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1. Uniform distribution mod one

In this talk, we mainly follow the discussion of Granville [1].
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1. Uniform distribution mod one

In this talk, we mainly follow the discussion of Granville [1].

We begin by discussing Hermann Weyl's famous criterion for recognizing
uniform distribution mod one.

Definition 1
A sequence of real numbers a1, as, ... is uniformly distributed mod one, if
forall 0 < a < 8 <1 we have

#{N<N: a<{a} <p}~(B—-—a)N as N — oo.
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Weyl's criterion

To determine whether a sequence of real numbers is uniformly distributed,
we have the following famous criterion.
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Weyl's criterion

To determine whether a sequence of real numbers is uniformly distributed,
we have the following famous criterion.

Theorem 1 (Weyl's criterion)

A sequence of real numbers a1, as, ... is uniformly distributed mod one, if
and only if for every integer b # 0 we have

Z e(bay) = op(N) as N — oo. (1)
n<N
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Weyl's criterion

In other words,

n<N
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Weyl's criterion

In other words,

n<N
Note that if a1, as, ... is uniformly distributed mod one, then
ka1, kas, ... is uniformly distributed mod one for all k € Z*.
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onger theorem

In fact we can prove a stronger theorem as follows.
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In fact we can prove a stronger theorem as follows.

Theorem 2

The following statements are equivalent:

@ A sequence of real numbers a1, as, ... is uniformly distributed mod
one.
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Stronger theorem

In fact we can prove a stronger theorem as follows.

The following statements are equivalent:

@ A sequence of real numbers a1, as, ... is uniformly distributed mod
one.

@ For every Riemann-integrable function f on [0, 1], we have

1Y L
dm oy 31 = /0 f()da.
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Stronger theorem

In fact we can prove a stronger theorem as follows.

The following statements are equivalent:

@ A sequence of real numbers a1, as, ... is uniformly distributed mod
one.

@ For every Riemann-integrable function f on [0, 1], we have
1 & L
dm oy 31 = /0 f()da.

© For every integer b # 0, we have

Z e(bay) = op(N) as N — oo.
n<N
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Proof of Theorem 2: (1) = (2)

Suppose that the sequence {a,} is uniformly distributed mod one.
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Proof of Theorem 2: (1) = (2)

Suppose that the sequence {a,} is uniformly distributed mod one.

Fix [a, 8) C [0, 1) and let x4, 3)() denote the characteristic function of
the interval [, 3). We may extend this function to R by periodicity
(period 1) and still denote it by xq, g)(2).
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Proof of Theorem 2: (1) = (2)

Suppose that the sequence {a,} is uniformly distributed mod one.

Fix [a, 8) C [0, 1) and let x4, 3)() denote the characteristic function of
the interval [, 3). We may extend this function to R by periodicity
(period 1) and still denote it by xq, g)(2).

Then, as a consequence of this definition, we find that

N
#{n<N: a<{an} <B} =) Xa,plan)

n=1
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Proof of Theorem 2: (1) = (2)

Suppose that the sequence {a,} is uniformly distributed mod one.

Fix [a, 8) C [0, 1) and let x4, 3)() denote the characteristic function of
the interval [, 3). We may extend this function to R by periodicity
(period 1) and still denote it by xq, g)(2).

Then, as a consequence of this definition, we find that

N
#{n<N: a<{an} <B} =) Xa,plan)

n=1

and

N 1

1

Nzx[a,ﬂ)(an) —>/0 X[a,ﬁ)(x)dw, as N — oo.
n=1
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Proof of Theorem 2: (1) = (2)

Since f(x) is Riemann-integrable, Ve > 0 there exists a partition of the
interval [0,1], 0 =x¢g < 21 < -+ < xg = 1, such that

/01 f(x)dx — g < /01 fro(z)dx < /01 f(x)dx
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Proof of Theorem 2: (1) = (2)

Since f(x) is Riemann-integrable, Ve > 0 there exists a partition of the
interval [0,1], 0 =x¢g < 21 < -+ < xg = 1, such that

/01 f(x)dx — g < /01 fro(z)dx < /01 f(x)dx

and

[ s [ fowars [ s,
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Proof of Theorem 2: (1) = (2)

Since f(x) is Riemann-integrable, Ve > 0 there exists a partition of the
interval [0,1], 0 =x¢g < 21 < -+ < xg = 1, such that

/01 f(x)dx — g < /01 fro(z)dx < /01 f(x)dx

and
1 1 1
| t@ar< [ o < [ pan S,
where
fL(m)ijilingj fly) for =€ lzj1,z))
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Proof of Theorem 2: (1) = (2)

Since f(x) is Riemann-integrable, Ve > 0 there exists a partition of the
interval [0,1], 0 =x¢g < 21 < -+ < xg = 1, such that

/01 f(x)dx — g < /01 fro(z)dx < /01 f(x)dx

and

1 1 1 .

| t@ar< [ o < [ pan S,
where

fL(fU)ijilingjngf(y) for x€lxj1,2;)
and

fulz)=sup f(y) for =€ [xj_1,;).

zj-1<y<z;
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Proof of Theorem 2: (1) = (2)

Obviously,

N N N
Do filfand) <) f{an}) < Z ({an}).
n=1 n=1 n=1
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Proof of Theorem 2: (1) = (2)

Obviously,

N N N
Do filfand) <) f{an}) < Z ({an}).
n=1 n=1 n=1

However,

N 1
N 2 illond) = [ ot

because fr, is a finite linear combination of characteristic functions of
intervals.
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Proof of Theorem 2: (1) = (2)

Obviously,

2

N N
Do filfand) <) f{an}) < Z (fan}).
n=1 n=1

However,

1< !
v 2 fillanh) = [ ulais

because fr, is a finite linear combination of characteristic functions of
intervals.

Similarly we have

1< !
N 2 foltond) = [ foteis

Wang Yingnan (Shandong University) Uniform Distribution and Roth's Theorem



Proof of Theorem 2: (1) = (2)

Therefore

N
/f dx—</fL d:z;<hm1nf Z ({an}),
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Proof of Theorem 2: (1) = (2)

Therefore

1 z)dx — E 1 fr.(x dx li lIl inf — NE a
< <
/0 f( ) 9 = /O ( 1 1 { n}

and

/f )dx + — >/fU dx>11msup—2f{an}
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Proof of Theorem 2: (1) = (2)

Therefore

1 z)dx — E 1 fr.(x dx li lIl inf — NE a
< <
/0 f( ) 9 = /O ( 1 1 { n}

and
/f )dx + — >/fU dx>11msup—2f{an}.

Since this is true for every € > 0,

N
lim Z ({an})

N—oo N

exists and must be equal to

f(x)dz.

S~
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Proof of Theorem 2: (2) = (3)

This follows immediately by taking
f(x) =cos(bxr) and f(x) = sin(bz)

respectively, where b € Z*.
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Proof of Theorem 2: (3) = (1)

What we want to show can be reformulated as the statement that

N 1

1

Nzx[a,ﬁ)(an) _)/0 X[a,ﬂ)(x)d1' as IN — oo.
n=1
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Proof of Theorem 2: (3) = (1)

What we want to show can be reformulated as the statement that
1 Y 1
N ZX[a,ﬁ)(an) _)/0 X[a,ﬂ)(x)d1' as IN — oo.
n=1

Firstly we shall prove

If f is continuous and periodic of period 1, and {a,} is a sequence of real
numbers satisfying (1). Then

1 & 1
— n) — d N — oo.
N2 San) /0 f@de  as N— oo
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Proof of Theorem 2: proof of Lemma 1

We easily get that f(z) = e(kx), Vk € Z, satisfies the lemma. So the
lemma is also true for all trigonometric polynomials.
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Proof of Theorem 2: proof of Lemma 1

We easily get that f(z) = e(kx), Vk € Z, satisfies the lemma. So the
lemma is also true for all trigonometric polynomials.

Let € > 0. If f is any continuous periodic function of period 1, we can
choose a trigonometric polynomial P such that

sup| f(a) = P(a)| < 3.
x€ER

(See Corollary 5.4 on page 54 in [3])
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Proof of Theorem 2: proof of Lemma 1

Then for all large N, we have

1 N 1 €
I:’N;P(an)—/o P(a:)dx‘<§.

Wang Yingnan (Shandong University) Uniform Distribution and Roth’'s Theorem



Proof of Theorem 2: proof of Lemma 1

Then for all large N, we have
1 N 1 €
I— ’ NHEZI:P(%) —/O P(a:)d:c‘ <z

Therefore
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Proof of Theorem 2: (3) = (1)

Choose two continuous periodic functions f™ and f. of period 1 such that
fo (@) < Xja,p (@) < fF(@)  on [0, 1);

both f and f. are bounded by 1 and agree with X[, 8)(T) except in
intervals of total length 2¢ on [0, 1).
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Proof of Theorem 2: (3) = (1)

Choose two continuous periodic functions f™ and f. of period 1 such that
fo (@) < Xja,p (@) < fF(@)  on [0, 1);

both f and f. are bounded by 1 and agree with X[, 8)(T) except in
intervals of total length 2¢ on [0, 1).

Obviously,

B—a—2e< /lfe_(:n)dx
0

and

1
/ fH(x)dr < B — a+ 2e.
0
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Proof of Theorem 2: (3) = (1)

Write
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Proof of Theorem 2: (3) = (1)

Write
1 N
SN = N lem,ﬁ)(an)
Then we have
1 & 1
szf (an) < Sy < Nij(an)
n=1 n=1
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Proof of Theorem 2: (3) = (1)

Write
1 N
SN = N ZX(a,ﬁ)(an)
n=1
Then we have
1Y 1
N Zfe (an) < Sy < Nij(an)
n=1 n=1
Therefore
B—a—26§l}\1fninfSN, limsup Sy < 8 — a + 2e.
— 00

N—oo
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Proof of Theorem 2: (3) = (1)

Write
1N
SN =37 D X(a,p)(an)
n=1
Then we have
Ly < Sy <~ o [
N;fe (an) < SN < an:lfe (an)
Therefore
ﬂ—a—2e§1}\1£)iglof5’1v, limsup Sy < 8 — a + 2e.

N—oo

Since this is true for every € > 0, A}im Sy exists and must be equal to
— 00

80— a.
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Example 1

An famous example is that the sequence of «, 2« 3c, ... is uniformly
distributed mod one if « is irrational.
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Example 1

An famous example is that the sequence of «, 2« 3c, ... is uniformly
distributed mod one if « is irrational.

Since ba is not an integer for b € Z*, we have

N
-
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Example 1

An famous example is that the sequence of «, 2« 3c, ... is uniformly
distributed mod one if « is irrational.

Since ba is not an integer for b € Z*, we have

N
-

<z
~ N|1—e(ba)|
= o(1).
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Example 1

An famous example is that the sequence of «, 2« 3c, ... is uniformly
distributed mod one if « is irrational.

Since ba is not an integer for b € Z*, we have

N
-

<z
~ N|1—e(ba)|
= o(1).

By Weyl's criterion, we know that the sequence of «a, 2a, 3a, ... is
uniformly distributed mod one.
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Example 2

We consider another interesting example about uniform distribution.
Let

2" = ay, 10" + ... forallneZ*

and

1
SN(m):N#{O§n<N: ag, =m} form=1,2,...,9.
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Example 2

We consider another interesting example about uniform distribution.
Let

2" = ay, 10" + ... forallneZ*

and

1
SN(m):N#{O§n<N: ag, =m} form=1,2,...,9.

We have

ap, =m <= ml0" < 2" < (m +1)10" —
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Example 2

We consider another interesting example about uniform distribution.
Let

2" = ay, 10" + ... forallneZ*

and

1
SN(m):N#{O§n<N: ag, =m} form=1,2,...,9.

We have

ap, =m <= ml0" < 2" < (m +1)10" —

loglo m + k < loglo(m + 1) + kn

<"
"~ log, 10
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Example 2

Therefore

1 n
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Example 2

Therefore

1 n
Sn(m) = N# {0§n<N: logigm < {log210} <10g10(m+1)}.

Since log, 10 is irrational, we get

lim Sy(m) =logo(m+ 1) —log;,m

N—o0

by Weyl's criterion.
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Example 2

Therefore

SN(m):;#{O§n<N: 10g10m§{ }<log10(m+1)}.

n
log, 10

Since log, 10 is irrational, we get

lim Sy(m) =logo(m+ 1) —log;,m

N—oo
by Weyl's criterion.
However, we can not determine whether some other interesting sequences

are uniformly distributed mod one even today. The sequence {(%)”} is a
very famous one of them.
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2. Uniform distribution mod N

For a given set A of residues mod N, define

Ay =" e(%”).
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2. Uniform distribution mod N

For a given set A of residues mod N, define

Ay =" e(%”).

neA

Let (¢)n denote the least non-negative residue of £ (mod V). So

(4
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2. Uniform distribution mod N

For a given set A of residues mod N, define

Ay =" e(bN”).

neA

Let (¢)n denote the least non-negative residue of £ (mod V). So
Wy iy
N NJ°

The idea of uniform distribution mod IV is surely something like: for all
0<a<pf<1landallm#0 (modN), we have

#la€A: aN < (ma)y < N} ~ (8- a)|Al. (2)
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Definition of Error(A)

One can only make sense of such a definition if |A| — oo (since this is an
asymptotic formula) but we are often interested in smaller sets A, indeed
which are subsets of {1, 2, ..., N}. So we will work with something
motivated by, but different from, (2).
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Definition of Error(A)

One can only make sense of such a definition if |A| — oo (since this is an
asymptotic formula) but we are often interested in smaller sets A, indeed
which are subsets of {1, 2, ..., N}. So we will work with something
motivated by, but different from, (2).

Let us see how far we can go in proving an analogy to Weyl's criterion.
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Definition of Error(A)

One can only make sense of such a definition if |A| — oo (since this is an
asymptotic formula) but we are often interested in smaller sets A, indeed
which are subsets of {1, 2, ..., N}. So we will work with something
motivated by, but different from, (2).

Let us see how far we can go in proving an analogy to Weyl's criterion.
For given subset A of the residues mod IV, define

. #{aceA: x<(ma)y <z+y} y
Error(A) := oo max Al “~l

m#Z0(mod N)
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Theorem 3

Suppose that N is prime. Fix 6 > 0. We have

@ If Error(A) < 62, then for any m # 0 (mod N),

~

A(m) < 5|A].
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Theorem 3

Suppose that N is prime. Fix 6 > 0. We have

@ If Error(A) < 62, then for any m # 0 (mod N),

A(m) < 8]A|.
Q If |[A(m)| < 62| A| for all m % 0 (mod N), then
Error(A) < 0,

where
oK

log%‘
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Proof of Theorem 3: proof of (1)

For given integer k > 1, if (ma)n € (z, z + £, then

o) = (2 + 1)
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Proof of Theorem 3: proof of (1)

For given integer k > 1, if (ma)n € (z, z + £, then

ma x 6
e(W) = e(ﬁ + %)
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Proof of Theorem 3: proof of (1)

For given integer k > 1, if (ma)n € (z, z + £, then

ma x 6
e(W) = e(ﬁ + %)

here 6 € (0, 1].
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Proof of Theorem 3: proof of (1)

Therefore

T
L

)
2
I
]
=[5

acA
j N j+1)N
JT<(”“1)N§%

<.
Il
o
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Proof of Theorem 3: proof of (1)

Therefore

T
L

)
2
I
]
=[5

acA
j N j+1)N
JT<(”“1)N§%

<.
Il
o

T
L

I
—~
D
—~
.
~
—+
)
—~
|
~
~—

acA
j N j+1)N
JT<(ma)NS(J+k)

.
Il
o
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Proof of Theorem 3: proof of (1)

Therefore
R k—1 ma
A(m) = Z e(ﬁ)
=0 _ agd
%<(ma)N<(]+]§)N
k—1 ]
= Z (e(%) + O(%))
7=0 acA
%<(mQ)NS(J+kl)N
k—1
Jy/1 |A|
= e(%)(E + O(Error(A)))|A] +O(?)
7=0

Wang Yingnan (Shandong University) Uniform Distribution and Roth's Theorem



Proof of Theorem 3: proof of (1)

Therefore

T
L

)
2
I
]
=[5

acA
j N j+1)N
JT<(”“1)N§%

<.
Il
o

T
L

> (o)

G+1)N
E

.
Il
o

JN<(ma) <

T
L

i A
e(%)(E + O(Error(A))) |A| + O(?)

<
Il
o

= O(k|A| Error(A4)) + O(|12|)
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Proof of Theorem 3: proof of (1)

Therefore

T
L

)
32
Il
(V]
S

acA
j N j+1)N
JT<(”“1)N§%

<.
Il
o

T
L

> (o)

(G+DN
E

.
Il
o

JN<(ma) <

T
L

7.1 A
e(%)(E + O(Error(A))) |A| + O(?)

<
Il
o

= O(k|A| Error(A4)) + O(|12|)

The result follows taking k < =
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Proof of Theorem 3: proof of (2)

For integers x and y, we have

Z 1 Y 1 (r(ma - — ]))
= — g e

acA j=1 acA N -N N N

@< (ma) Ny <z+y 7= re(=, 5]
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Proof of Theorem 3: proof of (2)

For integers x and y, we have

m<(mZi€Sx+y JEheed re(55 5]
1 rT rma ]
=5 2 ) el) D el=3)
re(, 4] = =1
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Proof of Theorem 3: proof of (2)

For integers x and y, we have

a€A =1 ac€A = N
a<(ma) y<zty J re( 7

=5 X ) el doel7p)
TE(%,%] acA j=1
Y 1 TT ~ ]
N | Al + N e(—ﬁ)A(Tm) Ze(—ﬁ)-
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Proof of Theorem 3: proof of (2)

Since

Yot =] e
1—e

Jj=1

2\% 2\
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Proof of Theorem 3: proof of (2)

Since
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Proof of Theorem 3: proof of (2)

Since
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Proof of Theorem 3: proof of (2)

Since

j=1
< <« 3=
Ti-e=5) Ml I
and when m # 0 (mod N), VM € Z,
EEA Ay rma rmb
Z |A(7“m)|2: Z 26(7)26(—7)
r=M r=M a€A beA
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Proof of Theorem 3: proof of (2)

Since
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Proof of Theorem 3: proof of (2)

we have
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Proof of Theorem 3: proof of (2)

we have
1 rT, -~ rj A(rm
— 6(—f)A(Tm)Ze(——) <<Z| ( )|
N : N 7|
r#0 j=1 r#0
A A
<y | (|7?:7|7"L)|Jr 3 | (|:7|n)!
0<|r|<R R<|r|<¥
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Proof of Theorem 3: proof of (2)

we have
1 rT, -~ d rj A(rm
A Y o) < 3 <‘T| )
r£0 j=1 #£0
A A
<y | (|7?:7|7"L)|Jr 3 | (|:7|n)!
0<|r|<R R<|r|<¥

< (log R) max | A(s)

+
/N
=[]
N
—~
s
o
N—
N|=
/N
T\J —_
N—
N

Wang Yingnan (Shandong University) Uniform Distribution and Roth’'s Theorem



Proof of Theorem 3: proof of (2)

we have

70 = = Il
A A
<y | (|7?:7|7"L)|Jr 3 | (|:7|n)!
0<|r|<R R<|r|<¥
N 1 1 1
< (log Rymax|A(s) + (Y 1Arm)P)* (Y )
70 S Rl
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Proof of Theorem 3: proof of (2)

we have

r#0 Jj=1 70 ‘7"|
A A
<y | (|7?:7|7"L)|Jr 3 | (|:7|n)!
0<[r|<R R<|r|< 5
- } 1y
<osmmgeiis (X 1Aenm) (T L)
TG(—%,%} R<|r|
AN, 1
<<(logR)52|A|+(|]_’_{ )2 < 6lA],
~ N
for R ~ STA]
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If we do not divide the sum

into two parts, then we can only get the result for § < @.
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Analogy to Weyl's criterion

To obtain an analogy to Weyl's criterion, we think of an infinite sequence
of pairs (A, N) with N — oo, where |A| > N. Then we have
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Analogy to Weyl's criterion

To obtain an analogy to Weyl's criterion, we think of an infinite sequence
of pairs (A, N) with N — oo, where |A| > N. Then we have

Corollary 1

As N — oo with |A| > N, we have that

Error(A) = o(1)

if and only if

for all m # 0 (mod N ).
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Analogy to Weyl's criterion

One can therefore formulate an analogy to Weyl's criterion along the lines:
the Fourier transforms of A are all small if and only if A and all of its
dilates are uniformly distributed. (A dilate of A is the set {ma : a € A}
for some m # 0 (mod N))
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Analogy to Weyl's criterion

One can therefore formulate an analogy to Weyl's criterion along the lines:
the Fourier transforms of A are all small if and only if A and all of its
dilates are uniformly distributed. (A dilate of A is the set {ma : a € A}
for some m # 0 (mod N))

This idea is central to our recent understanding, in additive combinatorics,
for proving that large sets contain 3-term arithmetic progressions (3-AP);
and finding appropriate analogies to this is essential to our understanding
when considering k-AP for k > 3.
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orem 4

To give one example of how such a notion can be used, we ask whether a
given set A of residues mod N contains a non-trivial 3-AP? In other words,
we wish to find solutions to a 4+ b = 2¢ with a, b, ¢ € A where a # b.
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Theorem 4

To give one example of how such a notion can be used, we ask whether a
given set A of residues mod N contains a non-trivial 3-AP? In other words,
we wish to find solutions to a 4+ b = 2¢ with a, b, ¢ € A where a # b.

If A is a subset of the residues mod N where N is odd, for which

A2
< L —

1
N

| A(m))

whenever m # 0 (mod N), then A contains non-trivial 3-AP.
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Proof of Theorem 4

The number of 3-AP in A is

Z Z a+b 20))

achA r=0
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Proof of Theorem 4

The number of 3-AP in A is

a+b 2¢) 1 ~ ~
> Z — =% A(r)2A(=2r).

a,b, ceA r=0 r=0
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Proof of Theorem 4

The number of 3-AP in A is
b—2 1 ~ ~
3 Z ra + rlatb=20), 0 ArPA(-2n).
a,b, ceA r=0 r=0

_ ; AP
The r = 0 term gives ‘5.
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Proof of Theorem 4

We regard the remaining terms as error terms, and bound them by their
absolute values, giving a contribution (taking m = —2r (mod N))

N—

1 —~
— - max | A = |A| max |A .
NEO: mape | A(m)| = 4] mage | A(m)
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Proof of Theorem 4

We regard the remaining terms as error terms, and bound them by their
absolute values, giving a contribution (taking m = —2r (mod N))

N—

1 —~
it A =|A A .
N§Oj 2 max | A(m)| = 4| mayx | A(m)|

There are | A| trivial 3-AP, so we have established that A has non-trivial
3-AP when

|AP

N |A|maX|A( )| > |A]
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Generalization of Theorem 4

Rather more generally we can ask for solution to
ia 4+ jb+ ke =1 (mod N), (3)

where (ijk, N)=1withae€ A,be B,ce C and A, B, C CZ/NZ.
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Generalization of Theorem 4

Rather more generally we can ask for solution to
ia 4+ jb+ ke =1 (mod N), (3)

where (ijk, N)=1withae€ A,be B,ce C and A, B, C CZ/NZ.

We count the above set as

N

Z ]tz_:e(r(ia—i-ﬂ;\[—i-kc—l))

a€A,beEB r=0
ceC

[y
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Generalization of Theorem 4

Rather more generally we can ask for solution to
ia 4+ jb+ ke =1 (mod N), (3)

where (ijk, N)=1withae€ A,be B,ce C and A, B, C CZ/NZ.

We count the above set as
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Generalization of Theorem 4

The r» = 0 term contributes

_l4Blc|

1
N N
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Generalization of Theorem 4

The r» = 0 term contributes

_lAIBlC]
bl

eo)t

1 ~ N
~ A0)B0)C(0)

The total contribution of the other terms can be bounded above by

~ 1A BGIIG k)
r#0
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Generalization of Theorem 4

The r» = 0 term contributes

AllBlIC|

(0)C(0) = =

eo)t

1 ~
~ A0)

The total contribution of the other terms can be bounded above by

~ 1A BGIIG k)
r#0

N
1
< — max|A(m )||C (kr)
m%\ 2 B(jr)||C (kr)]
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Generalization of Theorem 4

The r» = 0 term contributes

_l4Blc|

(0)C(0) = =

eo)t

1 ~
~ A0)

The total contribution of the other terms can be bounded above by

~ 1A BGIIG k)
r#0

1 L
< y max|A(m)] > IBGIC (k)|

N

L E
< max| Am)| (3 1B0P)* (X 16w)?)
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Generalization of Theorem 4

1 ~ 1
=  max|A(m)|(VB] - N C)}
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Generalization of Theorem 4

1 ~ 1
=  max|A(m)|(VB] - N C)}

= (1BI|C])= max | A(m)],

using the Cauchy-Schwarz inequality.
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Generalization of Theorem 4

1 ~ 1
= v max x |A(m)|(N|B| - N|C])2

1
— (1BIICD? mage ()]
using the Cauchy-Schwarz inequality.

Therefore there are > % solutions to (3) provided

(1BlICl)?

4, 4)

|A(m)| <

for every m # 0 (mod N).

Uniform Distribution and Roth’s Theorem
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3. Roth's Theorem

In 1953, Roth proved
Theorem 5 (Roth)

For any 6 > 0, if N is sufficiently large, then any subset A of {1, ..., N}
with more than N elements contains a non-trivial 3-AP.
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Proof of Roth's Theorem

To start our proof, we note that the result is easy for § > % since then A
must contain a subset of the form {a, a + 1, a + 2}.
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Proof of Roth's Theorem

To start our proof, we note that the result is easy for § > % since then A
must contain a subset of the form {a, a + 1, a + 2}.

For smaller §, we shall prove that the theorem is true for 4, if it is true for
0(1 + ¢d) for some ¢ > 0. Then we can prove the theorem by induction.
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Proof of Roth's Theorem

To start our proof, we note that the result is easy for § > % since then A
must contain a subset of the form {a, a + 1, a + 2}.

For smaller §, we shall prove that the theorem is true for 4, if it is true for
0(1 + ¢d) for some ¢ > 0. Then we can prove the theorem by induction.

Replace N by the smallest prime > N which can be done with negligible
change in our supposition.
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Proof of Roth's Theorem

If
#{aeA: O<a<];[}2(1+6(5)|§1|
or

#{aeA: 2;)V<a<N}>(1—|—c<5)’§,
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Proof of Roth's Theorem

If
#{aeA: O<a<];[}2(1+c5)|§1|
or
#{aeA: 2;)V<a<N}>(1—|—c<5)’§1‘,
let
Alz{aeA: 0<a<];[},
AQI{GGAZ 2;)V<0L<N}
anlez[%].

Wang Yingnan (Shandong University) Uniform Distribution and Roth's Theorem



Proof of Roth's Theorem

Then
|Ai] > 0(1 + ¢d)| N1l

Wang Yingnan (Shandong University) Uniform Distribution and Roth’'s Theorem



Proof of Roth's Theorem

Then
|Ai] > 0(1 + ¢d)| N1l

so A; has a non-trivial 3-AP and A has one, here i = 1, 2.
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Proof of Roth's Theorem

Then
|Ai] > 0(1 + ¢d)| N1l

so A; has a non-trivial 3-AP and A has one, here i = 1, 2.

Otherwise, let

N 2N
B = A: — —
{ae 3<a< 3},
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Proof of Roth's Theorem

Then
|Ai] > 0(1 + ¢d)| N1l

so A; has a non-trivial 3-AP and A has one, here i = 1, 2.
Otherwise, let

N 2N
B = A — ——
{ae 3<a< 3},
so that

A
|B| > (1 —2¢d) ‘3|
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Proof of Roth's Theorem

Suppose that A has no non-trivial 3-AP.
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Proof of Roth's Theorem

Suppose that A has no non-trivial 3-AP.

We are interested in solutions to a + b = 2¢ (mod N) with a € A and
b, ¢ € B, which is the equation (3) withi=j=1, k= -2,1=0.
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Proof of Roth's Theorem

Suppose that A has no non-trivial 3-AP.

We are interested in solutions to a + b = 2¢ (mod N) with a € A and
b, ¢ € B, which is the equation (3) withi=j=1, k= -2,1=0.

Note that if b, c € B, then 0 < 2c—b < N and so a + b = 2c. We must
have a = b = c¢. Now we know that every solution of (3) is a solution of
equation a + b = 2¢ so that it is an authentic 3-AP.
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Proof of Roth's Theorem

Therefore there exists m # 0 (mod N) such that
~ A
|A(m)| > (1 — 2¢0) u,

else we have a non-trivial solution to (3) by (4).
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Proof of Roth's Theorem

Therefore there exists m # 0 (mod N) such that
-~ A
|A(m)| > §(1 — 2¢6) u,

else we have a non-trivial solution to (3) by (4).

Now A is not uniformly distributed mod N. In particular, we have
Error(A)> 62 by Theorem 3.
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Proof of Roth's Theorem

Therefore there exists m # 0 (mod N) such that
-~ A
|A(m)| > §(1 — 2¢6) u,

else we have a non-trivial solution to (3) by (4).

Now A is not uniformly distributed mod N. In particular, we have
Error(A)> 62 by Theorem 3.

In other words, there is some dilate of A and some long interval which
does not contain the expected number of elements of the dilate of A. In
fact it is out by a constant factor.
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Proof of Roth's Theorem

Select integer [ > %, and define

Aj:#{aeA: (ma)NE(jév,(j_‘_ll)N]},

for0<j<1-—1.
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Proof of Roth's Theorem

Select integer [ > %, and define

Aj:#{aeA: (ma)NE(jév,(j_'_ll)N]},

for0<j<1-—1.

If a is counted by A;, then
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Proof of Roth's Theorem

Therefore by the similar method in the proof of Theorem 3, we have

Am) =3 aset)) + o)
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Proof of Roth's Theorem

Therefore by the similar method in the proof of Theorem 3, we have

Am) =Y aed) + o)
7=0
-1 A . A
=>4 - ey o),
=0
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Proof of Roth's Theorem

Therefore by the similar method in the proof of Theorem 3, we have

Am) =Y aed) + o)
7=0
-1 A . A

=3 (4 - ey o4,
=0
implying that

-1 -1

S 14— = |30 (- el

=0 =0
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Proof of Roth's Theorem

Therefore by the similar method in the proof of Theorem 3, we have

Am) =Y aed) + o)
7=0
-1 A . A
=>4 - ey o),
=0

implying that
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Proof of Roth's Theorem

Therefore by the similar method in the proof of Theorem 3, we have

Am) =Y aed) + o)
7=0
-1 A . A
=>4 - ey o),
§=0
implying that
-1 -1
45— 2 2| (4 - e
=0 j=0
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Proof of Roth's Theorem

Adding this to
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Proof of Roth's Theorem

Adding this to
-1

A
>4, -5 =o.

j=0
we find that there exists jo for which
|A]

(Ajo - T) >0

14]
T
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Proof of Roth's Theorem

We now define

. N
A’—{i: [jol]—i—z’—(ma)NforsomeaeAandlﬁiﬁ[l]}v
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Proof of Roth's Theorem

We now define

. N
A’—{i: [jol]—i—z’—(ma)NforsomeaEAandlﬁiﬁ[l]}v

a subset of {1, 2, ..., N’} where N’ = [¥], with

|A'| > 6(1 + )N’

Wang Yingnan (Shandong University) Uniform Distribution and Roth's Theorem



Proof of Roth's Theorem

We now define
N N
A’—{i: [jol]—i—z’—(ma)NforsomeaEAandlﬁiﬁ[l]}v

a subset of {1, 2, ..., N’} where N’ = [¥], with
|A'| > 6(1 + )N’

and then assert that A’ contains a non-trivial 3-AP.
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Proof of Roth's Theorem

We proceed by noting that if u, v, w € A’ for which u + w = 2v,
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Proof of Roth's Theorem

We proceed by noting that if u, v, w € A’ for which u + w = 2v, then
there exists a, b, ¢ € A such that

ma = []OZN] + u (mod N),
mb = [JOZN] + w (mod N),

me = [jolN] + v (mod N).
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Proof of Roth's Theorem

We proceed by noting that if u, v, w € A’ for which u + w = 2v, then
there exists a, b, ¢ € A such that

JoN

ma = [— i ] + u (mod N),
mb = [JOZN] + w (mod N),

me = [jolN] + v (mod N).

Therefore
m(a+b—2c) =u+w—2v=0(modN),
and
a+b=2c(modN).
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Proof of Roth's Theorem

However there is no guarantee that this implies a + b = 2¢, as there may
be “wraparound’ which means a 4+ b might equal 2c+ N or 2¢ = 2N or

--+. Therefore we need to refine our construction to be able to deduce this
final step.
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Proof of Roth's Theorem

However there is no guarantee that this implies a + b = 2¢, as there may
be “wraparound’ which means a 4+ b might equal 2c+ N or 2¢ = 2N or
--+. Therefore we need to refine our construction to be able to deduce this

final step.

The trick is to use the well-known result that if RS = N with R, S > 1,
then there exist 0 <7 < R, 0 < s < S such that £m =  (mod N).

Wang Yingnan (Shandong University) Uniform Distribution and Roth's Theorem



Proof of Roth's Theorem

However there is no guarantee that this implies a + b = 2¢, as there may
be “wraparound’ which means a 4+ b might equal 2c+ N or 2¢ = 2N or
--+. Therefore we need to refine our construction to be able to deduce this
final step.

The trick is to use the well-known result that if RS = N with R, S > 1,
then there exist 0 <7 < R, 0 < s < S such that £m =  (mod N).

This result comes from the fact that there are more than IV integers of the
form j+im, 0 <i < R, 0 < j < S so that two of them must be
congruent mod N, thus their difference s + rm = 0 (mod N).
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Proof of Roth's Theorem

For convenience we will assume

(mod N),

5
m=—
r
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Proof of Roth's Theorem

For convenience we will assume

where
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Proof of Roth's Theorem

For convenience we will assume

= ; (mod N),
where
R=— % S = VNo?,
with o . .
=171 =7l i=5
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Proof of Roth's Theorem

For convenience we will assume

s
= — dN
® (mod N),
where
N
R: 673, S: N(S3,
with N . .
Jo
= |— =|— | =< =
[ l ]7 [ l ]’ 57
so that

#{lacA: z < (ma)y <z +y}> (14 cd)dy.
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Proof of Roth's Theorem

We begin by partitioning this set depending only on the value of
(ma)y (mod s).
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Proof of Roth's Theorem

We begin by partitioning this set depending only on the value of
(ma)n (mods). For 1 <i<s, let a; = (), and then define

Ai:{aeA: a = a; + jr (mod N) and 0<]<[y; ]}
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Proof of Roth's Theorem

We begin by partitioning this set depending only on the value of
(ma)n (mods). For 1 <i<s, let a; = (), and then define

Ai:{aeA: a = a; + jr (mod N) and O<]<[y; ]}

Note that ma = m(o; + jr) = x + (i + js) so that z < (ma)y <z +y
for a € A;.
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Proof of Roth's Theorem

We begin by partitioning this set depending only on the value of
(ma)n (mods). For 1 <i<s, let a; = (), and then define

Ai:{aeA: a = a; + jr (mod N) and O<]<[y; ]}

Note that ma = m(o; + jr) = x + (i + js) so that z < (ma)y <z +y
for a € A;.

Hence there exists some value of 7 for which

H#A; > (1+cd)d %
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Proof of Roth's Theorem

Even within A; we still have the possibility of the “wraparound problem”,
so we deal with this by partitioning A;.
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Proof of Roth's Theorem

Even within A; we still have the possibility of the “wraparound problem”,
so we deal with this by partitioning A;.

Let

so that oy < o +jr <o+ 2 < (K +1)N.
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Proof of Roth's Theorem

Even within A; we still have the possibility of the “wraparound problem”,
so we deal with this by partitioning A;.

Let

so that oy < o +jr <o+ 2 < (K +1)N.
For each 0 < k < K, define

Aixr={a€A;: kN <a; +jr < (k+1)N}.
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Proof of Roth's Theorem

Let o; 0 = a; — 7, and o  be the largest integer < kN which is = «;
(modr) for 1 <k < K.
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Proof of Roth's Theorem

Let o; 0 = a; — 7, and o  be the largest integer < kN which is = «;
(modr) for 1 <k < K. Then

Aip={a€di: a=a;p+jr(modN), 1 <j<J,+0(1)},

where Jo=2 — % Jy =N for 1<k <K-1, and Jg =¥ - EN

(7%
+ %,
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Proof of Roth's Theorem

Let o; 0 = a; — 7, and o  be the largest integer < kN which is = «;
(modr) for 1 <k < K. Then

Aip={a€di: a=a;p+jr(modN), 1 <j<J,+0(1)},

where Jy = X %Jk:¥for1§k§K—1,andJK:%—KT—NWL%.

We let T be the set of indices k, 1 < k < K — 1 together with £k =0

provided Jy > Ciy, and with k = K provided Jg > %.
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Proof of Roth's Theorem

Note that
2
S #Ak > A~ Cg—j
keT
> (14 5)5 > (14 %) )03 Ji
keT
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Proof of Roth's Theorem

Note that
2
S #Ak > A~ Cg—j
keT
co 5
> (14 )5 > 1+ 58> I
keT
Thus there exists k € T such that
co

#A; > (14 )5Jk
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Proof of Roth's Theorem

Now define N = [J] and
A={j: 1<j<N, aj+jr—kNeA},

a subset of {1, 2, ..., N'},
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Proof of Roth's Theorem

Now define N = [J] and
A':{j: 1<j <N, a@k—i—jr—kNGA},
a subset of {1, 2, ..., N'}, so that

#A = H#A; > (1+ %5)&\7’.
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Proof of Roth's Theorem

Now define N = [J] and
A':{j: 1<j <N, a@k—i—jr—kNGA},
a subset of {1, 2, ..., N'}, so that

#A = H#A; > (1+ %5)&\7’.

Note that

N N ¢6?
N’Zmin{,Jo, JK} >>min{7 ‘ y}
r r 4s
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Proof of Roth's Theorem

Now define N = [J] and
A':{j: 1<j <N, a@k—i—jr—kNGA},
a subset of {1, 2, ..., N'}, so that

#A = H#A; > (1+ %5)&\7’.

Note that

N N ¢6?
N’Zmin{,Jo, JK} >>min{7 ‘ y}
r r 4s

. {N 2N
> min —_—

. 3
XN
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Proof of Roth's Theorem

Now define N = [J] and
A':{j: 1<j <N, a@k—i—jr—kNGA},
a subset of {1, 2, ..., N'}, so that

#A = H#A; > (1+ %‘5)&\7’.

Note that

2
N’ > min{N, Jo, JK} > min{N, <0 y}
r r 4s
N 62N
> min{R, (SZS} > VO3N.

Hence A’ contains a non-trivial 3-AP.
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Proof of Roth's Theorem

If u+v = 2w with u, v, w € A’, then
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Proof of Roth's Theorem

If u+v = 2w with u, v, w € A’, then

a = o +ur—kN,
b=y +vr—kN,
c= oy +wr—kN.
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Proof of Roth's Theorem

If u+v = 2w with u, v, w € A’, then

a = o +ur—kN,
b=y +vr—kN,
c= oy +wr—kN.

So
a+b=2c,
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Proof of Roth's Theorem

If u+v = 2w with u, v, w € A’, then

a = o +ur—kN,
b=y +vr—kN,
c= oy +wr—kN.

So
a+b=2c,

contradicting the supposition that A contains no non-trivial 3-AP.
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Proof of Roth's Theorem

If u+v = 2w with u, v, w € A’, then

a = o +ur—kN,
b=y +vr—kN,
c= oy +wr—kN.

So
a+b=2c,

contradicting the supposition that A contains no non-trivial 3-AP.

Therefore the theorem is true for §, if it is true for 6(1 + ¢d) with some
c>0.
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In Roth’s proof, one can take

o ———.
loglog N
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In Roth’s proof, one can take

1
o ———.
loglog N

This was improved by Szemerédi to

1

O~ .
exp(v/loglog N)

Wang Yingnan (Shandong University) Uniform Distribution and Roth's Theorem



In the last eighties, both Heath-Brown and Szemerédi showed that one can

take
1

~
~

(log N)©

for some small ¢ > 0.
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In the last eighties, both Heath-Brown and Szemerédi showed that one can

take
1

~
~

(log N)©

for some small ¢ > 0.

The best result known, due to Bourgain, is that one can take

5~ loglog N
- logN
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4. Behrend's Theorem

In the other direction, we have

Theorem 6 (Behrend)

For any sufficiently large integer N, there exists a subset A C {1, ..., N}
with I
A> — —
#A 2 exp(cy/log N)

such that A has no non-trivial 3-AP.
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Proof of Behrend's Theorem

Let
T={(x0, ..., Tp-1) €L": 0<z; <d}
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Proof of Behrend's Theorem

Let
T={(x0, ..., Tp-1) €L": 0<z; <d}

and
T, ={xeT: |x?>=k}.

Wang Yingnan (Shandong University) Uniform Distribution and Roth's Theorem



Proof of Behrend's Theorem

Let
T={(x0, ..., Tp-1) €L": 0<z; <d}

and

T, ={xeT: |x?>=k}.

We have |T| = d", and |x|> < nd? for every x € T, so there exists a
positive integer k for which T} has > %72 elements.
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Proof of Behrend's Theorem

Let
T={(x0, ..., Tp-1) €L": 0<z; <d}

and
T, ={xeT: |x?>=k}.
We have |T| = d", and |x|> < nd? for every x € T, so there exists a

positive integer k for which T} has > %72 elements. Let

A={zg+z1(2d) + - +ap1(2d)" '+ x€ T}
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Proof of Behrend's Theorem

If a +b=2cwith a, b, c € A, then

ag + by = 2¢g (HlOd 2d).
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Proof of Behrend's Theorem

If a +b=2cwith a, b, c € A, then
ag + by = 2¢g (HlOd 2d).
Since —2d < ag + by — 2¢¢ < 2d,

ao + by = 2¢y.
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Proof of Behrend's Theorem

If a +b=2cwith a, b, c € A, then
ag + by = 2¢g (HlOd 2d).
Since —2d < ag + by — 2¢¢ < 2d,

ao + by = 2¢y.

Similarly one can prove that

ai +b1 = 2617
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Proof of Behrend's Theorem

If a +b=2cwith a, b, c € A, then
ag + by = 2¢g (HlOd 2d).

Since —2d < ag + by — 2¢¢ < 2d,

ao + by = 2¢y.
Similarly one can prove that

a + bl = 2617
and indeed

a; +b; = 2¢;

for each 7 > 0.
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Proof of Behrend's Theorem

Then
a+b=2c for a, b, c € T}.
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Proof of Behrend's Theorem

Then
a+b=2c for a, b, c € T}.

So c is the central point in the line segment between points a and b,
which is impossible as T}, is a sphere.
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Proof of Behrend's Theorem

Then
a+b=2c for a, b, c € T}.

So c is the central point in the line segment between points a and b,
which is impossible as T}, is a sphere.

Therefore A contains no non-trivial 3-AP.
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Proof of Behrend's Theorem

The elements of A are all

<(d—1)(1+2d+---+ (2d)" 1) < (2d)"
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Proof of Behrend's Theorem

The elements of A are all

<(d—1)(1+2d+---+ (2d)" 1) < (2d)"

For any sufficiently large integer IV, we try to take n and d such that
(2d)® < N, (2d)" ~ N with n2"d? as small as possible.
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Proof of Behrend's Theorem

The elements of A are all

<(d—1)(1+2d+---+ (2d)" 1) < (2d)"

For any sufficiently large integer IV, we try to take n and d such that
(2d)® < N, (2d)" ~ N with n2"d? as small as possible.

We take

1

n = [y/log N] and dz[%],
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Proof of Behrend's Theorem

The elements of A are all

<(d—1)(1+2d+---+ (2d)" 1) < (2d)"

For any sufficiently large integer IV, we try to take n and d such that
(2d)® < N, (2d)" ~ N with n2"d? as small as possible.

We take

1

n = [y/log N] and d:[%],

(2d)" N
A> > .
#A = n2nd? ~ exp(cy/log N)

so that
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For any sufficiently large integer N, we shall take n and d such that
(2d)™ < N, (2d)™ ~ N with n2"d? as small as possible.
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For any sufficiently large integer N, we shall take n and d such that
(2d)™ < N, (2d)™ ~ N with n2"d? as small as possible.

Firstly we take
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For any sufficiently large integer N, we shall take n and d such that
(2d)™ < N, (2d)™ ~ N with n2"d? as small as possible.

Firstly we take

so that
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For any sufficiently large integer N, we shall take n and d such that
(2d)™ < N, (2d)™ ~ N with n2"d? as small as possible.

Firstly we take

Nn
d:
[ 2 ]’
so that log N
logd ~ 8 .
n

Since n = 0(2") is neglected, we make 2"d? or

nlog2 + 2logd ~ nlog2 +

2log N
n

as small as possible.
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Then we can see n = [y/log N]| is a suitable choice. In such choice of N,

d ~ exp(y/log N).
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Then we can see n = [y/log N]| is a suitable choice. In such choice of N,

d ~ exp(y/log N).

It is easy to check that (2d)" < N, (2d)™ ~ N.
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