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Theorem 2.1 (Riemann, 1859). The meromorphic function ζ(s) =
∞∑

n=1

1
ns defined for Re(s) >

1 extends analytically to all of C and satisfies

π−
s
2 Γ

(s
2

)
ζ(s) = π−

1−s
2 Γ

(
1 − s

2

)
ζ(1 − s).

In 1910’s, Hecke generalized Riemann’s work to certain zeta functions associated to number
fields. Let F be a number field and OF its ring of integers. We shall refer to a non-archimedean
place v of F as a prime ideal p ⊂ OF . For a prime ideal p, Np is the number of elements in the
finite field OF /p. The Hecke character is defined as the product of a family of homomorphisms
χv : F×

v → C×, i.e.,

χ(x) =
∏

v

χv(x).

Note that χ is trivial on F× and for almost all v, χv are unramified.

Theorem 2.2 (Hecke, 1916). The function

L(s, χ) =
∏

p

(
1 −

χ(p)

(Np)s

)−1

defined for Re(s) > 1 extends analytically to all of C and satisfies

AsΓ (s, χ)L(s, χ) = W (χ)A1−sΓ
(
1 − s, χ∨

)
L(1 − s, χ∨),

where A is a constant and W (χ) is the root number.

In 1950, Tate made use of harmonic analysis on the Adele groups to reprove both the analytic
continuation and the functional equation of L(s, χ). Let’s recall some notation. Obviously,
Q ⊂ Q∞ = R and Q ⊂ Qp for any finite p. We will denote

A =
′∏

p6∞

Qp, A× =
′∏

p6∞

Q×
p .

Here the restricted product means that, for almost all p, ap ∈ Zp. For any a = (a∞, a2, a3, a5, . . .) ∈
A, |a|A =

∏
p6∞ |ap|p. The corresponding Haar measures on A and A× are dx =

∏
v dxv and

d×x =
∏

v d
×xv, respectively. Moreover, we normalize matters such that

d×xp = mp

dxp

|xp|p
, mp =

{
1 if p = ∞,(
1 − p−1

)−1
if p <∞.

This normalization gives Z×
p volume 1 with respect to the multiplicative measure for finite p.

Let c be a quasi-character of A×, that is, a continuous homomorphism c : A× → C×, which
is trivial on Q×. The quasi character c can be written as c = c0| · |

s
A, where c0 : A× → S1 is a
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unitary character. Finally, for any f ∈ S(A), the Schwartz-Bruhat space, we define(see below)
f(a) =

∏
p6∞ fp(ap), fp ∈ S(Qp), a = (a∞, a2, a3, a5, . . .) ∈ A.

Tate considered the zeta integrals

ζ(f, c) =

∫

A×

f(a)c(a) d×a.

Theorem 2.3 (Tate, 1950). We have

ζ(f, c) = ζ(f̂ , c∨),

where f̂ is the Fourier transform of f in the adelic sense and c∨(a) = c0(a)|a|
1−s
A .

From the following lemma, we see that Tate’s theorem recovers Riemann’s theorem.

Lemma 2.4. Take c(a) = |a|sA. If we choose f∞(x) = e−πx2

, and

fp(x) = 1Zp
(x) =

{
1 if |x|p 6 1,
0 otherwise.

Then

ζ(f, c) = ξ(s) = π−
s
2 Γ

(s
2

)
ζ(s).

Proof. Folding the integral we have

ζ(f, c) =

∫

A×

f(a)c(a) d×a =

∫

Q×\A×

|a|sA
∑

q∈Q×

f(qa) d×a. (2.1)

The strong approximation principle states that (0,∞)×Ẑ× is a fundamental domain for Q×\A×,

where Ẑ× =
∏

p<∞ Z×
p . We claim that f(qa) ≡ 0 if the rational q is not already in Z×.

Indeed, otherwise for any prime p which divides the denominator of q, the p-adic valuation
|qa|p = |q|p > 1. Here we have used the fact that |a|p = 1 for a ∈ Z×

p . Thus (2.1) becomes

∫

(0,∞)×Ẑ×

|a|sA




∑

n∈Z×

f(na)



 d×a. (2.2)

Now fp ((na)p) ≡ 1 for all p < ∞, and so the integrand is independent of Ẑ× factor, which has
volume 1 under the Haar measure. So (2.2) becomes

∫ ∞

0
as
∞




∑

n 6=0

e−π2n2a2
∞



 d×a∞. (2.3)

Recall that

ξ(s) = π−
s
2 Γ

(s
2

)
ζ(s) =

∫ ∞

0
xs




∑

n 6=0

e−π2n2x2



 d×x. (2.4)

It follows from (2.3) and (2.4) that Tate’s and Riemann’s integrals match for ζ(s). �

Remark 1. Another approach to prove Lemma 2.4 is as follows. ζ(f, c) can be factored as

∏

p6∞

∫

Q
×

p

fp(x)|x|
s
p d

×x =

(∫

R×

e−π|x|2|x|s d×x

)
·

∏

p<∞

∫

Zp

|xp|
s
p d

×xp. (2.5)

2



We compute
∫

R×

e−π|x|2|x|s d×x =

∫

R

e−π|x|2|x|s
dx

|x|
= π−

s
2 Γ

(s
2

)
.

On the other hand, the p-adic integral may actually be broken up over a collection of “shells”
pkZ×

p = {|xp|p = p−k}, k > 0, to give the geometric series
∑

k>0

p−ks =
(
1 − p−s

)−1
.

Thus
∏

p<∞

∫

Zp

|xp|
s
p d

×xp =
∏

p<∞

(
1 − p−s

)−1
= ζ(s).

Combining these results with (2.5) we get

ζ(f, c) = π−
s
2 Γ

(s
2

)
ζ(s).

To introduce the local theory of Tate, we need some more notation. Let F be a local field
with valuation | · |. Let dx be the additive Haar measure normalized so that

∫
OF

dx = 1. Let

d×x be the multiplicative Haar measure and d×x = m dx
|x| , where m is a constant. We take a

function c ∈ Hom(F×,C×) = {quasi-characters of F×} = χ(F×). Note that Hom(F×, S1) =
{characters of F×}, where S1 is the unit circle.

Fact Every c ∈ χ(F×) can be written as c(x) = χ(x)|x|s, where χ is a unitary character.

We will say that a complex-valued function on F (or F×) is smooth if it is C∞ for F
Archimedean, and locally constant otherwise. In the Archimedean case, a Schwartz function

f on F is a smooth function that goes to zero rapidly at infinity. A Schwartz-Bruhat function is
a Schwartz function of F is Archimedean, and a smooth function with compact support in the
non-Archimedean case. We let S(F ) denote the space of Schwartz-Bruhat functions.

Given f ∈ S(F ) and the fixed additive character ψ, we may define the Fourier transform of
f by

f̂(y) =

∫

F

f(x)ψ(xy) dx.

This maps S(F ) onto itself. Here we assume that ψ ∈ Hom(F, S1) = F̂ , i.e. every character is
of the type x 7→ ψa(x) = ψ(ax).

Theorem 2.5 (Tate’s local theorem). Take

ζ(f, c) := ζ(f, χ, s) =

∫

F

f(x)c(x) d×x

and let c∨ = c−1| · |. Then

(A) This integral converges for Re(s) = σ > 0.
(B) If σ ∈ (0, 1), there is a functional equation

ζ(f̂ , c∨) = γ(χ,ψ, dx)ζ(f, c)

for some γ(χ,ψ, dx) independent of f , which is meromorphic as a function of s.
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(C) For all s ∈ C, there exists a nonzero factor ε(χ,ψ, dx) such that

γ(χ,ψ, dx) = ε(χ,ψ, dx)
L(1 − s, χ−1)

L(s, χ)
.
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