Algebraic Number Theory Final Exam School of Mathematics, Shandong University

Instructions: This is a closed book, closed notes exam! Show all details in your proof in English. You have three hours to complete this test. Good luck! 14:00-17:00 June 28, 2012

1, Let $k = \mathbb{Q}(\sqrt{-1}, \sqrt{5})$. Show that

(1) $\{1, \sqrt{-1}, \frac{1+\sqrt{5}}{2}, \frac{\sqrt{-1}+\sqrt{-5}}{2}\}$ is the integral base of \mathfrak{o}_k .

(2) There are only the rational primes 2 and 5 ramified.

(3) Find the decomposition field, inertia field, decomposition group and inertia group of (2) for $k = \mathbb{Q}(\sqrt{-1}, \sqrt{5})$ over \mathbb{Q} .

2, Let $k = \mathbb{Q}(\sqrt{10})$.

(1), Find the Minkowski constant $M_k = \left(\frac{4}{\pi}\right)^{r_2} \frac{n!}{n^n} \sqrt{d_k}$.

(2), Find the class group C_k and the class number h_k .

3, Let $k = \mathbb{Q}(\alpha)$ with α a root of $f(x) = x^4 - 14$.

(1), Show that the prime 11 has three extensions to prime $\mathfrak{p}_1, \mathfrak{p}_2, \mathfrak{p}_3$ of k and compute the degrees of the extensions $[k_{\mathfrak{p}_1} : \mathbb{Q}_{11}], [k_{\mathfrak{p}_2} : \mathbb{Q}_{11}]$ and $[k_{\mathfrak{p}_3} : \mathbb{Q}_{11}]$.

(2), The prime 13 has four extensions to primes of k.

(3), Show the prime 5 has two extensions to primes $\mathfrak{p}_1, \mathfrak{p}_2$ of k and compute the degree of $[k_{\mathfrak{p}_1} : \mathbb{Q}_5]$ and $[k_{\mathfrak{p}_2} : \mathbb{Q}_5]$.

4, Let $k_{\mathfrak{p}}$ be a \mathfrak{p} -adic number field and π be a uniformizing parameter..

(1) The local field $k_{\mathfrak{p}}$ contains the (q-1)th roots of 1 where $q = N\mathfrak{p}$.

(2) Let μ_{q-1} be the group of roots of unity of order q-1. Then

$$k_{\mathfrak{p}}^{\times} = \langle \pi \rangle \times \mu_{q-1} \times (1 + \mathfrak{p}_{\mathfrak{p}}).$$

5. Let \mathfrak{p} be a prime ideal of a number field k and $k_{\mathfrak{p}}$ be the local field at \mathfrak{p} . Let dx and $d^{\times}x$ be Haar measures of $k_{\mathfrak{p}}$ and $k_{\mathfrak{p}}^{\times}$ such that $\operatorname{vol}(\mathfrak{o}_{\mathfrak{p}}) = \int_{\mathfrak{o}_{\mathfrak{p}}} dx = 1$ and $\operatorname{vol}(U_{\mathfrak{p}}) = \int_{U_{\mathfrak{p}}} d^{\times}x = 1$ respectively. Let $|\cdot|_{\mathfrak{p}}$ be the normalized valuation of k at \mathfrak{p} .

(1) Show that $|\alpha|_{\mathfrak{p}} = \int_{\alpha \mathfrak{o}_{\mathfrak{p}}} dx$, i.e., $d\alpha x = |\alpha|_{\mathfrak{p}} dx$, for any $\alpha \in k_{\mathfrak{p}}^{\times}$.

(2) Show that
$$d^{\times}x = \frac{q}{q-1}\frac{dx}{|x|}$$
 where $q = N\mathfrak{p}$.

(3) Let $\chi_p(\alpha) = e(\lambda_p(\alpha))$ be a standard additive character on \mathbb{Q}_p . Compute

$$\int_{x\in\mathbb{Q}_p,\ |x|_p=p^{-k}}\chi_p(x)\mathrm{d}x.$$

6, Compute $\zeta_k(0)$ for imaginary quadratic $k = \mathbb{Q}(\sqrt{-d})$ where d > 0 is a square free integer. In particular, compute $\zeta(0)$ for the Reimann zeta-function.