
EXERCISE 5

1. a) Show that the holomorphy of the Eisenstein series on Res = 1
2

implies PNT :

ζ(1 + it) 6= 0, ∀t ∈ R.

b) Show that
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where h is a smooth function.

c) By integrating over the fundamental domain of SL2(z) and using
∫ 1
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|f(x + iy)|2dx ≥ |
∫ 1
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f(x + iy)e(x)dx|2

deduce that

|ζ(1 + it) ≫ 1

t(log t)2
|.

(For more information, cf. P. Sarnak, Shalika 60th Birthday in www.math.princeton.edu/Sarnak)

2. Show that the estimate
∑

P : p≤X

log p = X + O(Xθ), θ <
1

2
,

(where P ranges over primitive hyperbolic conj. classes and p = NP ) is equivalent to

♯{P : p ≤ X} = LiX + O(Xθ)

where LiX =
∫ X

2

dt
log t

.

3. Show that there is a natural correspondence between primitive hyperbolic conj. classes

of SL2(z) and equivalence classes of primitive binary quadratic forms of discriminant d >

0, d ≡ 0, 1 (4), and d is not a square.
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