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What is an automorphic form? Automorphic forms are generalization of periodic func-
tions, i.e.,

f : R→ C, f(x + 1) = f(x).

Two important things:

(i) We have an explicit basis of periodic functions, i.e., e(mz), m ∈ Z, where e(z) = e2πiz.

(ii) We can expand any periodic function explicitly in terms of e(mz), i.e.,

f(z) =
∑

af (m)e(mz), af (m) =
(
f, e(mz)

)
.

Poisson Summation Formula (PSF ) For any Schwarz function f on R,
∑

n∈Z
f(n) =

∑

n∈Z
f̂(n)

where

f̂(y) =

∫
f(x)e(xy)dx.

A typical application of PSF : Suppose f ∈ L1(R) and f (n) ∈ L1(R) (e.g. f(x) = 1
1+x2 ), then

for any k > 0 we have

∣∣∣ 1

X

∑

n∈Z
f
( n

X

)
−

∫

R
f(x)dx

∣∣∣ = Ok(X
−k).

Note that
∫
R f(x)dx = f̂(0).

Suppose that Γ is a discrete group, which acts discontinuously on a locally compact space

X, i.e. Γ×X → X is a proper map. ∀ C ⊆ X is compact, the set

{γ ∈ Γ : γC ∩ C 6= ∅}
is finite. An automorphic function on X is a Γ−invariant function on X, i.e., f : X → C,

f(γx) = f(x), ∀ γ ∈ Γ, x ∈ X.

A particular case : X is a symmetric space (certain Riemannian manifold). 3 kinds according

to sectional curvature.
(I) Euclidian space Rn (flat).

(II) Sn, sphere (compact type).

(III) G/K, G is a semi-simple algebraic lie group, K is a maximal compact subgroup of

G (K is unique up to conjugation).

EX. (I) G = SLn(R), K = SOn(R), then G/K is a space of positive definite n−forms.
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(II) G = SLn(C), K = SU(n), then G/K is a space of positive definite Hermitian

n−forms.
(III) G = SO(n, 1), K = SO(n), then G/K is a hyperbolic n-space (Hn).

Let X = G/K. Mostly, we work with SL2(R)/SO(2) = H2, which is a two dimensional

hyperbolic space, i.e., the upper half plane {z ∈ C : z = x + iy, y > 0}. Let G = SL2(R)

act on X by Möbius transformations
(

a b
c d

)
z =

az + b

cz + d
.

Let K = SO(2) = Stab(i) and Γ ⊆ G be discrete. G acts on X Ã Γ acts on X. Γ acts

discontinuously on X. Mostly, Γ will be of finite co-volume in G (X = G/K is a Riemannian

metric, Tρ(
G
K

) = g/k = Lie(G)/Lie(K). In fact, let [, ] be the Killing form on Lie(G). k is a

maximal subspace on which [, ] is negative definite. Then the Killing form on the orthogonal

complement of Lie(K) in Lie(G) is positive definite. It gives rise to a Riemannian metric on

X). That is vol(Γ\X) < ∞. Volume form on X ⇒ volume form on Γ\X.

Many important cases of such Γ.

Def. A lattice Γ of G is a discrete subgroup of G of finite co-volume, i.e.,

vol(Γ\X) < ∞.

It is called uniform if Γ\X is compact ⇔ Γ\G is compact.

EX. (1) Let G = SLn(R), Γ = SLn(Z). One can show that Γ is a lattice (part of reduction

theory, Hermite Minkowski, Borel, Harish-Chandra).

(2) For G = SL2(R), X = H . There are many examples of uniform lattices. Any compact

Riemann Surface with genus > 1 can be uniformized by H =⇒ M = Γ\H, where Γ is

a uniform lattice of SL2(R). That is, there are continuous families of uniform lattices of

SL2(R). Similarly, there are continuous families of non-uniform lattices.

For other G, the situation is very different. If G has rank > 1 (SLm, m ≥ 3), more or

less, all lattices Γ are obtained as G(Z) (Margulis)( i.e. they are arithmetic. The notion of

arithmeticity is somewhat subtle. It will not be defined here ).

Back to SL2(R) case, we have many lattices Γ’s. Some are more special than others.

Denote

Comm(Γ) = {g ∈ G : gΓg−1 ∩ Γ is of finite index in Γ}
which is a subgroup of G. Obviously, Γ ⊆ Comm(Γ).

Theorem (Margulis) [Comm(Γ) : Γ] = ∞ ⇔ Γ is arithmetic.

Example. Γ = SL2(Z) or a finite index subgroup of SL2(Z). ” ⇐ ” is easy for Γ, because

Comm(Γ) = SL2(Q). This property of Γ is very important because it gives rise to additional

symmetries (Hecke operators). We consider functions on Γ\H. This does not include modular

forms, because of the weight factor.

We can refer to references [1], [2], [3], [4], [5], [6].
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Basic goal: spectral decomposition (mostly for G = SL2(R))

First step : study G/K (Harish-Chandra, Helgason, Gangolli).

Weyl law : Let (M, g) be a compact Riemannian manifold of dimension d. ∆-Laplace

operator (2nd order differential operator) which is an unbounded non-positive self-adjoint on

L2(M, dµ) with pure point spectrum.

∆ϕj + λ2
jϕj = 0

where {ϕj} is an orthonormal basis in L2(M) and 0 = λ0 < λ1 ≤ · · · . We have

]{j : λj ≤ T} = Cdvol(M)T d + O(T d−1),

where Cd depends only on d.

EX. Let T2 = R2/Z2 and ∆ = ∂2

∂x2 + ∂2

∂y2 . Then ϕn,m = e(nx)e(my) is an eigenfunction and

the eigenvalue λn,m = n2 + m2. By Weyl law we get

]
{
(n,m) : n2 + m2 ≤ R2

}
= πR2 + O(R).

Simplest bound for Gauss circle problem.

The Weyl law holds for Γ\H, where Γ is a congruence subgroup, e.g. Γ = ΓN , where

ΓN = ker(SL2(Z) → SL2(Z/NZ)).

Remark. Not clear how to write down a single non-constant function in L2
(
SL2(Z)\H)

,

which is an eigenfunction of ∆.

To show that Selberg invented the trace formula which is a broad generalization of the

Poisson Summation Formula.

Other applications of spectral theoretical methods.

Lattice point counting problem. Let (X, d) be a metric space and Γ act discontinuously

on it. Given x0 ∈ X, we have {γ ∈ Γ : d(γx0, x0) < R} is finite.

What is the asymptotic behavior? (e.g. Γ = Z2, X = R2, x0 = 0, Gauss circle problem.)

For H, let ds2 = dx2+dy2

y2 and it is G−invariant, where G = SL2(R). Let dµ = dxdy
y2 stand

for the measure, ∆ = y2
(

∂2

∂x2 + ∂2

∂y2

)
and Γ = SL2(Z). Then we have

]
{
(a, b, c, d) : ad− bc = 1, a2 + b2 + c2 + d2 ≤ R

}
= 3R + O(R

2
3 ).

This is more difficult since in the hyperbolic geometry, the length of the boundary of a circle

is proportional to the area !

An analogue of the prime number theorem for closed geodesics.
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Theorem (Selberg). For Γ = SL2(Z), we have
∑

r closed
geodesic in Γ\H

l(r)≤log X

l(r) = X + O(X
3
4 ).

(closely related to fundamental units of real quadratic fields.)

M. Kac : Can you hear the shape of a drum? Let M be a Riemannian surface, 4 be

Laplace operator and 0 = λ0 < λ1 ≤ · · · . Do these eigenvalues determine M ?

No, we have Γ1\H 6= Γ2\H with same λj (Jacquet-Langlands correspondence, special case

of Langlands functoriality)

Smallest eigenvalue problem. Let 0 = λ0 < λ1 ≤ · · · be eigenvalues, what is λ1?

Selberg’s 1
4

conjecture : If Γ is congruence subgroup (Γ = ΓN), then λ1 ≥ 1
4
.

Selberg showed λ1 ≥ 3
16

. Best known bound is λ1 ≥ 1
4
− ( 7

64
)2. To prove these results,

one needs to consider higher rank symmetric spaces (Kim-Sarnak, Shahidi, need to use E8).

The Selberg’s 1
4

conjecture would follow from general Langlands functoriality.
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