Langlands picture of automorphic forms and L-functions

— Lecture series at Shandong University, Mar. 2009

STEPHEN GELBART

 $\S2$ Tate's thesis (Mar. 6)

Theorem 2.1 (Riemann, 1859). The meromorphic function $\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$ defined for $\operatorname{Re}(s) > 1$ extends analytically to all of \mathbb{C} and satisfies

$$\pi^{-\frac{s}{2}}\Gamma\left(\frac{s}{2}\right)\zeta(s) = \pi^{-\frac{1-s}{2}}\Gamma\left(\frac{1-s}{2}\right)\zeta(1-s).$$

In 1910's, Hecke generalized Riemann's work to certain zeta functions associated to number fields. Let F be a number field and \mathcal{O}_F its ring of integers. We shall refer to a non-archimedean place v of F as a prime ideal $\mathfrak{p} \subset \mathcal{O}_F$. For a prime ideal \mathfrak{p} , $N\mathfrak{p}$ is the number of elements in the finite field $\mathcal{O}_F/\mathfrak{p}$. The Hecke character is defined as the product of a family of homomorphisms $\chi_v: F_v^{\times} \to C^{\times}$, i.e.,

$$\chi(x) = \prod_{v} \chi_v(x).$$

Note that χ is trivial on F^{\times} and for almost all v, χ_v are unramified.

Theorem 2.2 (Hecke, 1916). The function

$$L(s,\chi) = \prod_{\mathfrak{p}} \left(1 - \frac{\chi(\mathfrak{p})}{(N\mathfrak{p})^s} \right)^{-1}$$

defined for $\operatorname{Re}(s) > 1$ extends analytically to all of \mathbb{C} and satisfies

$$A^{s}\Gamma\left(s,\chi\right)L(s,\chi) = W(\chi)A^{1-s}\Gamma\left(1-s,\chi^{\vee}\right)L(1-s,\chi^{\vee}),$$

where A is a constant and $W(\chi)$ is the root number.

In 1950, Tate made use of harmonic analysis on the Adele groups to reprove both the analytic continuation and the functional equation of $L(s,\chi)$. Let's recall some notation. Obviously, $\mathbb{Q} \subset \mathbb{Q}_{\infty} = \mathbb{R}$ and $\mathbb{Q} \subset \mathbb{Q}_p$ for any finite p. We will denote

$$\mathbb{A} = \prod_{p \leqslant \infty}^{\prime} \mathbb{Q}_p, \qquad \qquad \mathbb{A}^{\times} = \prod_{p \leqslant \infty}^{\prime} \mathbb{Q}_p^{\times}.$$

Here the restricted product means that, for almost all $p, a_p \in \mathbb{Z}_p$. For any $a = (a_{\infty}, a_2, a_3, a_5, \ldots) \in \mathbb{A}$, $|a|_{\mathbb{A}} = \prod_{p \leq \infty} |a_p|_p$. The corresponding Haar measures on \mathbb{A} and \mathbb{A}^{\times} are $dx = \prod_v dx_v$ and $d^{\times}x = \prod_v d^{\times}x_v$, respectively. Moreover, we normalize matters such that

$$d^{\times}x_p = m_p \frac{dx_p}{|x_p|_p}, \qquad m_p = \begin{cases} 1 & \text{if } p = \infty, \\ (1 - p^{-1})^{-1} & \text{if } p < \infty. \end{cases}$$

This normalization gives \mathbb{Z}_p^{\times} volume 1 with respect to the multiplicative measure for finite p.

Let c be a quasi-character of \mathbb{A}^{\times} , that is, a continuous homomorphism $c : \mathbb{A}^{\times} \to \mathbb{C}^{\times}$, which is trivial on \mathbb{Q}^{\times} . The quasi character c can be written as $c = c_0 |\cdot|_{\mathbb{A}}^s$, where $c_0 : \mathbb{A}^{\times} \to S^1$ is a unitary character. Finally, for any $f \in \mathcal{S}(\mathbb{A})$, the Schwartz-Bruhat space, we define (see below) $f(a) = \prod_{p \leqslant \infty} f_p(a_p), f_p \in \mathcal{S}(\mathbb{Q}_p), a = (a_\infty, a_2, a_3, a_5, \ldots) \in \mathbb{A}.$

Tate considered the zeta integrals

$$\zeta(f,c) = \int_{\mathbb{A}^{\times}} f(a)c(a) \, d^{\times}a.$$

Theorem 2.3 (Tate, 1950). We have

$$\zeta(f,c) = \zeta(\widehat{f}, c^{\vee}),$$

where \widehat{f} is the Fourier transform of f in the adelic sense and $c^{\vee}(a) = \overline{c_0(a)} |a|_{\mathbb{A}}^{1-s}$.

From the following lemma, we see that Tate's theorem recovers Riemann's theorem.

Lemma 2.4. Take $c(a) = |a|_{\mathbb{A}}^s$. If we choose $f_{\infty}(x) = e^{-\pi x^2}$, and $f_p(x) = 1_{\mathbb{Z}_p}(x) = \begin{cases} 1 & \text{if } |x|_p \leq 1, \\ 0 & \text{otherwise.} \end{cases}$

Then

$$\zeta(f,c) = \xi(s) = \pi^{-\frac{s}{2}} \Gamma\left(\frac{s}{2}\right) \zeta(s).$$

Proof. Folding the integral we have

$$\zeta(f,c) = \int_{\mathbb{A}^{\times}} f(a)c(a) \, d^{\times}a = \int_{\mathbb{Q}^{\times} \setminus \mathbb{A}^{\times}} |a|_{\mathbb{A}}^{s} \sum_{q \in \mathbb{Q}^{\times}} f(qa) \, d^{\times}a.$$
(2.1)

The strong approximation principle states that $(0, \infty) \times \widehat{\mathbb{Z}}^{\times}$ is a fundamental domain for $\mathbb{Q}^{\times} \setminus \mathbb{A}^{\times}$, where $\widehat{\mathbb{Z}}^{\times} = \prod_{p < \infty} \mathbb{Z}_p^{\times}$. We claim that $f(qa) \equiv 0$ if the rational q is not already in \mathbb{Z}^{\times} . Indeed, otherwise for any prime p which divides the denominator of q, the p-adic valuation $|qa|_p = |q|_p > 1$. Here we have used the fact that $|a|_p = 1$ for $a \in \mathbb{Z}_p^{\times}$. Thus (2.1) becomes

$$\int_{(0,\infty)\times\widehat{\mathbb{Z}}^{\times}} |a|_{\mathbb{A}}^{s} \left(\sum_{n\in\mathbb{Z}^{\times}} f(na)\right) d^{\times}a.$$
(2.2)

Now $f_p((na)_p) \equiv 1$ for all $p < \infty$, and so the integrand is independent of $\widehat{\mathbb{Z}}^{\times}$ factor, which has volume 1 under the Haar measure. So (2.2) becomes

$$\int_0^\infty a_\infty^s \left(\sum_{n\neq 0} e^{-\pi^2 n^2 a_\infty^2}\right) d^{\times} a_\infty.$$
(2.3)

Recall that

$$\xi(s) = \pi^{-\frac{s}{2}} \Gamma\left(\frac{s}{2}\right) \zeta(s) = \int_0^\infty x^s \left(\sum_{n \neq 0} e^{-\pi^2 n^2 x^2}\right) d^{\times} x.$$
(2.4)

It follows from (2.3) and (2.4) that Tate's and Riemann's integrals match for $\zeta(s)$.

Remark 1. Another approach to prove Lemma 2.4 is as follows. $\zeta(f, c)$ can be factored as

$$\prod_{p\leqslant\infty}\int_{\mathbb{Q}_p^{\times}} f_p(x)|x|_p^s d^{\times}x = \left(\int_{\mathbb{R}^{\times}} e^{-\pi|x|^2}|x|^s d^{\times}x\right) \cdot \prod_{p<\infty}\int_{\mathbb{Z}_p} |x_p|_p^s d^{\times}x_p.$$
(2.5)

We compute

$$\int_{\mathbb{R}^{\times}} e^{-\pi |x|^2} |x|^s \, d^{\times} x = \int_{\mathbb{R}} e^{-\pi |x|^2} |x|^s \, \frac{dx}{|x|} = \pi^{-\frac{s}{2}} \Gamma\left(\frac{s}{2}\right)$$

On the other hand, the *p*-adic integral may actually be broken up over a collection of "shells" $p^k \mathbb{Z}_p^{\times} = \{|x_p|_p = p^{-k}\}, k \ge 0$, to give the geometric series

$$\sum_{k \ge 0} p^{-ks} = (1 - p^{-s})^{-1}$$

Thus

$$\prod_{p < \infty} \int_{\mathbb{Z}_p} |x_p|_p^s d^{\times} x_p = \prod_{p < \infty} \left(1 - p^{-s}\right)^{-1} = \zeta(s).$$

Combining these results with (2.5) we get

$$\zeta(f,c)=\pi^{-\frac{s}{2}}\Gamma\left(\frac{s}{2}\right)\zeta(s).$$

To introduce the local theory of Tate, we need some more notation. Let F be a local field with valuation $|\cdot|$. Let dx be the additive Haar measure normalized so that $\int_{\mathcal{O}_F} dx = 1$. Let $d^{\times}x$ be the multiplicative Haar measure and $d^{\times}x = m\frac{dx}{|x|}$, where m is a constant. We take a function $c \in \operatorname{Hom}(F^{\times}, \mathbb{C}^{\times}) = \{$ quasi-characters of $F^{\times}\} = \chi(F^{\times})$. Note that $\operatorname{Hom}(F^{\times}, S^1) = \{$ characters of $F^{\times}\}$, where S^1 is the unit circle.

Fact Every $c \in \chi(F^{\times})$ can be written as $c(x) = \chi(x)|x|^s$, where χ is a unitary character.

We will say that a complex-valued function on F (or F^{\times}) is smooth if it is \mathcal{C}^{∞} for FArchimedean, and locally constant otherwise. In the Archimedean case, a Schwartz function f on F is a smooth function that goes to zero rapidly at infinity. A Schwartz-Bruhat function is a Schwartz function of F is Archimedean, and a smooth function with compact support in the non-Archimedean case. We let $\mathcal{S}(F)$ denote the space of Schwartz-Bruhat functions.

Given $f \in \mathcal{S}(F)$ and the fixed additive character ψ , we may define the Fourier transform of f by

$$\widehat{f}(y) = \int_F f(x)\psi(xy)\,dx.$$

This maps $\mathcal{S}(F)$ onto itself. Here we assume that $\psi \in \text{Hom}(F, S^1) = \widehat{F}$, i.e. every character is of the type $x \mapsto \psi_a(x) = \psi(ax)$.

Theorem 2.5 (Tate's local theorem). Take

$$\zeta(f,c) := \zeta(f,\chi,s) = \int_F f(x)c(x) \, d^{\times}x$$

and let $c^{\vee} = c^{-1} |\cdot|$. Then

(A) This integral converges for $Re(s) = \sigma > 0$.

(B) If $\sigma \in (0,1)$, there is a functional equation

$$\zeta(\widehat{f},c^{\vee}) = \gamma(\chi,\psi,dx)\zeta(f,c)$$

for some $\gamma(\chi, \psi, dx)$ independent of f, which is meromorphic as a function of s.

(C) For all $s \in \mathbb{C}$, there exists a nonzero factor $\varepsilon(\chi, \psi, dx)$ such that

$$\gamma(\chi,\psi,dx) = \varepsilon(\chi,\psi,dx) \frac{L(1-s,\chi^{-1})}{L(s,\chi)}.$$