathbb{R}) = G/\{\pm I\}$ of all Möbius transformations, acts on the whole compactified complex plane $\widehat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$ by complex automorphism. $\widehat{\mathbb{C}}$ is a Riemann sphere and it splits into three *G*-invariant subspaces, namely \mathbb{H} , $\overline{\mathbb{H}}$ and $\widehat{\mathbb{R}} = \mathbb{R} \cup \{\infty\}$. By convention, a straight line is a circle with an infinite radius. Then any Möbius transformation *g* takes circles to circles, $C_1 \xrightarrow{g} C_2$, but the center of $C_1 \rightarrow$ the center of C_2 . *G* acts transitively on \mathbb{H} . It acts simply transitively on $\{(z, w) \in \mathbb{H} \times \mathbb{H} : \rho(z, w) = a\}$ for any a > 0. Also *G* acts transitively on geodesics (e.g., $i\mathbb{R}_{>0}$ is a geodesic).

Theorem. All geodesic semi-circles and straight lines are orthogonal to $\widehat{\mathbb{R}}$.

Given a geodesic C and a point p outside C, then there are precisely two geodesics passing through p which are tangent to C.

FIGURE 3

The hyperbolic circles $\{z \in \mathbb{C} : \rho(z, z_0) = r\}$ are also euclidean circles. If $\rho(z, i) = r$, we have $|z - i \cosh r| = \sinh r$, where $\cosh r = \frac{e^r + e^{-r}}{2}$ and $\sinh r = \frac{e^r - e^{-r}}{2}$.

FIGURE 4

It is easy to see that the Möbius transformations are isometries of the hyperbolic plane.

The Classification of Motions. Notice that any $g \in G$ is conjugate to:

$$\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} \text{-parabolic,} \begin{pmatrix} t \\ t^{-1} \end{pmatrix} \text{-hyperbolic or} \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \text{-elliptic.}$$

Another way to think it out this classification is according to the number of fixed points on $\widehat{\mathbb{R}}$. Because gz = z always has two solutions in $\widehat{\mathbb{C}}$, so there are three cases:

- g has one fixed point in \mathbb{H} , (elliptic case)
- g has two distinct fixed points on $\widehat{\mathbb{R}}$, (hyperbolic case)
- g has one double fixed point on $\widehat{\mathbb{R}}.$ (parabolic case)

(i) If g is elliptic, suppose z_0 is the fixed point of g, then g stabilizes $\rho(z_0, z) = r$ and g moves points along circles around z_0 (rotation)

FIGURE 5. elliptic

(ii) If g is hyperbolic, there are two fixed points $x_1, x_2 \in \hat{\mathbb{R}}$ and g moves points along hyper-cycles in \mathbb{H} (segments of circles in \mathbb{H} passing through x_1, x_2). Of the two fixed points, one is repelling and the other is attracting.

FIGURE 6. hyperbolic $\frac{3}{3}$

(iii) If g is parabolic, there is a double fixed point x_0 and g moves points along horocycles circles in \mathbb{H} which are tangent to $\hat{\mathbb{R}}$ at x_0 .

FIGURE 7. parabolic

Note that only elliptic ones g can be of finite order.

Let area measure $d\mu z = \frac{dxdy}{y^2}$ and one can easily check it is *G*-invariant, where $G = SL_2(\mathbb{R})$. **EX.** Area of a hyperbolic disc of radius r is $4\pi(\sinh \frac{r}{2})^2$ and the Euclidean area is $\pi(\sinh r)^2$. The circumference (length of a circle) of radius r is $2\pi \sinh r$ which is the same as the Euclidean case.

For a disc of radius r, most of the area is near the boundary.

FIGURE 8

There is a universal inequality between the area and the boundary length of a domain in a Reimannian surface which is called the isoperimetric inequality; it asserts that

$$4\pi A - KA^2 \le L^2,$$

where A is the area, L is the length of the boundary, and K is the curvature.

In the Euclidean plane we have K = 0 and $A \leq L^2$. On the other hand, in the hyperbolic plane we have K = -1 and $A \leq L$. In fact, we can have $A \sim L$.

The same classification can be also described in terms of trace, namely if $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \neq$

 $\pm I$, then

- (i) g is elliptic $\iff |\mathrm{tr}g| < 2$,
- (ii) g is hyperbolic $\iff |\mathrm{tr}g| > 2$,
- (iii) g is parabolic $\iff |\mathrm{tr}g| = 2$.

\mathbbmss{H} as a Homogeneous Space.

Let $\mathbb{H} \cong G/K$, and

$$K = \operatorname{Stab}(i) = \left\{ \left(\begin{array}{cc} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{array} \right) : \theta \in \mathbb{R} \right\}$$

Under this identification, G acts by left regular action. Suppose the rectangular coordinates z = x + iy, we have

$$\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} \begin{pmatrix} y^{\frac{1}{2}} & 0 \\ 0 & y^{-\frac{1}{2}} \end{pmatrix} i = x + iy = z.$$

Iwasawa Decomposition G = NAK. For GL_n , Gram-Schmidt process $\Rightarrow \forall g \in GL_n(\mathbb{R})$ can be written uniquely as

$$g = \begin{pmatrix} a_1 & & * \\ & \ddots & \\ 0 & & a_n \end{pmatrix} k,$$

where $k \in O(n, \mathbb{R}), a_1, \ldots, a_n > 0$.

$$GL_n = G = NAK$$
, where $A = \left\{ \begin{pmatrix} a_1 & 0 \\ & \ddots & \\ 0 & & a_n \end{pmatrix}, a_1, \dots, a_n > 0 \right\}$, $K = O(n, \mathbb{R})$ which

is the maximal compact subgroup and $N = \begin{pmatrix} 1 & * \\ & \ddots & \\ 0 & & 1 \end{pmatrix}$, $NA = \begin{pmatrix} a_1 & * \\ & \ddots & \\ 0 & & a_n \end{pmatrix}$. A

normalizes N.

The map

$$N \times A \times K \rightarrow G, \ n, a, k \mapsto nak$$

is the diffeomorphism of manifolds.

In our case,

$$g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} \begin{pmatrix} y^{\frac{1}{2}} & 0 \\ 0 & y^{-\frac{1}{2}} \end{pmatrix} \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}$$

is the unique decomposition.

Consider the measure $\frac{dxdy}{y^2}$ on $G/K \cong \mathbb{H}$. Any locally compact group has a left invariant Haar measure dg, say, which means that

$$\int f(hg) \mathrm{d}g = \int f(g) \mathrm{d}g,$$
5

for any test function integrable on G. The left invariant measure is unique up to a constant; therefore,

$$\int f(gh) dg = \delta(h) \int f(g) dg, \quad \delta(h) > 0,$$

where $\delta: G \to \mathbb{R}_+$ is a homomorphism of groups. G is called unimodular if $\delta \equiv 1$ and dg is right invariant. For example, any abelian and compact group are unimodular, and

$$P = \left\{ \left(\begin{array}{cc} a & * \\ 0 & a^{-1} \end{array} \right) : a > 0 \right\}$$

is not unimodular. It is easy to check that

$$\delta \left(\begin{array}{cc} a^{1/2} & * \\ 0 & a^{-1/2} \end{array} \right) = a^{-1}.$$

As above, for $G = GL_2$, the Iwasawa decomposition is

$$G = NAK,$$

where

$$N = \left\{ n(x) = \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} : x \in \mathbb{R} \right\} \cong \mathbb{R},$$
$$A = \left\{ a(y) = \begin{pmatrix} y^{\frac{1}{2}} & 0 \\ 0 & y^{-\frac{1}{2}} \end{pmatrix} : y > 0 \right\} \cong \mathbb{R},$$

and

$$K = \left\{ k(\theta) = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} : \theta \in \mathbb{R} \right\} \cong SO(2).$$

The corresponding invariant measures on N, A, K are given by

 $\mathrm{d}n(x) = \mathrm{d}x, \ \mathrm{d}a(y) = y^{-1}\mathrm{d}y, \ \mathrm{d}k(\theta) = (2\pi)^{-1}\mathrm{d}\theta,$

where $dx, dy, d\theta$ are the Lebesgue measures. Since K is compact, we could normalize the measure on K to have $\int_K dk = 1$.

Consider the following integral

$$\int_{G} f(g) \mathrm{d}g = \int_{A} \int_{N} \int_{K} f(ank) \mathrm{d}a \mathrm{d}n \mathrm{d}k,$$

we have known that $G/K \cong \mathbb{H}$ and G/K = NA = AN = P. Notice that A and N are abelian, yet the following commutativity relation holds:

$$a(y)n(x) = n(xy)a(y).$$

In the following let us define a measure dp on P = AN by requiring that

$$\int_{P} f(p) \mathrm{d}p = \int_{A} \int_{N} f(an) \mathrm{d}a \mathrm{d}n,$$

i.e., $dp = y^{-1} dx dy$ if p = a(y)n(x). We can show that dp is left invariant. Furthermore, by Fubini's theorem we derive the relation

$$\begin{split} \int_{A} \int_{N} f(an) \mathrm{d}a \mathrm{d}n &= \int_{\mathbb{R}} \int_{\mathbb{R}^{+}} f(a(y)n(x))y^{-1} \mathrm{d}x \mathrm{d}y \\ &= \int_{\mathbb{R}} \int_{\mathbb{R}^{+}} f(n(xy)a(y))y^{-1} \mathrm{d}x \mathrm{d}y \\ &= \int_{\mathbb{R}} \int_{\mathbb{R}^{+}} f(n(x)a(y))y^{-2} \mathrm{d}x \mathrm{d}y. \end{split}$$

This shows that the modular function of P is equal to $\delta(p) = y^{-1}$ if p = n(x)a(y). Hence the left invariant measure on P is equal to $\delta(p)dp = y^{-2}dxdy$, which is just the Riemannian measure on \mathbb{H} .

Cartan Decomposition G = KAK. For GL_n , given $g \in GL_n(Q)$, gg^t is positive definite

$$\Rightarrow \exists k \in K \text{ satisfying } gg^t = ka^2k^{-1}, \text{ where } a = \begin{pmatrix} a_1 & & \\ & \ddots & \\ & & a_n \end{pmatrix}, a_1 \geq \cdots a_n > 0 \Rightarrow \exists k' \in A = \begin{pmatrix} a_1 & & \\ & a_n \end{pmatrix}$$

K, g = kak'. We shall write any $g \in PSL_2(\mathbb{R})/K$ uniquely as $g = k(\varphi)a(e^{-r})k(\theta), r \ge 0$. The pair (r, ϕ) is called the geodesic polar coordinate of the point $z, \rho(gi, i) = \rho(k(\varphi)a(e^{-r})k(\theta)) = \rho(e^{-r}i, i) = r$.

$$g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} \begin{pmatrix} y^{\frac{1}{2}} & 0 \\ 0 & y^{-\frac{1}{2}} \end{pmatrix} \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} = \begin{pmatrix} * & * \\ -y^{\frac{1}{2}}\sin\theta & y^{\frac{1}{2}}\cos\theta \end{pmatrix}.$$

 $(y, \theta + \frac{\pi}{2})$ are the polar coordinates of (c, d). The length element and the measure are expressed as follows:

 $\mathrm{d}s^2 = \mathrm{d}r^2 + (2\sinh r)^2 \mathrm{d}\varphi^2, \ \ \mathrm{d}\mu z = (2\sinh r) \mathrm{d}r \mathrm{d}\varphi,$

where $\cosh r = 1 + 2u$ as above, we have

$$\mathrm{d}\mu z = 4\mathrm{d}u\mathrm{d}\varphi.$$

The Laplace Operator. In rectangular coordinates,

$$\Delta = y^2 (\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}),$$

and in geodesic polar coordinates (r, φ) , the Laplace operator takes the form

$$\Delta = \frac{\partial^2}{\partial r^2} + \frac{1}{\tanh r} \frac{\partial}{\partial r} + \frac{1}{(2\sinh r)^2} \frac{\partial^2}{\partial \varphi^2}$$

Denote by T_g the following operator:

$$T_g f(z) = f(gz).$$

Using the definition, we have

$$\Delta T_g = T_g \Delta, \quad \forall g \in G$$

EX. The ring of the differential operators on \mathbb{H} which commutes with G is $\mathbb{C}[\Delta]$. **Eigenfunctions of** Δ . A function $f : \mathbb{H} \to \mathbb{C}$ with continuous partial derivatives of order 2 is an eigenfunction of Δ with eigenvalue $\lambda \in \mathbb{C}$ if

$$(\Delta + \lambda)f = 0.$$

Question: How to construct? Obviously, y^s is an eigenfunction with eigenvalue $\lambda = s(1 - s)$. One basic trick: if f is an eigenfunction, then $T_g f$ is also an eigenfunction, moreover, $\int_G T_g f d\mu(g)$ is also an eigenfunction for any measure μ on G.

Suppose that we want an eigenfunction of the form $e(x)F(2\pi y)$, by separation of variables, F satisfies

$$F''(y) + (\lambda y^{-2} - 1)F(y) = 0, \quad \lambda = s(1 - s).$$

The basis of solutions are $y^{-\frac{1}{2}}K_{s-\frac{1}{2}}(y)$, $y^{\frac{1}{2}}I_{s-\frac{1}{2}}(y)$ which are asymptotic to e^{-y} , e^{y} as $y \to \infty$, respectively. Whittaker function is defined as

$$W_s(z) = 2y^{\frac{1}{2}}K_{s-\frac{1}{2}}(2\pi y)e(x).$$

Alternatively, we want $f(nz) = \chi(n)f(z)$, $\chi(n) = e(x)$. Starting with $(\text{Im}z)^s$ and averaging, we obtain

$$\int_{N} \bar{\chi}(n) (\operatorname{Im} wnz)^{s} du = \int_{\mathbb{R}} e(t) \left(\operatorname{Im}(\frac{-1}{z-t}) \right)^{s} dt$$
$$= e(x)y^{1-s} \int_{-\infty}^{+\infty} (1+t^{2})^{-s} e(ty) dt$$
$$= \frac{\pi^{s}}{\Gamma(s)} W_{s}(z).$$

Here the involution $w = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$ was inserted to buy the absolute convergence, at least if $\operatorname{Re} s > \frac{1}{2}$.