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The upper-half plane. As a model of the hyperbolic plane we will use the upper half

plane:

H = {z = x + iy, y > 0}.
H is a Riemannian manifold with the metric derived from the Poincaré differential, ds = |dz|

y
,

it also can be written as ds2 = y−2(dx2 + dy2). In the hyperbolic plane, the angle is the

same as in the Euclidean plane and the distance function on H is given explicitly by

ρ(z, w) = log
|z − w̄|+ |z − w|
|z − w̄| − |z − w| .

For example, ρ(it, is) = | log t
s
|. We have

cosh ρ(z, w) = 1 + 2u(z, w),

where

u(z, w) =
|z − w|2

4ImzImw
.

The group G = SL2(R) acts by isometries on H via Möbius transformations:

gz =

(
a b
c d

)
z =

az + b

cz + d
, ∀g ∈ G.

By the definition we can easily get Imgz = Imz
|cz + d|2 , gz − gw = z − w

(cz + d)(cw + d)
and

d
dz

gz = (cz + d)−2. Moreover, we have
|dgz|
Imgz =

|dz|
Imz . Consider

Cg = {z ∈ H : |cz + d| = 1}.
If c 6= 0, this is a semi-circle centered at −d

c
of radius |c|−1. Therefore, g acts on Cg as an

euclidean isometry.

Figure 1
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Matrix −I acts as the identity. Then in fact, PSL2(R) = G/{±I} of all Möbius transfor-

mations, acts on the whole compactified complex plane Ĉ = C ∪ {∞} by complex automor-

phism. Ĉ is a Riemann sphere and it splits into three G-invariant subspaces, namely H, H
and R̂ = R∪{∞}. By convention, a straight line is a circle with an infinite radius. Then any

Möbius transformation g takes circles to circles, C1
gÃ C2, but the center of C1 9 the center

of C2. G acts transitively on H. It acts simply transitively on {(z, w) ∈ H×H : ρ(z, w) = a}
for any a > 0. Also G acts transitively on geodesics (e.g., iR>0 is a geodesic).

Theorem. All geodesic semi-circles and straight lines are orthogonal to R̂.

Figure 2

Given a geodesic C and a point p outside C, then there are precisely two geodesics passing

through p which are tangent to C.

Figure 3

The hyperbolic circles {z ∈ C : ρ(z, z0) = r} are also euclidean circles. If ρ(z, i) = r, we

have |z − i cosh r| = sinh r, where cosh r = er+e−r

2
and sinh r = er−e−r

2
.

Figure 4

It is easy to see that the Möbius transformations are isometries of the hyperbolic plane.
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The Classification of Motions. Notice that any g ∈ G is conjugate to:(
1 x
0 1

)
-parabolic,

(
t

t−1

)
-hyperbolic or

(
cos θ sin θ
− sin θ cos θ

)
-elliptic.

Another way to think it out this classification is according to the number of fixed points

on R̂. Because gz = z always has two solutions in Ĉ, so there are three cases:

• g has one fixed point in H, (elliptic case)

• g has two distinct fixed points on R̂, (hyperbolic case)

• g has one double fixed point on R̂. (parabolic case)

(i) If g is elliptic, suppose z0 is the fixed point of g, then g stabilizes ρ(z0, z) = r and g

moves points along circles around z0.(rotation)

Figure 5. elliptic

(ii) If g is hyperbolic, there are two fixed points x1, x2 ∈ R̂ and g moves points along

hyper-cycles in H (segments of circles in H passing through x1, x2). Of the two fixed points,

one is repelling and the other is attracting.

Figure 6. hyperbolic
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(iii) If g is parabolic, there is a double fixed point x0 and g moves points along horocycles

circles in H which are tangent to R̂ at x0.

Figure 7. parabolic

Note that only elliptic ones g can be of finite order.

Let area measure dµz = dxdy
y2 and one can easily check it is G-invariant, where G = SL2(R).

EX. Area of a hyperbolic disc of radius r is 4π(sinh r
2
)2 and the Euclidean area is π(sinh r)2.

The circumference (length of a circle) of radius r is 2π sinh r which is the same as the

Euclidean case.
For a disc of radius r, most of the area is near the boundary.

Figure 8

There is a universal inequality between the area and the boundary length of a domain in

a Reimannian surface which is called the isoperimetric inequality; it asserts that

4πA−KA2 ≤ L2,

where A is the area, L is the length of the boundary, and K is the curvature.

In the Euclidean plane we have K = 0 and A ≤ L2. On the other hand, in the hyperbolic

plane we have K = −1 and A ≤ L. In fact, we can have A ∼ L.
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The same classification can be also described in terms of trace, namely if g =

(
a b
c d

)
6=

±I, then

(i) g is elliptic ⇐⇒ |trg| < 2,

(ii) g is hyperbolic ⇐⇒ |trg| > 2,

(iii) g is parabolic ⇐⇒ |trg| = 2.

H as a Homogeneous Space.

Let H ∼= G/K, and

K = Stab(i) =

{(
cos θ sin θ
− sin θ cos θ

)
: θ ∈ R

}
.

Under this identification, G acts by left regular action. Suppose the rectangular coordinates

z = x + iy, we have (
1 x
0 1

)(
y

1
2 0

0 y−
1
2

)
i = x + iy = z.

Iwasawa Decomposition G = NAK. For GLn, Gram-Schmidt process⇒ ∀g ∈ GLn(R)

can be written uniquely as

g =




a1 ∗
. . .

0 an


 k,

where k ∈ O(n,R), a1, . . . , an > 0.

GLn = G = NAK, where A =








a1 0
. . .

0 an


 , a1, . . . , an > 0



, K = O(n,R) which

is the maximal compact subgroup and N =




1 ∗
. . .

0 1


, NA =




a1 ∗
. . .

0 an


. A

normalizes N .
The map

N × A×K → G, n, a, k 7→ nak

is the diffeomorphism of manifolds.

In our case,

g =

(
a b
c d

)
=

(
1 x
0 1

)(
y

1
2 0

0 y−
1
2

)(
cos θ sin θ
− sin θ cos θ

)

is the unique decomposition.

Consider the measuredxdy
y2 on G/K ∼= H. Any locally compact group has a left invariant

Haar measure dg, say, which means that
∫

f(hg)dg =

∫
f(g)dg,
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for any test function integrable on G. The left invariant measure is unique up to a constant;

therefore, ∫
f(gh)dg = δ(h)

∫
f(g)dg, δ(h) > 0,

where δ : G → R+ is a homomorphism of groups. G is called unimodular if δ ≡ 1 and dg is

right invariant. For example, any abelian and compact group are unimodular, and

P =

{(
a ∗
0 a−1

)
: a > 0

}

is not unimodular. It is easy to check that

δ

(
a1/2 ∗
0 a−1/2

)
= a−1.

As above, for G = GL2, the Iwasawa decomposition is

G = NAK,

where

N =

{
n(x) =

(
1 x
0 1

)
: x ∈ R

}
∼= R,

A =

{
a(y) =

(
y

1
2 0

0 y−
1
2

)
: y > 0

}
∼= R,

and

K =

{
k(θ) =

(
cos θ sin θ
− sin θ cos θ

)
: θ ∈ R

}
∼= SO(2).

The corresponding invariant measures on N,A, K are given by

dn(x) = dx, da(y) = y−1dy, dk(θ) = (2π)−1dθ,

where dx, dy, dθ are the Lebesgue measures. Since K is compact, we could normalize the

measure on K to have
∫

K
dk = 1.

Consider the following integral
∫

G

f(g)dg =

∫

A

∫

N

∫

K

f(ank)dadndk,

we have known that G/K ∼= H and G/K = NA = AN = P . Notice that A and N are

abelian, yet the following commutativity relation holds:

a(y)n(x) = n(xy)a(y).

In the following let us define a measure dp on P = AN by requiring that
∫

P

f(p)dp =

∫

A

∫

N

f(an)dadn,
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i.e., dp = y−1dxdy if p = a(y)n(x). We can show that dp is left invariant. Furthermore, by

Fubini’s theorem we derive the relation∫

A

∫

N

f(an)dadn =

∫

R

∫

R+

f(a(y)n(x))y−1dxdy

=

∫

R

∫

R+

f(n(xy)a(y))y−1dxdy

=

∫

R

∫

R+

f(n(x)a(y))y−2dxdy.

This shows that the modular function of P is equal to δ(p) = y−1 if p = n(x)a(y). Hence

the left invariant measure on P is equal to δ(p)dp = y−2dxdy, which is just the Riemannian

measure on H.
Cartan Decomposition G = KAK. For GLn, given g ∈ GLn(Q), ggt is positive definite

⇒ ∃k ∈ K satisfying ggt = ka2k−1, where a =




a1

. . .
an


, a1 ≥ · · · an > 0 ⇒ ∃k′ ∈

K, g = kak′. We shall write any g ∈ PSL2(R)/K uniquely as g = k(ϕ)a(e−r)k(θ), r ≥ 0.

The pair (r, φ) is called the geodesic polar coordinate of the point z, ρ(gi, i) = ρ(k(ϕ)a(e−r)k(θ)) =

ρ(e−ri, i) = r.

g =

(
a b
c d

)
=

(
1 x
0 1

)(
y

1
2 0

0 y−
1
2

)(
cos θ sin θ
− sin θ cos θ

)
=

( ∗ ∗
−y

1
2 sin θ y

1
2 cos θ

)
.

(y, θ + π
2
) are the polar coordinates of (c, d). The length element and the measure are

expressed as follows:

ds2 = dr2 + (2 sinh r)2dϕ2, dµz = (2 sinh r)drdϕ,

where cosh r = 1 + 2u as above, we have

dµz = 4dudϕ.

The Laplace Operator. In rectangular coordinates,

∆ = y2(
∂2

∂x2
+

∂2

∂y2
),

and in geodesic polar coordinates (r, ϕ), the Laplace operator takes the form

∆ =
∂2

∂r2
+

1

tanh r

∂

∂r
+

1

(2 sinh r)2

∂2

∂ϕ2
.

Denote by Tg the following operator:

Tgf(z) = f(gz).

Using the definition, we have

∆Tg = Tg∆, ∀g ∈ G.
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EX. The ring of the differential operators on H which commutes with G is C[∆].

Eigenfunctions of ∆. A function f : H → C with continuous partial derivatives of order

2 is an eigenfunction of ∆ with eigenvalue λ ∈ C if

(∆ + λ)f = 0.

Question: How to construct? Obviously, ys is an eigenfunction with eigenvalue λ = s(1−
s). One basic trick: if f is an eigenfunction, then Tgf is also an eigenfunction, moreover,∫

G
Tgfdµ(g) is also an eigenfunction for any measure µ on G.

Suppose that we want an eigenfunction of the form e(x)F (2πy), by separation of variables,

F satisfies
F ′′(y) + (λy−2 − 1)F (y) = 0, λ = s(1− s).

The basis of solutions are y−
1
2 Ks− 1

2
(y), y

1
2 Is− 1

2
(y) which are asymptotic to e−y, ey as y →∞,

respectively. Whittaker function is defined as

Ws(z) = 2y
1
2 Ks− 1

2
(2πy)e(x).

Alternatively, we want f(nz) = χ(n)f(z), χ(n) = e(x). Starting with (Imz)s and averaging,

we obtain ∫

N

χ̄(n)(Imwnz)sdu =

∫

R
e(t)

(
Im(

−1

z − t
)
)s

dt

= e(x)y1−s

∫ +∞

−∞
(1 + t2)−se(ty)dt

=
πs

Γ(s)
Ws(z).

Here the involution w =

( −1
1

)
was inserted to buy the absolute convergence, at least

if Res > 1
2
.
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