
Uniform Distribution and Roth’s Theorem

Wang Yingnan

Shandong University

Wang Yingnan (Shandong University) Uniform Distribution and Roth’s Theorem 1 / 69



Wang Yingnan (Shandong University) Uniform Distribution and Roth’s Theorem 2 / 69



1. Uniform distribution mod one

In this talk, we mainly follow the discussion of Granville [1].

We begin by discussing Hermann Weyl’s famous criterion for recognizing
uniform distribution mod one.

Definition 1

A sequence of real numbers a1, a2, . . . is uniformly distributed mod one, if
for all 0 ≤ α < β ≤ 1 we have

# {n ≤ N : α ≤ {an} < β} ∼ (β − α)N as N →∞.
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Weyl’s criterion

To determine whether a sequence of real numbers is uniformly distributed,
we have the following famous criterion.

Theorem 1 (Weyl’s criterion)

A sequence of real numbers a1, a2, . . . is uniformly distributed mod one, if
and only if for every integer b 6= 0 we have∑

n≤N

e(ban) = ob(N) as N →∞. (1)
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Weyl’s criterion

In other words,

lim
N→∞

1
N

∑
n≤N

e(ban) = 0.

Note that if a1, a2, . . . is uniformly distributed mod one, then
ka1, ka2, . . . is uniformly distributed mod one for all k ∈ Z∗.
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Stronger theorem

In fact we can prove a stronger theorem as follows.

Theorem 2

The following statements are equivalent:

1 A sequence of real numbers a1, a2, . . . is uniformly distributed mod
one.

2 For every Riemann-integrable function f on [0, 1], we have

lim
N→∞

1
N

N∑
n=1

f({an}) =
∫ 1

0
f(x)dx.

3 For every integer b 6= 0, we have∑
n≤N

e(ban) = ob(N) as N →∞.
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Proof of Theorem 2: (1) ⇒ (2)

Suppose that the sequence {an} is uniformly distributed mod one.

Fix [α, β) ⊆ [0, 1) and let χ[α, β)(x) denote the characteristic function of
the interval [α, β). We may extend this function to R by periodicity
(period 1) and still denote it by χ[α, β)(x).

Then, as a consequence of this definition, we find that

# {n ≤ N : α ≤ {an} < β} =
N∑

n=1

χ[α, β)(an)

and

1
N

N∑
n=1

χ[α, β)(an) →
∫ 1

0
χ[α, β)(x)dx, as N →∞.
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Proof of Theorem 2: (1) ⇒ (2)

Since f(x) is Riemann-integrable, ∀ε > 0 there exists a partition of the
interval [0, 1], 0 = x0 < x1 < · · · < xH = 1, such that∫ 1

0
f(x)dx− ε

2
≤

∫ 1

0
fL(x)dx ≤

∫ 1

0
f(x)dx

and ∫ 1

0
f(x)dx ≤

∫ 1

0
fU (x)dx ≤

∫ 1

0
f(x)dx +

ε

2
,

where

fL(x) = inf
xj−1≤y≤xj

f(y) for x ∈ [xj−1, xj)

and

fU (x) = sup
xj−1≤y≤xj

f(y) for x ∈ [xj−1, xj).
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Proof of Theorem 2: (1) ⇒ (2)

Obviously,

N∑
n=1

fL({an}) ≤
N∑

n=1

f({an}) ≤
N∑

n=1

fU ({an}).

However,

1
N

N∑
n=1

fL({an}) →
∫ 1

0
fL(x)dx

because fL is a finite linear combination of characteristic functions of
intervals.

Similarly we have

1
N

N∑
n=1

fU ({an}) →
∫ 1

0
fU (x)dx.
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Proof of Theorem 2: (1) ⇒ (2)

Therefore∫ 1

0
f(x)dx− ε

2
≤

∫ 1

0
fL(x)dx ≤ lim inf

N→∞

1
N

N∑
n=1

f({an}),

and ∫ 1

0
f(x)dx +

ε

2
≥

∫ 1

0
fU (x)dx ≥ lim sup

N→∞

1
N

N∑
n=1

f({an}).

Since this is true for every ε > 0,

lim
N→∞

1
N

N∑
n=1

f({an})

exists and must be equal to ∫ 1

0
f(x)dx.
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Proof of Theorem 2: (2) ⇒ (3)

This follows immediately by taking

f(x) = cos(bx) and f(x) = sin(bx)

respectively, where b ∈ Z∗.
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Proof of Theorem 2: (3) ⇒ (1)

What we want to show can be reformulated as the statement that

1
N

N∑
n=1

χ[α, β)(an) →
∫ 1

0
χ[α, β)(x)dx as N →∞.

Firstly we shall prove

Lemma 1

If f is continuous and periodic of period 1, and {an} is a sequence of real
numbers satisfying (1). Then

1
N

N∑
n=1

f(an) →
∫ 1

0
f(x)dx as N →∞.
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Proof of Theorem 2: proof of Lemma 1

We easily get that f(x) = e(kx), ∀k ∈ Z, satisfies the lemma. So the
lemma is also true for all trigonometric polynomials.

Let ε > 0. If f is any continuous periodic function of period 1, we can
choose a trigonometric polynomial P such that

sup
x∈R

| f(x)− P (x) | < ε

3
.

(See Corollary 5.4 on page 54 in [3])
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Proof of Theorem 2: proof of Lemma 1

Then for all large N , we have

I =
∣∣∣ 1
N

N∑
n=1

P (an)−
∫ 1

0
P (x)dx

∣∣∣ <
ε

3
.

Therefore ∣∣∣ 1
N

N∑
n=1

f(an)−
∫ 1

0
f(x)dx

∣∣∣
≤ 1

N

N∑
n=1

∣∣f(an)− P (an)
∣∣ + I +

∫ 1

0

∣∣P (x)− f(x)
∣∣dx

< ε.
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Proof of Theorem 2: (3) ⇒ (1)

Choose two continuous periodic functions f+
ε and f−ε of period 1 such that

f−ε (x) ≤ χ[α, β)(x) ≤ f+
ε (x) on [0, 1);

both f+
ε and f−ε are bounded by 1 and agree with χ[α, β)(x) except in

intervals of total length 2ε on [0, 1).

Obviously,

β − α− 2ε ≤
∫ 1

0
f−ε (x)dx

and ∫ 1

0
f+

ε (x)dx ≤ β − α + 2ε.
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Proof of Theorem 2: (3) ⇒ (1)

Write

SN =
1
N

N∑
n=1

χ(α, β)(an).

Then we have

1
N

N∑
n=1

f−ε (an) ≤ SN ≤ 1
N

N∑
n=1

f+
ε (an).

Therefore

β − α− 2ε ≤ lim inf
N→∞

SN , lim sup
N→∞

SN ≤ β − α + 2ε.

Since this is true for every ε > 0, lim
N→∞

SN exists and must be equal to

β − α.
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Example 1

An famous example is that the sequence of α, 2α, 3α, . . . is uniformly
distributed mod one if α is irrational.

Since bα is not an integer for b ∈ Z∗, we have

∣∣∣ 1
N

N∑
n=1

e(bnα)
∣∣∣ =

∣∣∣ 1
N

e(bα)(1− e(bNα))
1− e(bα)

∣∣∣
≤ 2

N | 1− e(bα) |
= o(1).

By Weyl’s criterion, we know that the sequence of α, 2α, 3α, . . . is
uniformly distributed mod one.
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Example 2

We consider another interesting example about uniform distribution.
Let

2n = akn10kn + · · · for all n ∈ Z+

and

SN (m) =
1
N

# {0 ≤ n < N : akn = m} for m = 1, 2, . . . , 9.

We have

akn = m ⇐⇒ m10kn ≤ 2n < (m + 1)10kn ⇐⇒

log10 m + kn ≤
n

log2 10
< log10(m + 1) + kn.
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Example 2

Therefore

SN (m) =
1
N

#
{

0 ≤ n < N : log10 m ≤
{

n

log2 10

}
< log10(m + 1)

}
.

Since log2 10 is irrational, we get

lim
N→∞

SN (m) = log10(m + 1)− log10 m

by Weyl’s criterion.

However, we can not determine whether some other interesting sequences
are uniformly distributed mod one even today. The sequence

{
(3
2)n

}
is a

very famous one of them.
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2. Uniform distribution modN

For a given set A of residues modN , define

Â(b) :=
∑
n∈A

e(
bn

N
).

Let (t)N denote the least non-negative residue of t (mod N). So

(t)N

N
=

{ t

N

}
.

The idea of uniform distribution mod N is surely something like: for all
0 ≤ α < β ≤ 1 and all m 6≡ 0 (mod N), we have

# {a ∈ A : αN < (ma)N ≤ βN} ∼ (β − α)|A|. (2)
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Definition of Error(A)

One can only make sense of such a definition if |A| → ∞ (since this is an
asymptotic formula) but we are often interested in smaller sets A, indeed
which are subsets of {1, 2, . . . , N}. So we will work with something
motivated by, but different from, (2).

Let us see how far we can go in proving an analogy to Weyl’s criterion.
For given subset A of the residues modN , define

Error(A) := max
0≤x<x+y≤N
m6≡0(mod N)

∣∣∣ # {a ∈ A : x < (ma)N ≤ x + y}
|A|

− y

N

∣∣∣.
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Theorem 3

Theorem 3

Suppose that N is prime. Fix δ > 0. We have

1 If Error(A) ≤ δ2, then for any m 6≡ 0 (modN),

Â(m) � δ|A|.

2 If |Â(m)| ≤ δ2|A| for all m 6≡ 0 (modN), then

Error(A) � δ,

where

δ � 1
log N

|A|
.
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Proof of Theorem 3: proof of (1)

For given integer k > 1, if (ma)N ∈ (x, x + N
k ], then

e(
ma

N
) = e(

x

N
+

θ

k
)

= e(
x

N
) + e(

x

N
)(e(

θ

k
)− 1)

= e(
x

N
) + O(

1
k
),

here θ ∈ (0, 1].
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Proof of Theorem 3: proof of (1)

Therefore

Â(m) =
k−1∑
j=0

∑
a∈A

jN
k

<(ma)N≤
(j+1)N

k

e(
ma

N
)

=
k−1∑
j=0

∑
a∈A

jN
k

<(ma)N≤
(j+1)N

k

(
e(

j

k
) + O(

1
k
)
)

=
k−1∑
j=0

e(
j

k
)
(1
k

+ O(Error(A))
)
|A|+ O

( |A|
k

)
= O(k|A|Error(A)) + O

( |A|
k

)
.

The result follows taking k � 1
δ .
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Proof of Theorem 3: proof of (2)

For integers x and y, we have

∑
a∈A

x<(ma)N≤x+y

1 =
y∑

j=1

∑
a∈A

1
N

∑
r∈(−N

2
, N

2
]

e(
r(ma− x− j)

N
)

=
1
N

∑
r∈(−N

2
, N

2
]

e(−rx

N
)
∑
a∈A

e(
rma

N
)

y∑
j=1

e(−rj

N
)

=
y

N
|A|+ 1

N

∑
r 6=0

e(−rx

N
)Â(rm)

y∑
j=1

e(−rj

N
).
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Proof of Theorem 3: proof of (2)

Since ∣∣∣ y∑
j=1

e(−rj

N
)
∣∣∣ =

∣∣∣ 1− e(− ry
N )

1− e(− r
N )

∣∣∣
≤ 2∣∣1− e(− r

N )
∣∣ � 1

‖ r
N ‖

=
N

|r|
,

and when m 6≡ 0 (mod N), ∀M ∈ Z,

M+N∑
r=M

|Â(rm)|2 =
M+N∑
r=M

∑
a∈A

e(
rma

N
)
∑
b∈A

e(−rmb

N
)

=
∑

a, b∈A

M+N∑
r=M

e(
rm(a− b)

N
)

= N |A|,
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Proof of Theorem 3: proof of (2)

we have

1
N

∑
r 6=0

e(−rx

N
)Â(rm)

y∑
j=1

e(−rj

N
) �

∑
r 6=0

|Â(rm)|
|r|

≤
∑

0<|r|≤R

|Â(rm)|
|r|

+
∑

R<|r|≤N
2

|Â(rm)|
|r|

� (log R) max
s 6=0

|Â(s)|+
( ∑

r∈(−N
2

, N
2

]

|Â(rm)|2
) 1

2
( ∑

R<|r|

1
r2

) 1
2

� (log R)δ2|A|+
( |A|N

R

) 1
2 � δ|A|,

for R ≈ N
δ2|A| .
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|Â(rm)|
|r|

� (log R) max
s 6=0
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|Â(rm)|
|r|

≤
∑

0<|r|≤R
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|Â(rm)|
|r|

� (log R) max
s 6=0
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( |A|N

R

) 1
2 � δ|A|,

for R ≈ N
δ2|A| .
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Remark 1

If we do not divide the sum ∑
r 6=0

|Â(rm)|
|r|

into two parts, then we can only get the result for δ � 1
log N .
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Analogy to Weyl’s criterion

To obtain an analogy to Weyl’s criterion, we think of an infinite sequence
of pairs (A, N) with N →∞, where |A| � N . Then we have

Corollary 1

As N →∞ with |A| � N , we have that

Error(A) = o(1)

if and only if
Â(m) = o(N)

for all m 6≡ 0 (modN).
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Analogy to Weyl’s criterion

One can therefore formulate an analogy to Weyl’s criterion along the lines:
the Fourier transforms of A are all small if and only if A and all of its
dilates are uniformly distributed. (A dilate of A is the set {ma : a ∈ A}
for some m 6≡ 0 (mod N))

This idea is central to our recent understanding, in additive combinatorics,
for proving that large sets contain 3-term arithmetic progressions (3-AP);
and finding appropriate analogies to this is essential to our understanding
when considering k-AP for k ≥ 3.
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Theorem 4

To give one example of how such a notion can be used, we ask whether a
given set A of residues modN contains a non-trivial 3-AP? In other words,
we wish to find solutions to a + b = 2c with a, b, c ∈ A where a 6= b.

Theorem 4

If A is a subset of the residues modN where N is odd, for which

|Â(m)| < |A|2

N
− 1

whenever m 6≡ 0 (modN), then A contains non-trivial 3-AP.

Wang Yingnan (Shandong University) Uniform Distribution and Roth’s Theorem 32 / 69



Theorem 4

To give one example of how such a notion can be used, we ask whether a
given set A of residues modN contains a non-trivial 3-AP? In other words,
we wish to find solutions to a + b = 2c with a, b, c ∈ A where a 6= b.

Theorem 4

If A is a subset of the residues modN where N is odd, for which
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Proof of Theorem 4

The number of 3-AP in A is

∑
a, b, c∈A

1
N

N−1∑
r=0

e(
r(a + b− 2c)

N
) =

1
N

N−1∑
r=0

Â(r)2Â(−2r).

The r = 0 term gives |A|3
N .
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Proof of Theorem 4

We regard the remaining terms as error terms, and bound them by their
absolute values, giving a contribution (taking m ≡ −2r (mod N))

≤ 1
N

N−1∑
r=0

|Â(r)|2 ·max
m6=0

|Â(m)| = |A|max
m6=0

|Â(m)|.

There are |A| trivial 3-AP, so we have established that A has non-trivial
3-AP when

|A|3

N
− |A|max

m6=0
|Â(m)| > |A|.
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Generalization of Theorem 4

Rather more generally we can ask for solution to

ia + jb + kc ≡ l (modN), (3)

where (ijk, N) = 1 with a ∈ A, b ∈ B, c ∈ C and A, B, C ⊆ Z/NZ.

We count the above set as

∑
a∈A, b∈B

c∈C

1
N

N−1∑
r=0

e(
r(ia + jb + kc− l)

N
)

=
1
N

N−1∑
r=0

e(
−rl

N
)Â(ir)B̂(jr)Ĉ(kr).
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Generalization of Theorem 4

The r = 0 term contributes

1
N

Â(0)B̂(0)Ĉ(0) =
|A||B||C|

N
.

The total contribution of the other terms can be bounded above by

1
N

∑
r 6=0

|Â(ir)||B̂(jr)||Ĉ(kr)|

≤ 1
N

max
m6=0

|Â(m)|
N∑

r=0

|B̂(jr)||Ĉ(kr)|

≤ 1
N

max
m6=0

|Â(m)|
( N∑

t=0

|B̂(t)|2
) 1

2
( N∑

u=0

|Ĉ(u)|2
) 1

2
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|Â(m)|
N∑

r=0

|B̂(jr)||Ĉ(kr)|
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Generalization of Theorem 4

=
1
N

max
m6=0

|Â(m)|(N |B| ·N |C|)
1
2

= (|B||C|)
1
2 max

m6=0
|Â(m)|,

using the Cauchy-Schwarz inequality.

Therefore there are ≥ |A||B||C|
2N solutions to (3) provided

|Â(m)| ≤ (|B||C|)
1
2

2N
|A|, (4)

for every m 6≡ 0 (modN).
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3. Roth’s Theorem

In 1953, Roth proved

Theorem 5 (Roth)

For any δ > 0, if N is sufficiently large, then any subset A of {1, . . . , N}
with more than δN elements contains a non-trivial 3-AP.
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Proof of Roth’s Theorem

To start our proof, we note that the result is easy for δ > 2
3 since then A

must contain a subset of the form {a, a + 1, a + 2}.

For smaller δ, we shall prove that the theorem is true for δ, if it is true for
δ(1 + cδ) for some c > 0. Then we can prove the theorem by induction.

Replace N by the smallest prime ≥ N which can be done with negligible
change in our supposition.
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Proof of Roth’s Theorem

If

#
{

a ∈ A : 0 < a <
N

3

}
≥ (1 + cδ)

|A|
3

or

#
{

a ∈ A :
2N

3
< a < N

}
≥ (1 + cδ)

|A|
3

,

let

A1 =
{

a ∈ A : 0 < a <
N

3

}
,

A2 =
{

a ∈ A :
2N

3
< a < N

}
and N1 = [N3 ].
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Proof of Roth’s Theorem

Then
|Ai| ≥ δ(1 + cδ)|N1|,

so Ai has a non-trivial 3-AP and A has one, here i = 1, 2.

Otherwise, let

B =
{

a ∈ A :
N

3
< a <

2N

3

}
,

so that

|B| > (1− 2cδ)
|A|
3

.
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Proof of Roth’s Theorem

Suppose that A has no non-trivial 3-AP.

We are interested in solutions to a + b ≡ 2c (mod N) with a ∈ A and
b, c ∈ B, which is the equation (3) with i = j = 1, k = −2, l = 0.

Note that if b, c ∈ B, then 0 < 2c− b < N and so a + b = 2c. We must
have a = b = c. Now we know that every solution of (3) is a solution of
equation a + b = 2c so that it is an authentic 3-AP.
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Proof of Roth’s Theorem

Therefore there exists m 6≡ 0 (mod N) such that

|Â(m)| > δ(1− 2cδ)
|A|
6

,

else we have a non-trivial solution to (3) by (4).

Now A is not uniformly distributed modN . In particular, we have
Error(A)� δ2 by Theorem 3.

In other words, there is some dilate of A and some long interval which
does not contain the expected number of elements of the dilate of A. In
fact it is out by a constant factor.
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Proof of Roth’s Theorem

Select integer l � 1
δ , and define

Aj = #
{

a ∈ A : (ma)N ∈ (
jN

l
,
(j + 1)N

l
]
}

,

for 0 ≤ j ≤ l − 1.

If a is counted by Aj , then

e(
ma

N
) = e(

j

l
) + O(

1
l
).
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Proof of Roth’s Theorem

Therefore by the similar method in the proof of Theorem 3, we have

Â(m) =
l−1∑
j=0

Aje(
j

l
) + O

( |A|
l

)
=

l−1∑
j=0

(
Aj −

|A|
l

)
e(

j

l
) + O

( |A|
l

)
,

implying that

l−1∑
j=0

∣∣Aj −
|A|
l

∣∣ ≥ ∣∣∣ l−1∑
j=0

(
Aj −

|A|
l

)
e(

j

l
)
∣∣∣

≥ |Â(m)| −O
( |A|

l

)
� δ|A|.
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Proof of Roth’s Theorem

Adding this to
l−1∑
j=0

(
Aj −

|A|
l

)
= 0,

we find that there exists j0 for which

(
Aj0 −

|A|
l

)
� δ

|A|
l

.
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Proof of Roth’s Theorem

We now define

A′ =
{

i : [
j0N

l
] + i = (ma)N for some a ∈ A and 1 ≤ i ≤ [

N

l
]
}

,

a subset of {1, 2, . . . , N ′} where N ′ = [Nl ], with

|A′| ≥ δ(1 + cδ)N ′

and then assert that A′ contains a non-trivial 3-AP.
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Proof of Roth’s Theorem

We proceed by noting that if u, v, w ∈ A′ for which u + w = 2v, then
there exists a, b, c ∈ A such that

ma ≡ [
j0N

l
] + u (modN),

mb ≡ [
j0N

l
] + w (modN),

mc ≡ [
j0N

l
] + v (modN).

Therefore
m(a + b− 2c) ≡ u + w − 2v ≡ 0 (modN),

and
a + b ≡ 2c (modN).
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Proof of Roth’s Theorem

However there is no guarantee that this implies a + b = 2c, as there may
be “wraparound” which means a + b might equal 2c±N or 2c± 2N or
· · · . Therefore we need to refine our construction to be able to deduce this
final step.

The trick is to use the well-known result that if RS = N with R, S > 1,
then there exist 0 < r < R, 0 < s < S such that ±m ≡ s

r (modN).

This result comes from the fact that there are more than N integers of the
form j + im, 0 ≤ i < R, 0 ≤ j < S so that two of them must be
congruent modN , thus their difference s± rm ≡ 0 (modN).
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Proof of Roth’s Theorem

For convenience we will assume

m ≡ s

r
(modN),

where

R =

√
N

δ3
, S =

√
Nδ3,

with

x = [
j0N

l
], y = [

N

l
], l � 1

δ
,

so that
# {a ∈ A : x < (ma)N ≤ x + y} ≥ (1 + cδ)δy.
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Proof of Roth’s Theorem

We begin by partitioning this set depending only on the value of
(ma)N (mod s). For 1 ≤ i ≤ s, let αi = (x+i

m )N , and then define

Ai =
{

a ∈ A : a ≡ αi + jr (modN) and 0 ≤ j ≤ [
y − i

s
]
}

.

Note that ma ≡ m(αi + jr) ≡ x + (i + js) so that x < (ma)N ≤ x + y
for a ∈ Ai.

Hence there exists some value of i for which

#Ai ≥ (1 + cδ)δ
y

s
.
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Proof of Roth’s Theorem

Even within Ai we still have the possibility of the “wraparound problem”,
so we deal with this by partitioning Ai.

Let

K =
[αi + ry

s

N

]
,

so that αi ≤ αi + jr ≤ αi + ry
s < (K + 1)N .

For each 0 ≤ k ≤ K, define

Ai, k = {a ∈ Ai : kN < αi + jr ≤ (k + 1)N} .
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Proof of Roth’s Theorem

Let αi, 0 = αi − r, and αi, k be the largest integer ≤ kN which is ≡ αi

(mod r) for 1 ≤ k ≤ K. Then

Ai, k = {a ∈ Ai : a ≡ αi,k + jr (modN), 1 ≤ j ≤ Jk + O(1)} ,

where J0 = N
r −

αi
r , Jk = N

r for 1 ≤ k ≤ K − 1, and JK = y
s −

KN
r + αi

r .

We let T be the set of indices k, 1 ≤ k ≤ K − 1 together with k = 0
provided J0 > cδ2y

4s , and with k = K provided JK > cδ2y
4s .
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Proof of Roth’s Theorem

Note that ∑
k∈T

#Ai, k ≥ #Ai −
cδ2y

2s

≥ (1 +
cδ

2
)δ

y

s
≥ (1 +

cδ

2
)δ

∑
k∈T

Jk.

Thus there exists k ∈ T such that

#Ai, k ≥ (1 +
cδ

2
)δJk.
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Proof of Roth’s Theorem

Now define N ′ = [Jk] and

A′ =
{
j : 1 ≤ j ≤ N ′, αi, k + jr − kN ∈ A

}
,

a subset of {1, 2, . . . , N ′}, so that

#A′ = #Ai, k ≥ (1 +
cδ

2
)δN ′.

Note that

N ′ ≥ min
{

N

r
, J0, JK

}
� min

{
N

r
,

cδ2y

4s

}
� min

{
N

R
,

δ2N

lS

}
�
√

δ3N.

Hence A′ contains a non-trivial 3-AP.
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Proof of Roth’s Theorem

If u + v = 2w with u, v, w ∈ A′, then

a = αi, k + ur − kN,

b = αi, k + vr − kN,

c = αi, k + wr − kN.

So
a + b = 2c,

contradicting the supposition that A contains no non-trivial 3-AP.

Therefore the theorem is true for δ, if it is true for δ(1 + cδ) with some
c > 0.
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Remark 2

In Roth’s proof, one can take

δ ≈ 1
log log N

.

This was improved by Szemerédi to

δ ≈ 1
exp(

√
log log N)

.
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Remark 2

In the last eighties, both Heath-Brown and Szemerédi showed that one can
take

δ ≈ 1
(log N)c

for some small c > 0.

The best result known, due to Bourgain, is that one can take

δ ≈

√
log log N

log N
.
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4. Behrend’s Theorem

In the other direction, we have

Theorem 6 (Behrend)

For any sufficiently large integer N , there exists a subset A ⊆ {1, . . . , N}
with

#A ≥ N

exp(c
√

log N)
,

such that A has no non-trivial 3-AP.
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Proof of Behrend’s Theorem

Let
T = {(x0, . . . , xn−1) ∈ Zn : 0 ≤ xi < d}

and
Tk =

{
x ∈ T : |x|2 = k

}
.

We have |T | = dn, and |x|2 < nd2 for every x ∈ T , so there exists a

positive integer k for which Tk has ≥ dn−2

n elements. Let

A =
{
x0 + x1(2d) + · · ·+ xn−1(2d)n−1 : x ∈ Tk

}
.
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Proof of Behrend’s Theorem

If a + b = 2c with a, b, c ∈ A, then

a0 + b0 ≡ 2c0 (mod 2d).

Since −2d < a0 + b0 − 2c0 < 2d,

a0 + b0 = 2c0.

Similarly one can prove that

a1 + b1 = 2c1,

and indeed
ai + bi = 2ci

for each i ≥ 0.
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Proof of Behrend’s Theorem

Then
a + b = 2c for a, b, c ∈ Tk.

So c is the central point in the line segment between points a and b,
which is impossible as Tk is a sphere.

Therefore A contains no non-trivial 3-AP.
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Proof of Behrend’s Theorem

The elements of A are all

≤ (d− 1)(1 + 2d + · · ·+ (2d)n−1) < (2d)n.

For any sufficiently large integer N , we try to take n and d such that
(2d)n ≤ N, (2d)n ∼ N with n2nd2 as small as possible.

We take

n = [
√

log N ] and d =
[N

1
n

2
]
,

so that

#A ≥ (2d)n

n2nd2
≥ N

exp(c
√

log N)
.
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Remark 3

For any sufficiently large integer N , we shall take n and d such that
(2d)n ≤ N, (2d)n ∼ N with n2nd2 as small as possible.

Firstly we take

d =
[N

1
n

2
]
,

so that

log d ∼ log N

n
.

Since n = o(2n) is neglected, we make 2nd2 or

n log 2 + 2 log d ∼ n log 2 +
2 log N

n

as small as possible.
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Remark 3

Then we can see n = [
√

log N ] is a suitable choice. In such choice of N ,

d ∼ exp(
√

log N).

It is easy to check that (2d)n ≤ N, (2d)n ∼ N .
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