Spectral analysis for $\Gamma \backslash \mathbb{H}$

Erez Lapid

$\S 2$ Geometry and Analysis on the Hyperbolic Plane (February 19, 2009)

The upper-half plane. As a model of the hyperbolic plane we will use the upper half plane:

$$
\mathbb{H}=\{z=x+i y, y>0\} .
$$

\mathbb{H} is a Riemannian manifold with the metric derived from the Poincaré differential, $\mathrm{d} s=\frac{|\mathrm{d} z|}{y}$, it also can be written as $\mathrm{d} s^{2}=y^{-2}\left(\mathrm{~d} x^{2}+\mathrm{d} y^{2}\right)$. In the hyperbolic plane, the angle is the same as in the Euclidean plane and the distance function on \mathbb{H} is given explicitly by

$$
\rho(z, w)=\log \frac{|z-\bar{w}|+|z-w|}{|z-\bar{w}|-|z-w|} .
$$

For example, $\rho(i t, i s)=\left|\log \frac{t}{s}\right|$. We have

$$
\cosh \rho(z, w)=1+2 u(z, w)
$$

where

$$
u(z, w)=\frac{|z-w|^{2}}{4 \operatorname{Im} z \operatorname{Im} w} .
$$

The group $G=\mathrm{SL}_{2}(\mathbb{R})$ acts by isometries on \mathbb{H} via Möbius transformations:

$$
g z=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) z=\frac{a z+b}{c z+d}, \quad \forall g \in G .
$$

By the definition we can easily get $\operatorname{Im} g z=\frac{\operatorname{Im} z}{|c z+d|^{2}}, g z-g w=\frac{z-w}{(c z+d)(c w+d)}$ and $\frac{\mathrm{d}}{\mathrm{d} z} g z=(c z+d)^{-2}$. Moreover, we have $\frac{|\mathrm{d} g z|}{\operatorname{Im} g z}=\frac{|\mathrm{d} z|}{\operatorname{Im} z}$. Consider

$$
C_{g}=\{z \in \mathbb{H}:|c z+d|=1\} .
$$

If $c \neq 0$, this is a semi-circle centered at $-\frac{d}{c}$ of radius $|c|^{-1}$. Therefore, g acts on C_{g} as an euclidean isometry.

Figure 1

Matrix $-I$ acts as the identity. Then in fact, $\mathrm{PSL}_{2}(\mathbb{R})=G /\{ \pm I\}$ of all Möbius transformations, acts on the whole compactified complex plane $\widehat{\mathbb{C}}=\mathbb{C} \cup\{\infty\}$ by complex automorphism. $\widehat{\mathbb{C}}$ is a Riemann sphere and it splits into three G-invariant subspaces, namely $\mathbb{H}, \overline{\mathbb{H}}$ and $\widehat{\mathbb{R}}=\mathbb{R} \cup\{\infty\}$. By convention, a straight line is a circle with an infinite radius. Then any Möbius transformation g takes circles to circles, $C_{1} \stackrel{g}{\rightsquigarrow} C_{2}$, but the center of $C_{1} \nrightarrow$ the center of C_{2}. G acts transitively on \mathbb{H}. It acts simply transitively on $\{(z, w) \in \mathbb{H} \times \mathbb{H}: \rho(z, w)=a\}$ for any $a>0$. Also G acts transitively on geodesics (e.g., $i \mathbb{R}_{>0}$ is a geodesic).
Theorem. All geodesic semi-circles and straight lines are orthogonal to $\widehat{\mathbb{R}}$.

Figure 2
Given a geodesic C and a point p outside C, then there are precisely two geodesics passing through p which are tangent to C.

Figure 3
The hyperbolic circles $\left\{z \in \mathbb{C}: \rho\left(z, z_{0}\right)=r\right\}$ are also euclidean circles. If $\rho(z, i)=r$, we have $|z-i \cosh r|=\sinh r$, where $\cosh r=\frac{e^{r}+e^{-r}}{2}$ and $\sinh r=\frac{e^{r}-e^{-r}}{2}$.

Figure 4
It is easy to see that the Möbius transformations are isometries of the hyperbolic plane.

The Classification of Motions. Notice that any $g \in G$ is conjugate to: $\left(\begin{array}{ll}1 & x \\ 0 & 1\end{array}\right)$-parabolic, $\left(\begin{array}{cc}t & \\ & t^{-1}\end{array}\right)$-hyperbolic or $\left(\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right)$-elliptic.
Another way to think it out this classification is according to the number of fixed points on $\widehat{\mathbb{R}}$. Because $g z=z$ always has two solutions in $\widehat{\mathbb{C}}$, so there are three cases:

- g has one fixed point in \mathbb{H}, (elliptic case)
- g has two distinct fixed points on $\widehat{\mathbb{R}}$, (hyperbolic case)
- g has one double fixed point on $\widehat{\mathbb{R}}$. (parabolic case)
(i) If g is elliptic, suppose z_{0} is the fixed point of g, then g stabilizes $\rho\left(z_{0}, z\right)=r$ and g moves points along circles around z_{0}.(rotation)

Figure 5. elliptic
(ii) If g is hyperbolic, there are two fixed points $x_{1}, x_{2} \in \hat{\mathbb{R}}$ and g moves points along hyper-cycles in \mathbb{H} (segments of circles in \mathbb{H} passing through x_{1}, x_{2}). Of the two fixed points, one is repelling and the other is attracting.

Figure 6. hyperbolic
(iii) If g is parabolic, there is a double fixed point x_{0} and g moves points along horocycles circles in \mathbb{H} which are tangent to $\hat{\mathbb{R}}$ at x_{0}.

Figure 7. parabolic
Note that only elliptic ones g can be of finite order.
Let area measure $\mathrm{d} \mu z=\frac{\mathrm{d} x \mathrm{~d} y}{y^{2}}$ and one can easily check it is G-invariant, where $G=S L_{2}(\mathbb{R})$.
EX. Area of a hyperbolic disc of radius r is $4 \pi\left(\sinh \frac{r}{2}\right)^{2}$ and the Euclidean area is $\pi(\sinh r)^{2}$. The circumference (length of a circle) of radius r is $2 \pi \sinh r$ which is the same as the Euclidean case.

For a disc of radius r, most of the area is near the boundary.

Figure 8

There is a universal inequality between the area and the boundary length of a domain in a Reimannian surface which is called the isoperimetric inequality; it asserts that

$$
4 \pi A-K A^{2} \leq L^{2}
$$

where A is the area, L is the length of the boundary, and K is the curvature.
In the Euclidean plane we have $K=0$ and $A \leq L^{2}$. On the other hand, in the hyperbolic plane we have $K=-1$ and $A \leq L$. In fact, we can have $A \sim L$.

The same classification can be also described in terms of trace, namely if $g=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \neq$ $\pm I$, then
(i) g is elliptic $\Longleftrightarrow|\operatorname{tr} g|<2$,
(ii) g is hyperbolic $\Longleftrightarrow|\operatorname{trg}|>2$,
(iii) g is parabolic $\Longleftrightarrow|\operatorname{trg}|=2$.

\mathbb{H} as a Homogeneous Space.

Let $\mathbb{H} \cong G / K$, and

$$
K=\operatorname{Stab}(i)=\left\{\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right): \theta \in \mathbb{R}\right\} .
$$

Under this identification, G acts by left regular action. Suppose the rectangular coordinates $z=x+i y$, we have

$$
\left(\begin{array}{cc}
1 & x \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
y^{\frac{1}{2}} & 0 \\
0 & y^{-\frac{1}{2}}
\end{array}\right) i=x+i y=z .
$$

Iwasawa Decomposition $G=N A K$. For $G L_{n}$, Gram-Schmidt process $\Rightarrow \forall g \in G L_{n}(\mathbb{R})$ can be written uniquely as

$$
g=\left(\begin{array}{ccc}
a_{1} & & * \\
& \ddots & \\
0 & & a_{n}
\end{array}\right) k,
$$

where $k \in O(n, \mathbb{R}), a_{1}, \ldots, a_{n}>0$.
$G L_{n}=G=N A K$, where $A=\left\{\left(\begin{array}{ccc}a_{1} & & 0 \\ & \ddots & \\ 0 & & a_{n}\end{array}\right), a_{1}, \ldots, a_{n}>0\right\}, K=O(n, \mathbb{R})$ which
is the maximal compact subgroup and $N=\left(\begin{array}{ccc}1 & & * \\ & \ddots & \\ 0 & & 1\end{array}\right)$, $N A=\left(\begin{array}{ccc}a_{1} & & * \\ & \ddots & \\ 0 & & a_{n}\end{array}\right)$. A normalizes N.

The map

$$
N \times A \times K \rightarrow G, n, a, k \mapsto n a k
$$

is the diffeomorphism of manifolds.
In our case,

$$
g=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
y^{\frac{1}{2}} & 0 \\
0 & y^{-\frac{1}{2}}
\end{array}\right)\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right)
$$

is the unique decomposition.
Consider the measure $\frac{\mathrm{d} x \mathrm{~d} y}{y^{2}}$ on $G / K \cong \mathbb{H}$. Any locally compact group has a left invariant Haar measure $\mathrm{d} g$, say, which means that

$$
\int f(h g) \mathrm{d} g=\int f(g) \mathrm{d} g
$$

for any test function integrable on G. The left invariant measure is unique up to a constant; therefore,

$$
\int f(g h) \mathrm{d} g=\delta(h) \int f(g) \mathrm{d} g, \quad \delta(h)>0
$$

where $\delta: G \rightarrow \mathbb{R}_{+}$is a homomorphism of groups. G is called unimodular if $\delta \equiv 1$ and $\mathrm{d} g$ is right invariant. For example, any abelian and compact group are unimodular, and

$$
P=\left\{\left(\begin{array}{cc}
a & * \\
0 & a^{-1}
\end{array}\right): a>0\right\}
$$

is not unimodular. It is easy to check that

$$
\delta\left(\begin{array}{cc}
a^{1 / 2} & * \\
0 & a^{-1 / 2}
\end{array}\right)=a^{-1}
$$

As above, for $G=G L_{2}$, the Iwasawa decomposition is

$$
G=N A K,
$$

where

$$
\begin{gathered}
N=\left\{n(x)=\left(\begin{array}{cc}
1 & x \\
0 & 1
\end{array}\right): x \in \mathbb{R}\right\} \cong \mathbb{R}, \\
A=\left\{a(y)=\left(\begin{array}{cc}
y^{\frac{1}{2}} & 0 \\
0 & y^{-\frac{1}{2}}
\end{array}\right): y>0\right\} \cong \mathbb{R},
\end{gathered}
$$

and

$$
K=\left\{k(\theta)=\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right): \theta \in \mathbb{R}\right\} \cong S O(2) .
$$

The corresponding invariant measures on N, A, K are given by

$$
\mathrm{d} n(x)=\mathrm{d} x, \quad \mathrm{~d} a(y)=y^{-1} \mathrm{~d} y, \quad \mathrm{~d} k(\theta)=(2 \pi)^{-1} \mathrm{~d} \theta,
$$

where $\mathrm{d} x, \mathrm{~d} y, \mathrm{~d} \theta$ are the Lebesgue measures. Since K is compact, we could normalize the measure on K to have $\int_{K} \mathrm{~d} k=1$.

Consider the following integral

$$
\int_{G} f(g) \mathrm{d} g=\int_{A} \int_{N} \int_{K} f(a n k) \mathrm{d} a \mathrm{~d} n \mathrm{~d} k,
$$

we have known that $G / K \cong \mathbb{H}$ and $G / K=N A=A N=P$. Notice that A and N are abelian, yet the following commutativity relation holds:

$$
a(y) n(x)=n(x y) a(y) .
$$

In the following let us define a measure $\mathrm{d} p$ on $P=A N$ by requiring that

$$
\int_{P} f(p) \mathrm{d} p=\int_{A_{6}} \int_{N} f(a n) \mathrm{d} a \mathrm{~d} n
$$

i.e., $\mathrm{d} p=y^{-1} \mathrm{~d} x \mathrm{~d} y$ if $p=a(y) n(x)$. We can show that $\mathrm{d} p$ is left invariant. Furthermore, by Fubini's theorem we derive the relation

$$
\begin{aligned}
\int_{A} \int_{N} f(a n) \mathrm{d} a \mathrm{~d} n & =\int_{\mathbb{R}} \int_{\mathbb{R}^{+}} f(a(y) n(x)) y^{-1} \mathrm{~d} x \mathrm{~d} y \\
& =\int_{\mathbb{R}^{+}} \int_{\mathbb{R}^{+}} f(n(x y) a(y)) y^{-1} \mathrm{~d} x \mathrm{~d} y \\
& =\int_{\mathbb{R}^{2}} \int_{\mathbb{R}^{+}} f(n(x) a(y)) y^{-2} \mathrm{~d} x \mathrm{~d} y
\end{aligned}
$$

This shows that the modular function of P is equal to $\delta(p)=y^{-1}$ if $p=n(x) a(y)$. Hence the left invariant measure on P is equal to $\delta(p) \mathrm{d} p=y^{-2} \mathrm{~d} x \mathrm{~d} y$, which is just the Riemannian measure on \mathbb{H}.
Cartan Decomposition $G=K A K$. For $G L_{n}$, given $g \in G L_{n}(Q), g g^{t}$ is positive definite $\Rightarrow \exists k \in K$ satisfying $g g^{t}=k a^{2} k^{-1}$, where $a=\left(\begin{array}{ccc}a_{1} & & \\ & \ddots & \\ & & a_{n}\end{array}\right), a_{1} \geq \cdots a_{n}>0 \Rightarrow \exists k^{\prime} \in$
$K, g=k a k^{\prime}$. We shall write any $g \in P S L_{2}(\mathbb{R}) / K$ uniquely as $g=k(\varphi) a\left(e^{-r}\right) k(\theta), r \geq 0$. The pair (r, ϕ) is called the geodesic polar coordinate of the point $z, \rho(g i, i)=\rho\left(k(\varphi) a\left(e^{-r}\right) k(\theta)\right)=$ $\rho\left(e^{-r} i, i\right)=r$.

$$
g=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
y^{\frac{1}{2}} & 0 \\
0 & y^{-\frac{1}{2}}
\end{array}\right)\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right)=\left(\begin{array}{cc}
* & * \\
-y^{\frac{1}{2}} \sin \theta & y^{\frac{1}{2}} \cos \theta
\end{array}\right) .
$$

$\left(y, \theta+\frac{\pi}{2}\right)$ are the polar coordinates of (c, d). The length element and the measure are expressed as follows:

$$
\mathrm{d} s^{2}=\mathrm{d} r^{2}+(2 \sinh r)^{2} \mathrm{~d} \varphi^{2}, \quad \mathrm{~d} \mu z=(2 \sinh r) \mathrm{d} r \mathrm{~d} \varphi,
$$

where $\cosh r=1+2 u$ as above, we have

$$
\mathrm{d} \mu z=4 \mathrm{~d} u \mathrm{~d} \varphi .
$$

The Laplace Operator. In rectangular coordinates,

$$
\Delta=y^{2}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right),
$$

and in geodesic polar coordinates (r, φ), the Laplace operator takes the form

$$
\Delta=\frac{\partial^{2}}{\partial r^{2}}+\frac{1}{\tanh r} \frac{\partial}{\partial r}+\frac{1}{(2 \sinh r)^{2}} \frac{\partial^{2}}{\partial \varphi^{2}} .
$$

Denote by T_{g} the following operator:

$$
T_{g} f(z)=f(g z) .
$$

Using the definition, we have

$$
\Delta T_{g}=T_{g} \Delta, \quad \forall g \in G
$$

EX. The ring of the differential operators on \mathbb{H} which commutes with G is $\mathbb{C}[\Delta]$.
Eigenfunctions of Δ. A function $f: \mathbb{H} \rightarrow \mathbb{C}$ with continuous partial derivatives of order 2 is an eigenfunction of Δ with eigenvalue $\lambda \in \mathbb{C}$ if

$$
(\Delta+\lambda) f=0 .
$$

Question: How to construct? Obviously, y^{s} is an eigenfunction with eigenvalue $\lambda=s(1-$ $s)$. One basic trick: if f is an eigenfunction, then $T_{g} f$ is also an eigenfunction, moreover, $\int_{G} T_{g} f \mathrm{~d} \mu(g)$ is also an eigenfunction for any measure μ on G.

Suppose that we want an eigenfunction of the form $e(x) F(2 \pi y)$, by separation of variables, F satisfies

$$
F^{\prime \prime}(y)+\left(\lambda y^{-2}-1\right) F(y)=0, \quad \lambda=s(1-s) .
$$

The basis of solutions are $y^{-\frac{1}{2}} K_{s-\frac{1}{2}}(y), y^{\frac{1}{2}} I_{s-\frac{1}{2}}(y)$ which are asymptotic to e^{-y}, e^{y} as $y \rightarrow \infty$, respectively. Whittaker function is defined as

$$
W_{s}(z)=2 y^{\frac{1}{2}} K_{s-\frac{1}{2}}(2 \pi y) e(x)
$$

Alternatively, we want $f(n z)=\chi(n) f(z), \chi(n)=e(x)$. Starting with $(\operatorname{Im} z)^{s}$ and averaging, we obtain

$$
\begin{aligned}
\int_{N} \bar{\chi}(n)(\operatorname{Im} w n z)^{s} \mathrm{~d} u & =\int_{\mathbb{R}} e(t)\left(\operatorname{Im}\left(\frac{-1}{z-t}\right)\right)^{s} \mathrm{~d} t \\
& =e(x) y^{1-s} \int_{-\infty}^{+\infty}\left(1+t^{2}\right)^{-s} e(t y) \mathrm{d} t \\
& =\frac{\pi^{s}}{\Gamma(s)} W_{s}(z)
\end{aligned}
$$

Here the involution $w=\left(\begin{array}{ll} & -1 \\ 1 & \end{array}\right)$ was inserted to buy the absolute convergence, at least if $\operatorname{Re} s>\frac{1}{2}$.

