
ar
X

iv
:m

at
h/

04
12

22
0v

1 
 [

m
at

h.
N

T
] 

 1
0 

D
ec

 2
00

4

An invitation to additive prime number theory

A. V. Kumchev and D. I. Tolev

March 31, 2007

Abstract

The main purpose of this survey is to introduce the inexperienced reader to additive
prime number theory and some related branches of analytic number theory. We state
the main problems in the field, sketch their history and the basic machinery used to
study them, and try to give a representative sample of the directions of current research.
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1 Introduction

Additive number theory is the branch of number theory that studies the representations of
natural numbers as sums of integers subject to various arithmetic restrictions. For example,
given a sequence of integers

A = {a1 < a2 < a3 < · · · }
one often asks what natural numbers can be represented as sums of a fixed number of
elements of A; that is, for any fixed s ∈ N, one wants to find the natural numbers n such
that the diophantine equation

(1.1) x1 + · · · + xs = n

has a solution in x1, . . . , xs ∈ A. The sequence A may be described in some generality (say,
one may assume that A contains “many” integers), or it may be a particular sequence of
some arithmetic interest (say, A may be the sequence of kth powers, the sequence of prime
numbers, the values taken by a polynomial F (X) ∈ Z[X] at the positive integers or at the
primes, etc.). In this survey, we discuss almost exclusively problems of the latter kind. The
main focus will be on two questions, known as Goldbach’s problem and the Waring–Goldbach
problem, which are concerned with representations as sums of primes and powers of primes,
respectively.

1.1 Goldbach’s problem

Goldbach’s problem appeared for the first time in 1742 in the correspondence between Gold-
bach and Euler. In modern language, it can be stated as follows.

1

http://arxiv.org/abs/math/0412220v1


Goldbach’s Conjecture. Every even integer n ≥ 4 is the sum of two primes, and every

odd integer n ≥ 7 is the sum of three primes.

The two parts of this conjecture are known as the binary Goldbach problem and the
ternary Goldbach problem, respectively. Clearly, the binary conjecture is the stronger one.
It is also much more difficult.

The first theoretical evidence in support of Goldbach’s conjecture was obtained by Brun [27],
who showed that every large even integer is the sum of two integers having at most nine
prime factors. Brun also obtained an upper bound of the correct order for the number of
representations of a large even integer as the sum of two primes.

During the early 1920s Hardy and Littlewood [67]–[72] developed the ideas in an earlier
paper by Hardy and Ramanujan [73] into a new analytic method in additive number theory.
Their method is known as the circle method. In 1923 Hardy and Littlewood [69, 71] applied
the circle method to Goldbach’s problem. Assuming the Generalized Riemann Hypothesis1

(GRH), they proved that all but finitely many odd integers are sums of three primes and
that all but O

(

x1/2+ε
)

even integers n ≤ x are sums of two primes. (Henceforth, ε denotes
a positive number which can be chosen arbitrarily small if the implied constant is allowed
to depend on ε.)

During the 1930s Schnirelmann [201] developed a probabilistic approach towards prob-
lems in additive number theory. Using his method and Brun’s results, he was able to prove
unconditionally that there exists a positive integer s such that every sufficiently large integer
is the sum of at most s primes. Although the value of s arising from this approach is much
larger than the conjectured s = 3, Schnirelmann’s result represented a significant achieve-
ment, as it defeated the popular belief at the time that the solution of Goldbach’s problem
must depend on GRH. (Since its first appearance, Schnirelmann’s method has been polished
significantly. In particular, the best result to date obtained in this fashion by Ramare [193]
states that one can take s = 7.)

In 1937 I. M. Vinogradov [236] found an ingenious new method for estimating sums over
primes, which he applied to the exponential sum

(1.2) f(α) =
∑

p≤n

e(αp),

where α is real, p denotes a prime, and e(α) = exp (2πiα). Using his estimate for f(α),
Vinogradov was able to give a new, unconditional proof of the result of Hardy and Littlewood
on the ternary Goldbach problem. His result is known as Vinogradov’s three prime theorem.

Theorem 1 (Vinogradov, 1937). For a positive integer n, let R(n) denote the number of

representations of n as the sum of three primes. Then

(1.3) R(n) =
n2

2(log n)3
S(n) + O

(

n2(log n)−4
)

,

1An important conjecture about certain Dirichlet series; see §2.2 for details.
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where

(1.4) S(n) =
∏

p|n

(

1 − 1

(p − 1)2

)

∏

p∤n

(

1 +
1

(p − 1)3

)

.

In particular, every sufficiently large odd integer is the sum of three primes.

The products in (1.4) are over the primes dividing n and over those not dividing n,
respectively. In particular, when n is even, we have S(n) = 0, making (1.3) trivial. On the
other hand, when n is odd, we have S(n) ≥ 1. We describe the proof of Theorem 1 in §3.1.

It should be noted that the independence of GRH in Theorem 1 comes at the price of
a mind-boggling implied constant. If one avoids O-notation and makes all the constants
explicit, one finds that the original (GRH-dependent) work of Hardy and Littlewood estab-
lishes the ternary Goldbach conjecture for n ≥ 1050, whereas Vinogradov’s method requires
n ≥ 106 800 000 and even its most refined version available today (see Liu and Wang [163])
requires n ≥ 101 346. To put these numbers in perspective, we remark that even the bound
1050 is beyond hope of “checking the remaining cases by a computer”. In fact, only recently
have Deshouillers et al. [51] proved that if GRH is true, the ternary Goldbach conjecture
holds for all odd n ≥ 7.

In 1938, using Vinogradov’s method, Chudakov [42], van der Corput [43], and Ester-
mann [54] each showed that almost all even integers n ≤ x are sums of two primes. More
precisely, they proved that for any A > 0 we have

(1.5) E(x) = O
(

x(log x)−A
)

,

where E(x) denotes the number of even integers n ≤ x that cannot be represented as the
sum of two primes. The first improvement on (1.5) was obtained by Vaughan [220]. It was
followed by a celebrated work by Montgomery and Vaughan [173] from 1975, in which they
established the existence of an absolute constant δ > 0 such that

(1.6) E(x) = O
(

x1−δ
)

.

The first to compute an explicit numerical value for δ were Chen and Pan [36]. They showed
that the method of Montgomery and Vaughan yields (1.6) with δ = 0.01. Subsequently,
this result has been sharpened by several authors and currently (1.6) is known to hold with
δ = 0.086 (see Li [136]). In June 2004, Pintz [186] announced a further improvement on
(1.6). He has established the above bound with δ = 1

3
and can also show that for all but

O(x3/5+ε) even integers n ≤ x either n or n − 2 is the sum of two primes.
One may also think of the binary Goldbach conjecture as a claim about the primes in

the sequence

(1.7) A = A(n) = {n − p : p prime number, 2 < p < n} ,

namely, that such primes exist for all even n ≥ 6. Denote by Pr an integer having at most
r prime factors, counted with their multiplicities, and refer to such a number as an almost
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prime of order r (thus, Brun’s result mentioned above asserts that every large even n can be
represented in the form n = P9 +P ′

9). In 1947 Rényi [195] proved that there is a fixed integer
r such that the sequence A contains a Pr-number when n is sufficiently large. Subsequent
work by many mathematicians reduced the value of r in Rényi’s result almost to the possible
limit and fell just short of proving the binary Goldbach conjecture. The best result to date
was obtained by Chen [35].

Theorem 2 (Chen, 1973). For an even integer n, let r(n) denote the number of represen-

tations of n in the form n = p + P2, where p is a prime and P2 is an almost prime of order

2. There exists an absolute constant n0 such that if n ≥ n0, then

r(n) > 0.67
∏

p>2

(

1 − 1

(p − 1)2

)

∏

p>2
p|n

(

p − 1

p − 2

)

n

(log n)2
.

In particular, every sufficiently large even integer n can be represented in the form n = p+P2.

1.2 Waring’s problem

Before proceeding with the Waring–Goldbach problem, we will make a detour to present the
most important results in Waring’s problem, as those results and the work on Goldbach’s
problem have been the main motivation behind the Waring–Golbach problem. It was prob-
ably the ancient Greeks who first observed that every positive integer is the sum of four
integer squares, but it was not until 1770 that a complete proof of this remarkable fact was
given by Lagrange. Also in 1770, Waring proposed a generalization of the four square theo-
rem that became known as Waring’s problem and arguably led to the emergence of additive
number theory. In modern terminology, Waring’s conjecture states that for every integer
k ≥ 2 there exists an integer s = s(k) such that every natural number n is the sum of at
most s kth powers of natural numbers. Several special cases of this conjecture were settled
during the 19th century, but the complete solution eluded mathematicians until 1909, when
Hilbert [95] proved the existence of such an s for all k by means of a difficult combinatorial
argument.

Let g(k) denote the least possible s as above. Hilbert’s method produced a very poor
bound for g(k). Using the circle method, Hardy and Littlewood were able to improve greatly
on Hilbert’s bound for g(k). In fact, through the efforts of many mathematicians, the circle
method in conjunction with elementary and computational arguments has led to a nearly
complete evaluation of g(k). In particular, we know that g(k) is determined by certain special
integers n < 4k that can only be represented as sums of a large number of kth powers of 1,
2 and 3 (see [228, §1.1] for further details on g(k)).

A much more difficult question, and one that leads to a much deeper understanding of
the additive properties of kth powers, is that of estimating the function G(k), defined as the
least s such that every sufficiently large positive integer n is the sum of s kth powers. This
function was introduced by Hardy and Littlewood [70], who obtained the bound

(1.8) G(k) ≤ (k − 2)2k−1 + 5.
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In fact, they proved more than that. Let Ik,s(n) denote the number of solutions of the
diophantine equation

(1.9) xk
1 + xk

2 + · · · + xk
s = n

in x1, . . . , xs ∈ N. Hardy and Littlewood showed that if s ≥ (k − 2)2k−1 + 5, then

(1.10) Ik,s(n) ∼ Γs
(

1 + 1
k

)

Γ
(

s
k

) Sk,s(n)ns/k−1 as n → ∞,

where Γ stands for Euler’s gamma-function and Sk,s(n) is an absolutely convergent infinite
series, called the singular series, such that

Sk,s(n) ≥ c1(k, s) > 0.

While the upper bound (1.8) represents a tremendous improvement over Hilbert’s result,
it is still quite larger than the trivial lower bound G(k) ≥ k + 1.2 During the mid-1930s
I. M. Vinogradov introduced several refinements of the circle method that allowed him to
obtain a series of improvements on (1.8) for large k. In their most elaborate version, Vino-
gradov’s methods yield a bound of the form3

G(k) ≤ 2k(log k + O(log log k)).

First published by Vinogradov [240] in 1959, this bound withstood any significant improve-
ment until 1992, when Wooley [245] proved that

G(k) ≤ k(log k + log log k + O(1)).

The latter is the sharpest bound to date for G(k) when k is large. For smaller k, one can
obtain better results by using more specialized techniques (usually refinements of the circle
method). The best known bounds for G(k), 3 ≤ k ≤ 20, are of the form G(k) ≤ F (k), with
F (k) given by Table 1 below.

k 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

F (k) 7 16 17 24 33 42 50 59 67 76 84 92 100 109 117 125 134 142

Table 1. Bounds for G(k), 3 ≤ k ≤ 20.

2Let X be large. If n ≤ X , any solution of (1.9) must satisfy 1 ≤ x1, . . . , xs ≤ X1/k. There at most Xs/k

such s-tuples, which yield at most (1/s! + o(1))Xs/k distinct sums xk
1

+ · · · + xk
s . Thus, when s ≤ k, there

are not enough sums of s kth powers to represent all the integers.
3In this and similar results appearing later, one can obtain an explicit expressions in place of the O-terms,

but those are too complicated to state here.
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With the exception of the bound G(3) ≤ 7, all of these results have been obtained by an
iterative version of the circle method that originated in the work of Davenport [46, 48]
and Davenport and Erdös [50]. The bound for G(3) was established first by Linnik [141]
and until recently lay beyond the reach of the circle method. The result on G(4) is due to
Davenport [47], and in fact states that G(4) = 16. This is because 16 biquadrates are needed
to represent integers of the form n = 31 · 16r, r ∈ N. Other than Lagrange’s four squares
theorem, this is the only instance in which the exact value of G(k) is known. However,
Davenport [47] also proved that if s ≥ 14, all sufficiently large integers n ≡ r (mod 16),
1 ≤ r ≤ s, can be written as the sum of s biquadrates; Kawada and Wooley [120] obtained
a similar result for as few as 11 biquadrates. The remaining bounds in Table 1 appear in a
series of recent papers by Vaughan and Wooley [229]–[232].

A great deal of effort has also been dedicated to estimating the function G̃(k), which
represents the least s for which the asymptotic formula (1.10) holds. For large k, Ford [57]
showed that

(1.11) G̃(k) ≤ k2(log k + log log k + O(1)),

thus improving on earlier work by Vinogradov [238], Hua [101], and Wooley [246]. Further-
more, Vaughan [226, 227] and Boklan [18] obtained the bounds

G̃(k) ≤ 2k (k ≥ 3) and G̃(k) ≤ 7
8
· 2k (k ≥ 6),

which supersede (1.11) when k ≤ 8.

The work on Waring’s problem has inspired research on several other questions concerned
with the additive properties of kth powers (and of more general polynomial sequences). Such
matters, however, are beyond the scope of this survey. The reader interested in a more
comprehensive introduction to Waring’s problem should refer to the monographs [4, 228] or
to a recent survey article by Vaughan and Wooley [233] (the latter also provides an excellent
account of the history of Waring’s problem).

1.3 The Waring–Goldbach problem

Vinogradov’s proof of the three prime theorem provided a blueprint for subsequent applica-
tions of the Hardy–Littlewood circle method to additive problems involving primes. Shortly
after the publication of Theorem 1, Vinogradov himself [237] and Hua [100] began studying
Waring’s problem with prime variables, known nowadays as the Waring–Goldbach problem.
They were able to generalize the asymptotic formula (1.3) to kth powers for all k ≥ 1 and
ultimately their efforts led to the proof of Theorem 3 below.

In order to describe the current knowledge about the Waring–Goldbach problem, we first
need to introduce some notation. Let k be a positive integer and p a prime. We denote by
θ = θ(k, p) the (unique) integer such that pθ | k and pθ+1 ∤ k, and then define

(1.12) γ = γ(k, p) =

{

θ + 2, if p = 2, 2 | k,

θ + 1, otherwise,
K(k) =

∏

(p−1)|k

pγ.
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In particular, we have K(1) = 2. It is not difficult to show that if an integer n is the sum
of s kth powers of primes greater than k + 1, then n must satisfy the congruence condition
n ≡ s (mod K(k)). Furthermore, define

(1.13) S(q, a) =

q
∑

h=1
(h,q)=1

e

(

ahk

q

)

, S∗
k,s(n) =

∞
∑

q=1

q
∑

a=1
(a,q)=1

S(q, a)s

φ(q)s
e

(−an

q

)

,

where (a, q) stands for the greatest common divisor of a and q, and φ(q) is Euler’s totient
function, that is, the number of positive integers n ≤ q which are relatively prime to q. The
following result will be established in §3.3 and §3.4.

Theorem 3. Let k, s and n be positive integers, and let R∗
k,s(n) denote the number of solu-

tions of the diophantine equation

(1.14) pk
1 + pk

2 + · · ·+ pk
s = n

in primes p1, . . . , ps. Suppose that

s ≥











2k + 1, if 1 ≤ k ≤ 5,
7
8
· 2k + 1, if 6 ≤ k ≤ 8,

k2(log k + log log k + O(1)), if k > 8.

Then

(1.15) R∗
k,s(n) ∼ Γs

(

1 + 1
k

)

Γ
(

s
k

) S∗
k,s(n)

ns/k−1

(log n)s
as n → ∞,

where S∗
k,s(n) is defined by (1.13). Furthermore, the singular series S∗

k,s(n) is absolutely

convergent, and if n ≡ s (mod K(k)), then S∗
k,s(n) ≥ c2(k, s) > 0.

In particular, we have the following corollaries to Theorem 3.

Corollary 3.1. Every sufficiently large integer n ≡ 5 (mod 24) can be represented as the

sum of five squares of primes.

Corollary 3.2. Every sufficiently large odd integer can be represented as the sum of nine

cubes of primes.

Hua introduced a function H(k) similar to the function G(k) in Waring’s problem. H(k)
is defined as the least integer s such that equation (1.14) has a solution in primes p1, . . . , ps

for all sufficiently large n ≡ s (mod K(k)). It is conjectured that H(k) = k +1 for all k ≥ 1,
but this conjecture has not been proved for any value of k yet. When k ≤ 3, the sharpest
known upper bounds for H(k) are those given by Theorem 3, that is,

H(1) ≤ 3, H(2) ≤ 5, H(3) ≤ 9.

When k ≥ 4, the best results in the literature are as follows.
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Theorem 4. Let k ≥ 4 be an integer, and let H(k) be as above. Then

H(k) ≤
{

F (k), if 4 ≤ k ≤ 10,

k(4 log k + 2 log log k + O(1)), if k > 10,

where F (k) is given by the following table.

k 4 5 6 7 8 9 10

F (k) 14 21 33 46 63 83 107

Table 2. Bounds for H(k), 4 ≤ k ≤ 10.

The cases k = 6 and 8 ≤ k ≤ 10 of Theorem 4 are due to Thanigasalam [211], and the
cases k = 4, 5 and 7 are recent results of Kawada and Wooley [121] and Kumchev [127],
respectively. The bound for k > 10 is an old result of Hua, whose proof can be found in
Hua’s book [102]. To the best of our knowledge, this is the strongest published result for
large k, although it is well-known to experts in the field that better results are within the
reach of Wooley’s refinement of Vinogradov’s methods. In particular, by inserting Theorem
1 in Wooley [247] into the machinery developed in Hua’s monograph, one obtains

H(k) ≤ k(3
2
log k + O(log log k)) for k → ∞.

1.4 Other additive problems involving primes

There are several variants and generalizations of the Waring–Goldbach problem that have
attracted a lot of attention over the years. For example, one may consider the diophantine
equation

(1.16) a1p
k
1 + a2p

k
2 + · · · + asp

k
s = n,

where n, a1, . . . , as are fixed, not necessarily positive, integers. There are several questions
that we can ask about equations of this form. The main question, of course, is that of
solubility. Furthermore, in cases where we do know that (1.16) is soluble, we may want to
count the solutions with p1, . . . , ps ≤ X, where X is a large parameter. A famous problem of
this type is the twin-prime conjecture: there exist infinitely many primes p such that p + 2
is also prime, that is, the equation

p1 − p2 = 2

has infinitely many solutions. It is believed that this conjecture is of the same difficulty as
the binary Goldbach problem, and in fact, the two problems share a lot of common history.
In particular, while the twin-prime conjecture is still open, Chen’s proof of Theorem 2 can
be easily modified to establish that there exist infinitely many primes p such that p+2 = P2.

Other variants of the Waring–Goldbach problem consider more general diophantine equa-
tions of the form

f(p1) + f(p2) + · · ·+ f(ps) = n,
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where f(X) ∈ Z[X], or systems of equations of the types (1.1) or (1.16). For example,
Chapters 10 and 11 in Hua’s monograph [102] deal with the system

pj
1 + pj

2 + · · · + pj
s = nj (1 ≤ j ≤ k).

The number of solutions of this system satisfies an asymptotic formula similar to (1.15), but
the main term in that asymptotic formula is less understood than the main term in (1.15)
(see [3, 41, 102, 170] for further details).

Another classical problem in which a system of diophantine equations arises naturally
concerns the existence of non-trivial arithmetic progressions consisting of r primes. It has
been conjectured that for every integer r ≥ 3 there are infinitely many such arithmetic
progressions. In other words, the linear system

pi − 2pi+1 + pi+2 = 0 (1 ≤ i ≤ r − 2)

has infinitely many solutions in distinct primes p1, . . . , pr. In the case r = 3 this can be
established by a variant of Vinogardov’s proof of the three primes theorem, but when r > 3
the above system lies beyond the reach of the circle method. In fact, until recently the most
significant insight into progressions of more than three primes were the following two results:

• Heath-Brown [83] succeeded to prove that there exist infinitely many arithmetic pro-
gressions of three primes and a P2-number.

• Balog [11] proved that for any r there are r distinct primes p1, . . . , pr such that all the
averages 1

2
(pi + pj) are prime.

Thus, the specialists in the field were stunned when Green and Tao [64] announced their
amazing proof of the full conjecture. The reader will find a brief description of their ideas
and of some related recent work in the last section.

Finally, instead of (1.1), one may study the inequality

|x1 + · · ·+ xs − α| < ε,

where α is a real number, ε is a small positive number and x1, . . . , xs are real variables taking
values from a given sequence (or sequences). For example, by setting xj = pc

j where c > 1
in not an integer, we can generalize the Waring–Goldbach problem to fractional powers of
primes. We will mention several results of this form in §5.7.

2 The distribution of primes

In this section we discuss briefly some classical results about primes, which play an important
role in additive prime number theory.
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2.1 The Prime Number Theorem

The first result on the distribution of primes is Euclid’s theorem that there are infinitely
many prime numbers. In 1798 Legendre conjectured that the prime counting function π(x)
(i.e., the number of primes p ≤ x) satisfies the asymptotic relation

(2.1) lim
x→∞

π(x)

x/(log x)
= 1;

this is the classical statement of the Prime Number Theorem. Later Gauss observed that
the logarithmic integral

li x =

∫ x

2

dt

log t

seemed to provide a better approximation to π(x) than the function x/(log x) appearing in
(2.1), and this is indeed the case. Thus, in anticipation of versions of the Prime Number
Theorem that are more precise than (2.1), we define the error term

(2.2) ∆(x) = π(x) − li x.

The first step toward a proof of the Prime Number Theorem was made by Chebyshev.
In the early 1850s he proved that (2.1) predicts correctly the order of π(x), that is, he
established the existence of absolute constants c2 > c1 > 0 such that

c1x

log x
≤ π(x) ≤ c2x

log x
.

Chebyshev also showed that if the limit on the left side of (2.1) exists, then it must be equal
to 1.

In 1859 Riemann published his famous memoir [197], in which he demonstrated the
intimate relation between π(x) and the function which now bears his name, that is, the
Riemann zeta-function defined by

(2.3) ζ(s) =
∞

∑

n=1

n−s =
∏

p

(

1 − p−s
)−1

(Re(s) > 1).

This and similar series had been used earlier by Euler4 and Dirichlet, but only as functions of
a real variable. Riemann observed that ζ(s) is holomorphic in the half-plane Re(s) > 1 and
that it can be continued analytically to a meromorphic function, whose only singularity is a
simple pole at s = 1. It is not difficult to deduce from (2.3) that ζ(s) 6= 0 in the half-plane
Re(s) > 1. Riemann observed that ζ(s) has infinitely many zeros in the strip 0 ≤ Re(s) ≤ 1
and proposed several conjectures concerning those zeros and the relation between them and
the Prime Number Theorem. The most famous among those conjecture—and the only one
that is still open—is known as the Riemann Hypothesis.

4In particular, Euler established the equality between ζ(s) and the infinite product in (2.3), which is
known as the Euler product of ζ(s).
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Riemann Hypothesis (RH). All the zeros of ζ(s) with 0 ≤ Re(s) ≤ 1 lie on the line

Re(s) = 1
2
.

The remaining conjectures in Riemann’s paper were proved by the end of the 19th century.
In particular, it was proved that the Prime Number Theorem follows from the nonvanishing
of ζ(s) on the line Re(s) = 1. Thus, when in 1896 Hadamard and de la Vallée Poussin
proved (independently) that ζ(1 + it) 6= 0 for all real t, the Prime Number Theorem was
finally proved. In 1899 de la Vallée Poussin obtained the following quantitative result.5

(Henceforth, we often use Vinogradov’s notation A ≪ B, which means that A = O(B).)

Theorem 5 (de la Vallée Poussin, 1899). Let ∆(x) be defined by (2.2). There exists an

absolute constant c > 0 such that

∆(x) ≪ x exp
(

− c
√

log x
)

.

De la Vallée Poussin’s theorem has been improved somewhat, but not nearly as much as
one would hope. The best result to date is due to I. M. Vinogradov [239] and Korobov [123],
who obtained (independently) the following estimate for ∆(x).

Theorem 6 (Vinogradov, Korobov, 1958). Let ∆(x) be defined by (2.2). There exists

an absolute constant c > 0 such that

∆(x) ≪ x exp
(

− c(log x)3/5(log log x)−1/5
)

.

In comparison, if the Riemann Hypothesis is assumed, one has

(2.4) ∆(x) ≪ x1/2 log x,

which, apart from the power of the logarithm, is best possible. The reader can find fur-
ther information about the Prime Number Theorem and the Riemann zeta-function in the
standard texts on the subject (e.g., [49, 103, 117, 191, 212]).

2.2 Primes in arithmetic progressions

In a couple of memoirs published in 1837 and 1840, Dirichlet proved that if a and q are
natural numbers with (a, q) = 1, then the arithmetic progression a mod q contains infinitely
many primes. In fact, Dirichlet’s argument can be refined as to establish the asymptotic
formula

(2.5)
∑

p≤x
p≡a (mod q)

log p

p
∼ 1

φ(q)

∑

p≤x

log p

p
as x → ∞,

5Functions of the type f(x) = exp
(

(log x)λ
)

, where λ is a constant, are quite common in analytic number
theory. To help the reader appreciate results such as Theorems 5 and 6, we remark that as x → ∞ such a
function with 0 < λ < 1 grows more rapidly than any fixed power of log x, but less rapidly than xε for any
fixed ε > 0.
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valid for all a and q with (a, q) = 1. Fix q and consider the various arithmetic progressions
a mod q (here φ(q) is Euler’s totient function). Since all but finitely many primes lie
in progressions with (a, q) = 1 and there are φ(q) such progressions, (2.5) suggests that
each arithmetic progression a mod q, with (a, q) = 1, “captures its fair share” of prime
numbers, i.e., that the primes are uniformly distributed among the (appropriate) arithmetic
progressions to a given modulus q. Thus, one may expect that if (a, q) = 1, then

(2.6) π(x; q, a) =
∑

p≤x
p≡a (mod q)

1 ∼ li x

φ(q)
as x → ∞.

This is the prime number theorem for arithmetic progressions. One may consider (2.6) from
two different view points. First, one may fix a and q and ask whether (2.6) holds (allowing the
convergence to depend on q and a). Posed in this form, the problem is a minor generalization
of the Prime Number Theorem. In fact, shortly after proving Theorem 5, de la Vallée Poussin
established that

∆(x; q, a) = π(x; q, a) − li x

φ(q)
≪ x exp

(

− c
√

log x
)

,

where c = c(q, a) > 0 and the implied constant depends on q and a. The problem becomes
much more difficult if one requires an estimate that is explicit in q and uniform in a. The
first result of this kind was obtained by Page [176], who proved the existence of a (small)
positive number δ such that

(2.7) ∆(x; q, a) ≪ x exp
(

−(log x)δ
)

,

whenever 1 ≤ q ≤ (log x)2−δ and (a, q) = 1. In 1935 Siegel [208] (essentially) proved the
following result known as the Siegel–Walfisz theorem.

Theorem 7 (Siegel, 1935). For any fixed A > 0, there exists a constant c = c(A) > 0
such that

π(x; q, a) =
li x

φ(q)
+ O

(

x exp
(

− c
√

log x
))

whenever q ≤ (log x)A and (a, q) = 1.

Remark. While this result is clearly sharper than Page’s, it does have one significant draw-
back: it is ineffective, that is, given a particular value of A, the proof does not allow the
constant c(A) or the O-implied constant to be computed.

The above results have been proved using the analytic properties of a class of generaliza-
tions of the Riemann zeta-function known as Dirichlet L-functions. For each positive integer
q there are φ(q) functions χ : Z → C, called Dirichlet characters mod q, with the following
properties:

• χ is totally multiplicative: χ(mn) = χ(m)χ(n);
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• χ is q-periodic;

• |χ(n)| = 1 if (n, q) = 1 and χ(n) = 0 if (n, q) > 1;

• if (n, q) = 1, then
∑

χ mod q

χ(n) =

{

φ(q) if n ≡ 1 (mod q),

0 otherwise.

For more information about the construction and properties of the Dirichlet characters we
refer the reader to [49, 108, 116, 191].

Given a character χ mod q, we define the Dirichlet L-function

L(s, χ) =
∞

∑

n=1

χ(n)n−s =
∏

p

(

1 − χ(p)p−s
)−1

(Re(s) > 1).

Similarly to ζ(s), L(s, χ) is holomorphic in the half-plane Re(s) > 1 and can be continued
analytically to a meromorphic function on C that has at most one pole, which (if present)
must be a simple pole at s = 1. Furthermore, just as ζ(s), the continued L(s, χ) has infinitely
many zeros in the strip 0 ≤ Re(s) ≤ 1, and the horizontal distribution of those zeros has
important implications on the distribution of primes in arithmetic progressions. For example,
the results of de la Vallée Poussin, Page and Siegel mentioned above were proved by showing
that no L-function can have a zero “close” to the line Re(s) = 1. We also have the following
generalization of the Riemann Hypothesis.

Generalized Riemann Hypothesis (GRH). Let L(s, χ) be a Dirichlet L-function. Then

all the zeros of L(s, χ) with 0 ≤ Re(s) ≤ 1 lie on the line Re(s) = 1
2
.

Assuming GRH, we can deduce easily that if (a, q) = 1, then

(2.8) π(x; q, a) =
li x

φ(q)
+ O

(

x1/2 log x
)

,

which is nontrivial when 1 ≤ q ≤ x1/2(log x)−2−ε.
In many applications one only needs (2.8) to hold “on average” over the moduli q. Dur-

ing the 1950s and 1960s several authors obtained estimates for averages of ∆(x; q, a). In
particular, the following quantity was studied extensively:

E(x, Q) =
∑

q≤Q

max
(a,q)=1

max
y≤x

|∆(y; q, a)|.

The trivial bound for this quantity is E(x, Q) ≪ x log x. One usually focuses on finding the
largest value of Q for which one can improve on this trivial bound, even if the improvement
is fairly modest. The sharpest result in this direction was established (independently) by
Bombieri [19] and A. I. Vinogradov [234] in 1965. Their result is known as the Bombieri–
Vinogradov theorem and (in the slightly stronger form given by Bombieri) can be stated as
follows.
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Theorem 8 (Bombieri, Vinogradov, 1965). For any fixed A > 0, there exists a B =
B(A) > 0 such that

(2.9) E(x, Q) ≪ x(log x)−A,

provided that Q ≤ x1/2(log x)−B.

We should note that other than the value of B(A) the range for Q in this result is as long
as the range we can deduce from GRH. Indeed, GRH yields B = A + 1, whereas Bombieri
obtained Theorem 8 with B = 3A + 22 and more recently Vaughan [223] gave B = A + 5/2.

2.3 Primes in short intervals

Throughout this section, we write pn for the nth prime number. We are interested in
estimates for the difference pn+1 − pn between two consecutive primes. Cramér was the
first to study this question systematically. He proved [44] that the Riemann Hypothesis
implies

pn+1 − pn ≪ p1/2
n log pn.

Cramér also proposed a probabilistic model of the prime numbers that leads to very precise
(and very bold) predictions of the asymptotic properties of the primes. In particular, he
conjectured [45] that

(2.10) lim sup
n→∞

pn+1 − pn

log2 pn

= 1.

A non-trivial upper bound for pn+1 − pn can be obtained as a consequence of the Prime
Number Theorem, but Hoheisel [96] found a much sharper result. He proved unconditionaly
the asymptotic formula

(2.11) π(x + h) − π(x) ∼ h(log x)−1 as x → ∞,

with h = x1−(3300)−1

. There have been several improvements on Hoheisel’s result and it is
now known that (2.11) holds with h = x7/12 (see Heath-Brown [86]). Furthermore, several
mathematicians have shown that even shorter intervals must contain primes (without estab-
lishing an asymptotic formula for the number of primes in such intervals). The best result in
this directions is due to Baker, Harman, and Pintz [9], who proved that for each n one has

pn+1 − pn ≪ p0.525
n .

A related problem seeks small gaps between consecutive primes. In particular, the twin-
prime conjecture can be stated in the form

lim inf
n→∞

(pn+1 − pn) = 2.
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It is an exercise to show that the Prime Number Theorem implies the inequality

lim inf
n→∞

pn+1 − pn

log pn

≤ 1.

Improvements on this trivial bound, on the other hand, have proved notoriously difficult
and, so far, the best result, due to Maier [165], is

lim inf
n→∞

pn+1 − pn

log pn
≤ 0.2486 . . . .

2.4 Primes in sparse sequences

We say that an infinite sequence of primes S is sparse if

π(S; x) := #
{

p ∈ S : p ≤ x
}

= o(π(x)) as x → ∞.

A classical example that has attracted a great deal of attention but has proved notoriously
difficult is that of primes represented by polynomials. To this day, there is not a single
example of a polynomial f(X) ∈ Z[X] of degree at least 2 which is known to take on infinitely
many prime values. The closest approximation is a result of Iwaniec [104], who showed that
if a, b, c are integers such that a > 0, (c, 2) = 1, and the polynomial f(X) = aX2 + bX + c is
irreducible, then f(X) takes on infinitely many P2-numbers. On the other hand, in recent
years there has been some exciting progress in the direction of finding polynomials in two
variables that represent infinitely many primes. In 1998 Friedlander and Iwaniec [58] proved
that the polynomial X2+Y 4 represents infinitely many primes. We note that this polynomial
takes on O(x3/4) values up to x. In 2001 Heath-Brown [89] obtained an analogous result for
the polynomial X3 + 2Y 3 whose values are even sparser: it takes on O(x2/3) values up to x.
Furthermore, Heath-Brown and Moroz [92] extended the latter result to general irreducible
binary cubic forms in Z[X, Y ] (subject to some mild necessary conditions).

Another class of sparse sequences of prime numbers arises in the context of diophantine
approximation. The two best known examples of this kind are the sequences

(2.12) Sλ =
{

p : p is prime with {√p} < p−λ
}

and

(2.13) Pc = {p : p = [nc] for some integer n} .

Here, λ ∈ (0, 1) and c > 1 are fixed real numbers, {x} denotes the fractional part of the real
number x, and [x] = x − {x}. The sequence Sλ was introduced by I. M. Vinogradov, who
proved (see [241, Chapter 4]) that if 0 < λ < 1/10, then

π(Sλ; x) ∼ x1−λ

(1 − λ) log x
as x → ∞.
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The admissible range for λ has been subsequently extended to 0 < λ < 1/4 by Balog [10]
and Harman [76], while Harman and Lewis [81] showed that Sλ is infinite for 0 < λ < 0.262.

The first to study the sequence (2.13) was Piatetski-Shapiro [185], who considered Pc as
a sequence of primes represented by a “polynomial of degree c”. Piatetski-Shapiro proved
that Pc is infinite when 1 < c < 12/11. The range for c has been extended several times and
it is currently known (see Rivat and Wu [199]) that Pc is infinite when 1 < c < 243/205.
Furthermore, it is known (see Rivat and Sargos [198]) that when 1 < c < 1.16117 . . . , we
have

π(Pc; x) ∼ x1/c

log x
as x → ∞.

3 The Hardy–Littlewood circle method

Most of the results mentioned in the Introduction have been proved by means of the Hardy–
Littlewood circle method. In this section, we describe the general philosophy of the circle
method, using its applications to the Goldbach and Waring–Goldbach problems to illustrate
the main points.

3.1 Vinogradov’s three prime theorem

3.1.1 Preliminaries

Using the orthogonality relation

(3.1)

∫ 1

0

e(αm) dα =

{

1, if m = 0,

0, if m 6= 0,

we can express R(n) as a Fourier integral. We have

R(n) =
∑

p1,p2,p3≤n

∫ 1

0

e (α (p1 + p2 + p3 − n)) dα(3.2)

=

∫ 1

0

f(α)3e(−αn) dα,

where f(α) is the exponential sum (1.2).
The circle method uses (3.2) to derive an asymptotic formula for R(n) from estimates for

f(α). The analysis of the right side of (3.2) rests on the observation that the behavior of f(α)
depends on the distance from α to the set of fractions with “small” denominators. When
α is “near” such a fraction, we expect f(α) to be “large” and to have certain asymptotic
behavior. Otherwise, we can argue that the numbers e(αp) are uniformly distributed on the
unit circle and hence f(α) is “small”. In order to make these observations rigorous, we need
to introduce some notation. Let B be a positive constant to be chosen later and set

(3.3) P = (log n)B.
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If a and q are integers with 1 ≤ a ≤ q ≤ P and (a, q) = 1, we define the major arc6

(3.4) M(q, a) =

[

a

q
− P

qn
,

a

q
+

P

qn

]

.

The integration in (3.2) can be taken over any interval of length one and, in particular, over
[

Pn−1, 1 + Pn−1
]

. We partition this interval into two subsets:

(3.5) M =
⋃

q≤P

⋃

1≤a≤q
(a,q)=1

M(q, a) and m =
[

Pn−1, 1 + Pn−1
]

\ M,

called respectively the set of major arcs and the set of minor arcs. Then from (3.2) and
(3.5) it follows that

(3.6) R(n) = R(n, M) + R(n, m),

where we have denoted

R(n, B) =

∫

B

f(α)3e(−αn) dα.

In the next section we explain how, using Theorem 7 and standard results from elementary
number theory, one can obtain an asymptotic formula for R(n, M) (see (3.13) below). Then
in §3.1.3 and §3.1.4 we discuss how one can show that R(n, m) is of a smaller order of
magnitude than the main term in that asymptotic formula (see (3.14)).

3.1.2 The major arcs

In this section we sketch the estimation of the contribution from the major arcs. The
interested reader will find the missing details in [116, Chapter 10] or [228, Chapter 2].

It is easy to see that the major arcs M(q, a) are mutually disjoint. Thus, using (3.4) and
(3.5), we can write

(3.7) R(n, M) =
∑

q≤P

∑

1≤a≤q
(a,q)=1

∫ P/(qn)

−P/(qn)

f(a/q + β)3e
(

− (a/q + β)n
)

dβ.

We now proceed to approximate f
(

a/q + β
)

by a simpler expression. To motivate our
choice of the approximation, we first consider the case β = 0. We split the sum f

(

a/q
)

into
subsums according to the residue of p modulo q and take into account the definition (2.6).
We get

6This term may seem a little peculiar at first, given that M(q, a) is in fact an interval. The explanation
is that, in the original version of the circle method, Hardy and Littlewood used power series and Cauchy’s
integral formula instead of exponential sums and (3.1) (see [228, §1.2]). In that setting, the role of M(q, a)
is played by a small circular arc near the root of unity e(a/q).
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f

(

a

q

)

=

q
∑

h=1

∑

p≤n
p≡h (mod q)

e

(

ap

q

)

=

q
∑

h=1

e

(

ah

q

)

π(n; q, h).

The contribution of the terms with (h, q) > 1 is negligible (at most q). If (h, q) = 1, our
choice (3.3) of the parameter P ensures that we can appeal to Theorem 7 to approximate
π(n; q, h) by φ(q)−1 li n. We deduce that

(3.8) f

(

a

q

)

=
li n

φ(q)

q
∑

h=1
(h,q)=1

e

(

ah

q

)

+ O
(

qnP−4
)

.

The exponential sum on the right side of (3.8) is known as the Ramanujan sum and is usually
denoted by cq(a). Its value is known for every pair of integers a and q (see [74, Theorem
271]). In particular, when (a, q) = 1 we have cq(a) = µ(q), where µ is the Möbius function

(3.9) µ(n) =











1, if n = 1,

(−1)k, if n = p1 · · ·pk is the product of k distinct primes,

0, otherwise.

The situation does not change much if instead of α = a/q we consider α = a/q+β ∈ M(q, a).
In this case we find that

(3.10) f

(

a

q
+ β

)

=
µ(q)

φ(q)
· v(β) + O

(

nP−3
)

,

where

v(β) =

∫ n

2

e(βu)

log u
du.

Raising (3.10) to the third power and inserting the result into the right side of (3.7), we
obtain

(3.11) R(n, M) =
∑

q≤P

µ(q)cq(−n)

φ(q)3

∫ P/(qn)

−P/(qn)

v(β)3e(−βn) dβ + O
(

n2P−1
)

.

At this point, we extend the integration over β to the whole real line, and then the summation
over q to all positive integers. The arising error terms can be controlled easily by means of
well-known bounds for the functions v(β) and φ(q), and we find that

(3.12) R(n, M) = S(n)J(n) + O
(

n2P−1
)

,

where S(n) and J(n) are the singular series and the singular integral defined by

S(n) =
∞

∑

q=1

µ(q)cq(−n)

φ(q)3
, J(n) =

∫ ∞

−∞

v(β)3e(−βn) dβ.
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The series S(n) actually satisfies (1.4). Indeed, the function

g(q) = µ(q)cq(−n)φ(q)−3

is multiplicative in q, that is, g(q1q2) = g(q1)g(q2) whenever (q1, q2) = 1. Hence, using
the absolute convergence of S(n) and the elementary properties of the arithmetic functions
involved in the definition of g(q), we can represent the singular series as an Euler product:

S(n) =
∞

∑

q=1

g(q) =
∏

p

(

1 + g(p) + g(p2) + · · ·
)

=
∏

p|n

(

1 − 1

(p − 1)2

)

∏

p∤n

(

1 +
1

(p − 1)3

)

.

Also, an application of Fourier’s inversion formula and some calculus reveal that

J(n) =
n2

2(log n)3
+ O

(

n2(log n)−4
)

.

Therefore, if B ≥ 4 we can conclude that

(3.13) R(n, M) =
n2

2(log n)3
S(n) + O

(

n2(log n)−4
)

.

3.1.3 The minor arcs

In view of (3.6) and (3.13), it suffices to prove that (for some B ≥ 4)

(3.14) R(n, m) ≪ n2(log n)−4.

We have

(3.15) |R(n, m)| ≤
∫

m

|f(α)|3 dα ≤
(

sup
m

|f(α)|
)

∫ 1

0

|f(α)|2 dα.

By Parseval’s identity and the Prime Number Theorem,

(3.16)

∫ 1

0

|f(α)|2 dα =
∑

p≤n

1 ≪ n(log n)−1.

Thus, (3.14) will follow from (3.15), if we show that

(3.17) sup
m

|f(α)| ≪ n(log n)−3.

We note that the trivial estimate for f(α) is

f(α) ≪
∑

p≤n

1 ≪ n(log n)−1,
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so in order to establish (3.17), we have to save a power of log n over this trivial estimate
(uniformly with respect to α ∈ m). We can do this using the following lemma, which provides
such a saving under the assumption that α can be approximated by a reduced fraction whose
denominator q is “neither too small, nor too large.”

Lemma 3.1. Let α be real and let a and q be integers satisfying

1 ≤ q ≤ n, (a, q) = 1, |qα − a| ≤ q−1.

Then

f(α) ≪ (log n)3
(

nq−1/2 + n4/5 + n1/2q1/2
)

.

This is the sharpest known version of the estimate for f(α) established by I. M. Vino-
gradov [236] in 1937. As we mentioned in the Introduction, that result was the main inno-
vation in Vinogradov’s proof of Theorem 1. The above version is due to Vaughan [225].

We shall explain the proof of Lemma 3.1 in the next section and now we shall use it to
establish (3.17). To this end we need also the following lemma, known as Dirichlet’s theorem

on diophantine approximation; its proof is elementary and can be found in [228, Lemma 2.1].

Lemma 3.2 (Dirichlet). Let α and Q be real and Q ≥ 1. There exist integers a and q such

that

1 ≤ q ≤ Q, (a, q) = 1, |qα − a| < Q−1.

Let α ∈ m. By (3.5) and Lemma 3.2 with Q = nP−1, there are integers a and q such
that

P < q ≤ nP−1, (a, q) = 1, |qα − a| < Pn−1 ≤ q−1.

Hence, an appeal to (3.3) and Lemma 3.1 gives

(3.18) f(α) ≪ (log n)3
(

nP−1/2 + n4/5
)

≪ n(log n)3−B/2.

and (3.17) follows on choosing B ≥ 12. This completes the proof of Theorem 1.

The above proof of Vinogradov’s theorem employs the Siegel–Walfisz theorem and, there-
fore, is ineffective (recall the remark following the statement of Theorem 7). The interested
reader can find an effective proof (with a slightly weaker error term) in [116, Chapter 10].

3.1.4 The estimation of f(α)

The main tool in the proof of Lemma 3.1 are estimates for bilinear sums of the form

(3.19) S =
∑

X<x≤2X

∑

Y <y≤2Y

xy≤n

ξxηye(αxy).

We need to control two kinds of such sums, known as type I sums and type II sums. For
simplicity, we describe these two types of sums in the simplest cases, noting that the more
general sums arising in the actual proof of Lemma 3.1 can be reduced to these special cases
using standard trickery:
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• type I sums: sums (3.19) with |ξx| ≤ 1, ηy = 1 for all y, and X is “not too large”;

• type II sums: sums (3.19) with |ξx| ≤ 1, |ηy| ≤ 1, and X, Y are “neither large, nor
small”.

Vinogradov reduced the estimation of f(α) to the estimation of type I and type II sums
by means of an intricate combinatorial argument. Nowadays we can achieve the same result
almost instantaneously by referring to the combinatorial identities of Vaughan [223, 225]
or Heath-Brown [84]. Let Λ(k) denote von Mangoldt’s function, whose value is log p or 0
according as k is a power of a prime p or not. Vaughan’s identity states that if U and V are
real parameters exceeding 1, then

(3.20) Λ(k) =
∑

dm=k
1≤d≤V

µ(d) logm −
∑

dlm=k
1≤d≤V
1≤m≤U

µ(d)Λ(m) −
∑

dlm=k
1≤d≤V

m>U,dl>V

µ(d)Λ(m).

Heath-Brown’s identity states that if k ≤ x and J is a positive integer, then

Λ(k) =

J
∑

j=1

(

J

j

)

(−1)j−1
∑

m1···m2j=k

m1,...,mj≤x1/J

µ(m1) · · ·µ(mj) log m2j ,

where µ(m) is the Möbius function.
Both identities can be used to reduce f(α) to type I and type II sums with equal success.

Here, we apply Vaughan’s identity with U = V = n2/5. We obtain

(3.21)
∑

k≤n

Λ(k)e(αk) = W1 − W2 − W3,

with
Wj =

∑

k≤n

aj(k)e(αk) (1 ≤ j ≤ 3)

where aj(k) denotes the jth sum on the right side of (3.20). The estimation of the sum on
the left side of (3.21) is essentially equivalent to that of f(α). The sums W1 and W2 on the
right side of (3.21) can be reduced to type I sums with X ≪ n4/5; W3 can be reduced to
type II sums with n2/5 ≪ X, Y ≪ n3/5. The reader can find all the details in the proof of
[228, Theorem 3.1]. Here we will be content with a brief description of the estimation of the
type I and type II sums.

Consider a type I sum S1. We have

(3.22) |S1| ≤
∑

X<x≤2X

∣

∣

∣

∑

Y <y≤Y ′

e(αxy)
∣

∣

∣
,

where Y ′ = min(2Y, n/x). We can estimate the inner sum in (3.22) by means of the elemen-
tary bound

(3.23)
∣

∣

∣

∑

a<y≤b

e(αy)
∣

∣

∣
≤ min

(

b − a + 1, ‖α‖−1
)

,
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where ‖α‖ denotes the distance from α to the nearest integer. This inequality follows on
noting that the sum on the left is the sum of a geometric progression. We obtain

(3.24) |S1| ≤
∑

x≤2X

min
(

Y, ‖αx‖−1
)

= T (α), say.

Obviously, the trivial estimate for T (α) is

T (α) ≪ XY.

However, under the hypotheses of Lemma 3.1, one can establish by elementary methods that
(see [228, Lemma 2.2])

(3.25) T (α) ≪ XY

(

1

q
+

1

Y
+

q

XY

)

log(2XY q).

Inserting this bound into the right side of (3.24), we obtain a satisfactory bound for S1.
To estimate a type II sum S2, we first apply Cauchy’s inequality and get

|S2|2 ≪ Y
∑

Y <y≤2Y

∣

∣

∣

∑

X<x≤X′

ξxe(αxy)
∣

∣

∣

2

,

where X ′ = min(2X, n/y). Squaring out and interchanging the order of summation, we
deduce

|S2|2 ≪ Y
∑

Y <y≤2Y

∑

X<x1,x2≤X′

ξx1
ξx2

e(α(x1 − x2)y)

≪ Y
∑

X<x1,x2≤2X

∣

∣

∣

∑

Y <y≤Y ′

e(α(x1 − x2)y)
∣

∣

∣

≪ Y
∑

X<x≤2X

∑

|h|<X

∣

∣

∣

∑

Y <y≤Y ′

e(αhy)
∣

∣

∣
,

where Y < Y ′ ≤ 2Y . We remark that the innermost sum is now free of “unknown” weights
and can be estimated by means of (3.23). We get

(3.26) |S2|2 ≪ XY 2 + XY T (α),

and (3.25) again leads to a satisfactory bound for S2.

3.2 The exceptional set in Goldbach’s problem

We now sketch the proof of (1.5). We will not discuss the proof of the more sophisticated
results of Montgomery and Vaughan [173] and Pintz [186], since they require knowledge of
the properties of Dirichlet L-functions far beyond the scope of this survey. The reader can
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find excellent expositions of the Montgomery–Vaughan result in their original paper and also
in the monograph [177].

For an even integer n, let r(n) denote the number of representations of n as the sum of
two primes, let Z(N) denote the set of even integers n ∈ (N, 2N ] with r(n) = 0, and write
Z(N) = |Z(N)|. Since

E(x) =
∞

∑

j=1

Z(x2−j),

it suffices to bound Z(N) for large N .
Define f(α), M, and m as before, with N in place of n. When n is an even integer in

(N, 2N ], a variant of the method in §3.1.2 gives

∫

M

f(α)2e(−αn) dα = S2(n)
n

(log n)2
+ O

(

N

(log N)3

)

,

where

S2(n) =
∏

p∤n

(

1 − 1

(p − 1)2

)

∏

p|n

(

p

p − 1

)

is the singular series. In particular, we have S2(n) ≥ 1 for even n. Thus, for n ∈ Z(N), we
have

(3.27)

∣

∣

∣

∣

∫

m

f(α)2e(−αn) dα

∣

∣

∣

∣

=

∣

∣

∣

∣

−
∫

M

f(α)2e(−αn) dα

∣

∣

∣

∣

≫ N(log N)−2,

whence

(3.28) Z(N) ≪ N−2(log N)4
∑

n∈Z(N)

∣

∣

∣

∣

∫

m

f(α)2e(−αn) dα

∣

∣

∣

∣

2

.

On the other hand, by Bessel’s inequality,

(3.29)
∑

n∈Z(N)

∣

∣

∣

∣

∫

m

f(α)2e(−αn) dα

∣

∣

∣

∣

2

≤
∫

m

|f(α)|4 dα,

and (3.16) and (3.18) yield

(3.30)

∫

m

|f(α)|4 dα ≤
(

sup
α∈m

|f(α)|
)2

∫ 1

0

|f(α)|2 dα ≪ N3P−1(log N)5.

Combining (3.28)–(3.30), we conclude that

Z(N) ≪ NP−1(log N)9 ≪ N(log N)−A,

on choosing, say, P = (log N)A+9. This completes the proof of (1.5).
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3.3 The circle method in the Waring–Goldbach problem

We now turn our attention to Theorems 3 and 4. Much of the discussion in §3.1 can be
generalized to kth powers (k ≥ 2). Using (3.1), we can write R∗

k,s(n) as

R∗
k,s(n) =

∫ 1

0

f(α)se(−αn) dα,

where now
f(α) =

∑

p≤N

e
(

αpk
)

, N = n1/k.

Define the sets of major and minor arcs as before (that is, by (3.4) and (3.5), with P =
(log N)B and B = B(k, s) to be chosen later). The machinery in §3.1.2 generalizes to kth
powers with little extra effort. The argument leading to (3.10) gives

(3.31) f

(

a

q
+ β

)

= φ(q)−1S(q, a) v(β) + error term,

where S(q, a) is defined by (1.13) and

v(β) =

∫ N

2

e
(

βuk
)

log u
du.

We now raise (3.31) to the sth power and integrate the resulting approximation for f(α)s

over M. Using known estimates for v(β) and S(q, a), we find that when s ≥ k + 1,

(3.32)

∫

M

f(α)se(−αn) dα = S∗
k,s(n)J∗

k,s(n) + O
(

N s−kP−1/k+ε
)

,

where S∗
k,s(n) is defined by (1.13) and J∗

k,s(n) is the singular integral

J∗
k,s(n) =

∫ ∞

−∞

v(β)se(−βn) dβ

=
Γs

(

1 + 1
k

)

Γ
(

s
k

)

ns/k−1

(log n)s
+ O

(

ns/k−1(log n)−s−1
)

.

This reduces the proof of Theorem 3 to the estimate

(3.33)

∫

m

f(α)se(−αn) dα ≪ N s−k(log N)−s−1.

Notice that when k = 1 and s = 3, (3.33) turns into (3.14). Thus, it is natural to try to
obtain variants of (3.16) and (3.17) for f(α) when k ≥ 2. To estimate the maximum of f(α)
on the minor arcs, we use the same tools as in §3.1.4, that is:
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• Heath-Brown’s or Vaughan’s identity to reduce the estimation of f(α) to the estimation
of bilinear sums

∑

X<x≤2X

∑

Y <y≤2Y

xy≤N

ξxηye
(

α(xy)k
)

;

• Cauchy’s inequality to bound those bilinear sums in terms of the quantity T (α) ap-
pearing in (3.24).

The following result due to Harman [75] is the analogue of Lemma 3.1 for k ≥ 2.

Lemma 3.3. Let k ≥ 2, let α ∈ R, and suppose that a and q are integers satisfying

1 ≤ q ≤ Nk, (a, q) = 1, |qα − a| < q−1.

There is a constant c = c(k) > 0 such that

f(α) ≪ N(log N)c
(

q−1 + N−1/2 + qN−k
)41−k

.

On choosing the constant B (in the definition of m) sufficiently large, one can use Lemmas
3.2 and 3.3 to show that, for any fixed A > 0,

sup
α∈m

|f(α)| ≪ N(log N)−A.

Hence, if s = 2r + 1, one has
∫

m

|f(α)|s dα ≤ sup
α∈m

|f(α)|
∫ 1

0

|f(α)|2r dα ≪ N(log N)−A

∫ 1

0

|f(α)|2r dα,

and it suffices to establish the estimate

(3.34) Ir(N) :=

∫ 1

0

|f(α)|2rdα ≪ N2r−k(log N)c,

with c = c(k, r).

3.4 Mean-value estimates for exponential sums

We now turn to the proof of (3.34). By (3.1), Ir(N) represents the number of solutions of
the diophantine equation

(3.35)

{

xk
1 + · · ·+ xk

r = xk
r+1 + · · ·+ xk

2r,

1 ≤ x1, . . . , x2r ≤ N

in primes x1, . . . , x2r, and therefore, Ir(N) does not exceed the number of solutions of (3.35)
in integers x1, . . . , x2r. Using (3.1) to write the latter quantity as a Fourier integral, we
conclude that

(3.36) Ir(N) ≤
∫ 1

0

|g(α)|2rdα, g(α) =
∑

x≤N

e
(

αxk
)

.
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This reduces the estimation of the even moments of f(α) to the estimation of the respective
moments of the exponential sum g(α), whose analysis is much easier. In particular, we have
the following two results.

Lemma 3.4 (Hua’s lemma). Suppose that k ≥ 1, and let g(α) be defined by (3.36). There

exists a constant c = c(k) ≥ 0 such that

(3.37)

∫ 1

0

|g(α)|2k

dα ≪ N2k−k(log N)c.

Lemma 3.5. Suppose that k ≥ 11 and g(α) is defined by (3.36). There exists a constant

c = c(k) > 0 such that for r > 1
2
k2(log k + log log k + c),

(3.38)

∫ 1

0

|g(α)|2rdα ≪ N2r−k.

These lemmas are, in fact, rather deep and important results in the theory of Waring’s
problem. Unfortunately, their proofs are too complicated to include in this survey in any
meaningful way. The reader will find a proof of a somewhat weaker version of Hua’s lemma
(with a factor of N ε in place of (log N)c) in [228, Lemma 2.5] and a complete proof in
[102, Theorem 4]. Results somewhat weaker than Lemma 3.5 are classical and go back to
Vinogradov’s work on Waring’s problem (see [102, Lemma 7.13] or [228, Theorem 7.4]).
Lemma 3.5 itself follows from the results in Ford [57] (in particular, see [57, (5.4)]).

Combining (3.36) and Lemmas 3.4 and 3.5, we get (3.34) with

r =

{

2k−1, if k ≤ 10,
[

1
2
k2(log k + log log k + c)

]

+ 1, if k ≥ 11.

Clearly, this completes the proof of Theorem 3, except for the case 6 ≤ k ≤ 8, which we will
skip in order to avoid the discussion of certain technical details.

3.5 Diminishing ranges

In this section, we describe the main new idea that leads to the bounds for H(k) in Theorem
4. This idea, known as the method of diminishing ranges, appeared for the first time in the
work of Hardy and Littlewood on Waring’s problem and later was developed into a powerfull
technique by Davenport.

The limit of the method employed in §3.3 is set by the mean-value estimates in Lemmas
3.4 and 3.5. The key observation in the method of diminishing ranges is that it can be
much easier to count the solutions of the equation in (3.35) if the unknowns x1, . . . , x2r are
restricted to proper subsets of [1, N ]. For example, the simplest version of the method that
goes back to Hardy and Littlewood uses that when N2, . . . , Nr are defined recursively by

Nj = k−1N
1−1/k
j−1 (2 ≤ j ≤ r),
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the equation

(3.35*)

{

xk
1 + · · · + xk

r = xk
r+1 + · · ·+ xk

2r,

Nj < xj , xr+j ≤ 2Nj (1 ≤ j ≤ r),

has only “diagonal” solutions with xr+j = xj , j = 1, . . . , r. Thus, the number of solutions of
(3.35*) is bounded above by

N1 · · ·Nr ≪ N2−λ
1 (N2 · · ·Nr)

2

where
λ = 1 +

(

1 − 1
k

)

+ · · · +
(

1 − 1
k

)r−1 ≥ k − ke−r/k.

That is, we have the bound

(3.39)

∫ 1

0

∣

∣g1(α)g2(α) · · · gr(α)
∣

∣

2
dα ≪ N2−λ

1 (N2 · · ·Nr)
2,

where
gj(α) =

∑

Nj<x≤2Nj

e
(

αxk
)

(1 ≤ j ≤ r).

We can use (3.39) as a replacement for the mean-value estimates in §3.4. Let Tk,s(n)
denote the number of solutions of

pk
1 + pk

2 + · · ·+ pk
s = n

in primes p1, . . . , ps subject to

Nj < pj, pr+j ≤ 2Nj (1 ≤ j ≤ r), N1 < p2r+1, . . . , ps ≤ 2N1.

Then

(3.40) Tk,r(n) =

∫ 1

0

f1(α)s−2r+2f2(α)2 · · · fr(α)2e(−αn) dα,

where
fj(α) =

∑

Nj<p≤2Nj

e
(

αpk
)

(1 ≤ j ≤ r).

When r ∼ ck log k, we can use (3.39) to derive a bound of the form

∫ 1

0

∣

∣f1(α)2f2(α) · · ·fr(α)
∣

∣

2
dα ≪ N4−k

1 (N2 · · ·Nr)
2.

Furthermore, assuming that s is just slightly larger than 2r (it suffices to assume that
s ≥ 2r + 3, for example), we can then obtain an asymptotic formula for the right side of
(3.40) by the methods sketched in §3.3. This is (essentially) how one proves Theorem 4 for
k ≥ 11. The proof for k ≤ 10 follows the same general approach, except that we use more
elaborate choices of the parameters N1, . . . , Nr in (3.35*).
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3.6 Kloosterman’s refinement of the circle method

Consider again equation (1.9) with k = 2. The Hardy–Littlewood method in its original
form establishes the asymptotic formula (1.10) for s > 4, but it fails to prove Lagrange’s
four squares theorem. In 1926 Kloosterman [122] proposed a variant of the circle method,
known today as Kloosterman’s refinement, which he used to prove an asymptotic formula
for the number of solutions of the equation

(3.41) a1x
2
1 + · · ·+ a4x

2
4 = n,

where ai are fixed positive integers.
Denote by I(n) the number of solutions of (3.41) in positive integers xi. By (3.1),

(3.42) I(n) =

∫ 1

0

H(α)e(−αn) dα,

where
H(α) = h(a1α) · · ·h(a4α), h(α) =

∑

x≤N

e
(

αx2
)

, N = n1/2.

A “classical” Hardy–Littlewood decomposition of the right side of (3.42) into integrals over
major and minor arcs is of little use here, since we cannot prove that the contribution from
the minor arcs is smaller than the expected main term. Kloosterman’s idea is to eliminate
the minor arcs altogether.

The elimination of the minor arcs requires greater care in the handling of the major arcs.
Let X be the integer with X − 1 < N ≤ X. It is clear that the integration in (3.42) can
be taken over the interval

(

X−1, 1 + X−1
]

, which can be represented as a union of disjoint
intervals

(3.43)
(

X−1, 1 + X−1
]

=
⋃

q≤N

⋃

1≤a≤q
(a,q)=1

(

a

q
− 1

qq1
,
a

q
+

1

qq2

]

,

where for each pair q, a in the union, the positive integers q1 = q1(q, a) and q2 = q2(q, a) are
uniquely determined and satisfy the conditions

(3.44) N < q1, q2 ≤ 2N, aq1 ≡ 1 (mod q), aq2 ≡ −1 (mod q).

The decomposition (3.43) is known as the Farey decomposition and provides a natural way
of partitioning of the unit interval into non-overlapping major arcs (see Hardy and Wright
[74, Section 3.8]). Let M(q, a) denote the interval in the Farey decomposition “centered” at
a/q. We have

(3.45) I(n) =
∑

q≤N

∑

1≤a≤q
(a,q)=1

e
(−an

q

)

∫

B(q,a)

H
(a

q
+ β

)

e(−βn) dβ,
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where B(q, a) is defined by

(3.46) B(q, a) = {β ∈ R : a/q + β ∈ M(q, a)} .

We can find an asymptotic formula for the integrand on the right side of (3.45). The
contribution of the main term in that asymptotic formula produces the expected main term
in the asymptotic formula for I(n). However, in order to obtain a satisfactory bound for the
contribution of the error term, we have to take into account the cancellation among terms
corresponding to different Farey fractions a/q with the same denominator. To this end, we
want to interchange the order of integration and summation over a in (3.45). Since the
endpoints of B(q, a) depend on a, the total contribution of the error terms can be expressed
as

(3.47)
∑

q≤N

∫ 1/(qN)

−1/(qN)

{

∑(β)

1≤a≤q
(a,q)=1

E

(

a

q
+ β

)

e

(−an

q

) }

e(−βn) dβ,

where E(a/q + β) is the error term in the major arc approximation to H(a/q + β) and

the superscript in
∑(β) indicates that the summation is restricted to those a for which

B(q, a) ∋ β. Using (3.44) and (3.46), we can transform the latter constraint on a into a
condition about the multiplicative inverse of a modulo q, that is, the unique residue class ā
modulo q with āa ≡ 1 (mod q). Thus, a special kind of exponential sums enter the scene:
the Kloosterman sums

K(q; m, n) =

q
∑

x=1
(x,q)=1

e
(mx + nx̄

q

)

.

There also other (in fact, more substantial) reasons for the Kloosterman sums to appear,
but those are too technical to include here.

The success of Kloosterman’s method hinges on the existence of sufficiently sharp esti-
mates for K(q; m, n). The first such estimate was found by Kloosterman himself and later
his result has been improved. Today it is known that

(3.48) |K(q; m, n)| ≤ τ(q) q1/2 (m, n, q)1/2,

where (m, n, q) is the greatest common divisor of m, n, q and τ(q) is the number of positive
divisors of q. In 1948 A. Weil [243] proved (3.48) in the most important case: when q is a
prime. In the general case (3.48) was established by Estermann [55]. This estimate plays an
important role not only in the Kloosterman refinement of the circle method, but in many
other problems in number theory.

Kloosterman’s method has been applied to several additive problems, and in particular,
to problems with primes and almost primes. We refer the reader, for example, to Ester-
mann [56], Hooley [99], Heath-Brown [85, 87, 88], Brüdern and Fouvry [24], Heath-Brown
and Tolev [94].

29



4 Sieve methods

In this section we describe the so-called sieve methods, which are an important tool in
analytic number theory and, in particular, in the proof of Chen’s theorem (Theorem 2 in the
Introduction). We start with a brief account of the main idea of the method (§4.1 and §4.2).
This allows us in §4.3 to present a proof of a slightly weaker (but much simpler) version of
Chen’s result, in which P2-numbers are replaced by P4-numbers. We conclude the section by
sketching some of the new ideas needed to obtain Chen’s theorem in its full strength (§4.4)
and of some further work on sieve methods (§4.5).

4.1 The sieve of Eratosthenes

Let A be a finite integer sequence. We will be concerned with the existence of elements of
A that are primes or, more generally, almost primes Pr, with r bounded. In general, sieve
methods reduce such a question to counting the elements a ∈ A not divisible by small primes
p from some suitably chosen set of primes P. To be more explicit, we consider a set of prime
numbers P and a real parameter z ≥ 2 and define the sifting function

(4.1) S(A, P, z) = |{a ∈ A : (a, P (z)) = 1}| , P (z) =
∏

p<z
p∈P

p,

where |A| denotes the number of elements of a sequence A (not the cardinality of the
underlying set). In applications, the set P is usually taken to be the set of possible prime
divisors of the elements of A, so the sifting function (4.1) counts the elements of A free of
prime divisors p < z.

In order to bound S(A, P, z), we recall the following fundamental property of the Möbius
function (see [74, Theorem 263]):

(4.2)
∑

d|k

µ(d) =

{

1, if k = 1,

0, if k > 1.

Using this identity, we can express the sifting function in the form

(4.3) S(A, P, z) =
∑

a∈A

∑

d|(a,P (z))

µ(d).

We can now interchange the order of summation to get

(4.4) S(A, P, z) =
∑

d|P (z)

µ(d)|Ad|,

where
Ad = {a ∈ A : a ≡ 0 (mod d)}.

30



To this end, we suppose that there exist a (large) parameter X and a multiplicative function
ω(d) such that |Ad| can be approximated by Xω(d)/d. We write r(X, d) for the error term
in this approximation, that is,

(4.5) |Ad| = X
ω(d)

d
+ r(X, d).

We expect r(X, d) to be ‘small’, at least in some average sense over d. Substituting (4.5)
into the right side of (4.4), we find that

(4.6) S(A, P, z) = XV (z) + R(X, z),

where

(4.7) V (z) =
∑

d|P (z)

µ(d)
ω(d)

d
, R(X, z) =

∑

d|P (z)

µ(d)r(X, d).

We would like to believe that, under ‘ideal circumstances’, (4.6) is an asymptotic formula
for the sifting function S(A, P, z), XV (z) being the main term and R(X, z) the error term.
However, such expectations turn out to be unrealistic, as we are about to demonstrate.

Let us try to apply (4.6) to bound above the number of primes ≤ x. We choose

(4.8) A = {n ∈ N : n ≤ x}, P = {p : p is a prime}.

Then
|Ad| =

[x

d

]

=
x

d
+ r(x, d), |r(x, d)| ≤ 1,

that is, X = x and ω(d) = 1 for all d. Using an elementary property of multiplicative
functions (see [74, Theorem 286]), we can write V (z) as

(4.9) V (z) =
∏

p<z

(

1 − ω(p)

p

)

.

When ω(p) = 1, this identity and an asymptotic formula due to Mertens (see [74, Theorem
429]) reveal that the main term in (4.6) is

(4.10) XV (z) = X
∏

p<z

(

1 − 1

p

)

∼ X
e−γ

log z
as z → ∞;

here γ = 0.5772 . . . is Euler’s constant. Thus, if A and P are as in (4.8) and z = x1/2, the
projected ‘main term’ in (4.6) is ∼ 2e−γx(log x)−1 as x → ∞, whereas the true size of the
sifting function on the left side is

S(A, P,
√

x) = π(x) − π(
√

x) + 1 ∼ x

log x
as x → ∞,
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by the Prime Number Theorem. Since 2e−γ = 1.122 . . . , we conclude that the ‘error term’
R(x,

√
x) is in this case of the same order of magnitude as the ‘main term’.

Identity (4.6) is known as the sieve of Eratosthenes–Legendre. The basic idea goes back
to the ancient Greeks (usually attributed to Eratosthenes), while the formal exposition above
is essentially due to Legendre, who used the above argument to show that

π(x) ≪ x

log log x
.

The sieve of Eratosthenes–Legendre can be extremely powerful in certain situations7, but in
most cases the sum R(X, z) contains ‘too many’ terms for (4.6) to be of any practical use
(e.g., in the above example, R(X, z) contains 2π(z) terms). Modern sieve methods use various
clever approximations to the left side of (4.2) to overcome this problem. In the following
sections, we describe one of the variants of one the existing approaches. The reader can find
other constructions, comparisons of the various approaches, and proofs in the monographs
on sieve methods [63, 66, 174] or in [90] (see also the remarks in §4.5 for other references).

4.2 The linear sieve

Let y > 0 be a parameter to be chosen later in terms of X and suppose that λ+(d) and
λ−(d) are real-valued functions supported on the squarefree integers d (i.e., λ±(d) = 0 if d is
divisible by the square of a prime). Furthermore, suppose that

(4.11) |λ±(d)| ≤ 1 and λ±(d) = 0 for d ≥ y,

and that

(4.12)
∑

d|n

λ−(d) ≤
∑

d|n

µ(d) ≤
∑

d|n

λ+(d) for all n = 1, 2, . . . .

Using (4.3) and the left inequality in (4.12), we obtain

S(A, P, z) ≥
∑

a∈A

∑

d|(a,P (z))

λ−(d).

We can interchange the order of summation in the right side of this inequality and apply
(4.5) and (4.11) to get the bound

S(A, P, z) ≥
∑

d|P (z)

λ−(d)|Ad| =
∑

d|P (z)

λ−(d)

(

X
ω(d)

d
+ r(X, d)

)

= X
∑

d|P (z)

λ−(d)
ω(d)

d
+

∑

d|P (z)

λ−(d)r(X, d) ≥ XM− −R,

7For example, I. M. Vinogradov’s combinatorial argument for converting sums over primes into linear
combinations of type I and type II sums is based on a variant of (4.6). See Harman [79] for other applications
and further discussion.
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where

(4.13) M± =
∑

d|P (z)

λ±(d)
ω(d)

d
, R =

∑

d|P (z)
d<y

|r(X, d)|.

In a similar fashion, we can use the right inequality in (4.12) to estimate the sifting function
from above. That is, we have

(4.14) XM− −R ≤ S(A, P, z) ≤ XM+ + R.

We are now in a position to overcome the difficulty caused by the “error term” in the
Eratosthenes–Legendre sieve. The sum R is similar to the error term R(X, z) defined in
(4.7), but unlike R(X, z) we can use the parameter y to control the number of terms in
R. Thus, our general strategy will be to construct functions λ±(d) which satisfy (4.11) and
(4.12) and for which the sums M± are of the same order as the sum V (z) defined in (4.7).
There are various constructions of such functions λ±(d). However, since it is not our goal to
give a detailed treatment of sieve theory here, we will simply state one of the modern sieves
in a form suitable for an application to the binary Goldbach problem.

The sieve method we will use is known as the Rosser–Iwaniec sieve. Its idea appeared
for the first time in an unpublished manuscript by Rosser. The full-fledged version of this
sieve was developed independently by Iwaniec [105, 106]. Suppose that the multiplicative
function ω in (4.5) satisfies the condition

(4.15)
∏

w1≤p<w2

(

1 − ω(p)

p

)−1

≤
(

log w2

log w1

)κ (

1 +
K

log w1

)

(2 ≤ w1 < w2),

where κ > 0 is an absolute constant known as the sieve dimension and K > 0 is independent
of w1 and w2. This inequality is usually interpreted as an average bound for the values taken
by ω(p) when p is prime, since it is consistent with the inequality ω(p) ≤ κ. In our application
of the sieve to Goldbach’s problem, we will have to deal with a sequence A (given by (1.7))
for which (4.15) holds with κ = 1, so we will state the Rosser–Iwaniec sieve in this special
case, in which it is known as the linear sieve.

Suppose that ω(p) satisfies (4.15) with κ = 1 and that

(4.16) 0 < ω(p) < p when p ∈ P and ω(p) = 0 when p 6∈ P.

We put λ±(1) = 1 and λ±(d) = 0 if d is not squarefree. If d > 1 is squarefree and has prime
decomposition d = p1 · · ·pr, p1 > p2 > · · · > pr, we define

λ+(d) =

{

(−1)r if p1 · · · p2lp
3
2l+1 < y whenever 0 ≤ l ≤ (r − 1)/2,

0 otherwise,
(4.17)

λ−(d) =

{

(−1)r if p1 · · · p2l−1p
3
2l < y whenever 1 ≤ l ≤ r/2,

0 otherwise.
(4.18)
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It can be shown (see [63, 105]) that these two functions satisfy conditions (4.11) and (4.12).
Furthermore, if the quantities M± are defined by (4.13) with λ±(d) given by (4.17) and
(4.18), we have

V (z) ≤ M+ ≤ V (z)
(

F (s) + O
(

e−s(log y)−1/3
))

for s ≥ 1,(4.19)

V (z) ≥ M− ≥ V (z)
(

f(s) + O
(

e−s(log y)−1/3
))

for s ≥ 2,(4.20)

where s = log y/ log z and the functions f(s) and F (s) are the continuous solutions of a
system of differential delay equations (see [63, 105]). The analysis of that system reveals
that the function F (s) is strictly decreasing for s > 0, that the function f(s) is strictly
increasing for s > 2, and that

(4.21) 0 < f(s) < 1 < F (s) for s > 2.

Furthermore, both functions are very close to 1 for large s. More precisely, they satisfy

(4.22) F (s), f(s) = 1 + O(s−s) as s → ∞.

Substituting (4.19) and (4.20) into (4.14), we obtain

S(A, P, z) ≤ XV (z)
(

F (s) + O
(

(log y)−1/3
))

+ R for s ≥ 1,(4.23)

S(A, P, z) ≥ XV (z)
(

f(s) + O
(

(log y)−1/3
))

−R for s ≥ 2,(4.24)

where R is defined by (4.13).
We now return to our initial goal—namely, to prove that the sequence A contains almost

primes. We want to use (4.24) to show that

(4.25) S(A, P, Xα) > 0

for some fixed α > 0. This will imply the existence of an a ∈ A all of whose prime divisors
exceed Xα. If |a| ≪ Xg for all a ∈ A, it will then follow that A contains a Pr-number, where
r ≤ g/α. Clearly, since we want to minimize r, we would like to take α as large as possible.
On the one hand, in order to derive (4.25) from (4.24), we need to ensure that the main
term in (4.24) is positive and that the error term R is of a smaller order of magnitude than
the main term. It is the balancing of these two requirements that determines the optimal
choice for z and, ultimately, the quality of our result. In view of (4.21), the positivity of the
main term in (4.24) requires choosing y slightly larger than z2. On the other hand, while in
some applications the estimation of R is easier than in others, it is always the case that it
imposes a restriction on how large we can choose y, and hence, how large we can choose z.
In the next section, we demonstrate how this general approach works when applied to the
binary Goldbach problem.
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4.3 The linear sieve in the binary Goldbach problem

In this section, we apply the linear Rosser–Iwaniec sieve to the sequence A in (1.7) and the
set P of odd primes that do not divide n, that is,

A = A(n) = {n − p : 2 < p < n} and P = {p : p > 2, p ∤ n}.

It is clear that all elements of A are odd numbers and that at most log n of them may have
a common prime factor with n (for (n, n− p) > 1 implies p | n, and n has at most log n odd
prime factors). Thus, P is the set of “typical” prime divisors of elements of A.

Next, we proceed to define the quantity X and the multiplicative function ω(d) in (4.5).
We have

(4.26) |Ad| =
∑

2<p<n
p≡n (mod d)

1 = π(n; d, n) − 1,

so the prime number theorem for arithmetic progressions suggests the choice

(4.27) X = li n and ω(d) =

{

d/φ(d) if (d, n) = 1,

0 otherwise.

With this choice, the error terms r(X, d) defined by (4.5) satisfy the inequality

|r(X, d)| ≤







1 +

∣

∣

∣

∣

π(n; d, n) − li n

φ(d)

∣

∣

∣

∣

if (d, n) = 1,

1 otherwise.

It then follows from the Bombieri–Vinogradov theorem (Theorem 8) that

(4.28) R ≤ y +
∑

d≤y

max
(a,d)=1

∣

∣

∣

∣

π(n; d, a) − li n

φ(d)

∣

∣

∣

∣

≪ n(log n)−3,

whenever y ≤ n1/2(log n)−6. Furthermore, we have

(4.29) V (z) =
∏

p<z
p∤n

(

1 − 1

p − 1

)

≥
∏

p<z

(

1 − 1

p − 1

)

≫ (log z)−1.

On choosing y = n1/2(log n)−6 and z = n2/9, we have

log y

log z
=

9

4
+ O

(

log log n

log n

)

> 2.2,

provided that n is sufficiently large. Hence, we deduce from (4.21), (4.24) and (4.27)–(4.29)
that

(4.30) S(A, P, z) ≫ n(log n)−2.
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That is, there are ≫ n(log n)−2 elements of A that have no prime divisors smaller than n2/9.
Since the numbers in A do not exceed n, the elements of A counted on the left side of (4.30)
have at most four prime divisors each, that is, the left side of (4.30) counts solutions of
n − p = P4.

We have some freedom in our choice of parameters in the above argument. For example,
we could have set z = nα, where α is any fixed real number in the range 1/5 < α < 1/4. Of
course, what we would really like to do is set z = nα, where α > 1/4. With such a choice for z,
the above argument would establish the existence of infinitely many solutions to n−p = P3.
Unfortunately, our choice of z is restricted (via the condition s = log y/ log z > 2) by the
largest value of Q admissible in the Bombieri–Vinogradov theorem. In particular, in order
to be able to choose z = n1/4, we would need a version of the Bombieri–Vinogradov theorem
that holds for Q ≤ x1/2+ε.

4.4 Weighted sieves and Chen’s theorem

The idea of a weighted sieve was introduced by Kuhn [124] who observed that instead of the
sifting function S(A, P, z) one may consider a more general sum of the type

(4.31) W (A, P, z) =
∑

a∈A,
(a,P (z))=1

w(a),

where w(a) are weights at one’s disposal to choose. It is common to use weights of the form

(4.32) w(a) = 1 −
∑

p|a
z≤p<z1

ωp,

with suitably chosen 0 ≤ ωp < 1. With such a choice of w(a), (4.31) can be written in the
form

(4.33) W (A, P, z) = S(A, P, z) −
∑

z≤p<z1

ωpS(Ap, P, p).

We can now use an ordinary sieve to estimate the right side of (4.33). For example, we
can appeal to (4.24) to bound S(A, P, z) from below and to (4.23) to bound each sifting
function S(Ap, P, p) from above. If the resulting lower bound for the right side of (4.33) is
positive, we then conclude that there exist elements a of A with w(a) > 0. Such numbers a
have no prime divisors p < z and the number of their prime divisors with z ≤ p < z1 can be
controlled via the choice of the ωp’s.

The above idea plays an important role in improvements on the result established in §4.3.
Using weighted sieves, Buchstab [29] and Richert [196] proved that every sufficiently large
even n can be represented as the sum of a prime and a P3-number. Richert used weights of
the form

w(a) = 1 − θ
∑

p|a
z≤p<z1

(

1 − log p

log z1

)

,
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while Buchstab’s weights were somewhat more complicated. Chen’s proof of Theorem 2 uses
weights of the form (4.32) with z = n1/10, z1 = n1/3, and

ωp =
1

2
+

1

2
δp(a),

where

δp(a) =

{

1 if a = pp1p2 with p1 ≥ z1,

0 otherwise.

Here, n is the even number appearing in the statement of Theorem 2 and a is an element of
the sequence (1.7). With this choice of ωp, successful sifting produces numbers a ∈ A with
w(a) > 0 and no prime divisors p < n1/10. One can prove that any such number a must in
fact be a P2-number. The reader can find a detailed proof of Chen’s theorem in [66, Chapter
11], [175, Chapter 10], or [178, Chapter 9].

4.5 Other sieve methods

We conclude our discussion of sieve methods with a brief account of some of the important
ideas in sieve theory left out of the previous sections.

Selberg’s sieve. The Rosser–Iwaniec sieve defined by (4.17) and (4.18) is not particularly
sensitive to the arithmetical nature of the sequence A that is being sifted. In fact, the
only piece of information about A that the Rosser–Iwaniec sieve does take into account
is its sieve dimension. Such sieves are known as combinatorial. Selberg [204] proposed
another approach, which uses the multiplicative function ω(d) appearing in (4.5) to construct
essentially best possible upper sieve weights λ+(d) for a given sequence A.

Suppose that ρ(d) is a real function such that ρ(1) = 1. Then

∑

d|n

µ(d) ≤





∑

d|n

ρ(d)





2

.

We can apply this inequality to estimate S(A, P, z) as follows:

S(A, P, z) ≤
∑

a∈A





∑

d|n

ρ(d)





2

=
∑

a∈A

∑

d1,d2|n

ρ(d1)ρ(d2)

=
∑

d1,d2

ρ(d1)ρ(d2)
∣

∣A[d1,d2]

∣

∣,

where |Ad| is as before and [d1, d2] is the least common multiple of d1 and d2. Using (4.5),
we find that

S(A, P, z) ≤ XW + R′,
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where

W =
∑

d1,d2

ρ(d1)ρ(d2)
ω([d1, d2])

[d1, d2]
, R′ =

∑

d1,d2

ρ(d1)ρ(d2)r(X, [d1, d2]).

In order to control the “error term” R′, we further assume that ρ(d) = 0 when d > ξ, where
ξ > 0 is a parameter. The double sum W is a quadratic form in the variables ρ(d), 1 < d ≤ ξ.
Selberg’s idea is to choose the values of these variables as to minimize this quadratic form.

More information about Selberg’s sieve—including the techniques used to construct the
lower sieve function λ−(d) of Selberg’s sieve—can be found in [66, 174] and in Selberg’s
collected works [205, 206].

The large sieve. The method known as the large sieve was introduced in 1941 by Linnik
[140], but its systematic study did not commence until Rényi’s work [195] on the binary
Goldbach problem. The original idea of Linnik and Rényi evolved into a general analytic
principle that has penetrated analytic number theory on many levels (and perhaps does not
warrant the name “sieve” anymore, but the term has survived for historical reasons). The
most prominent application of the large sieve is the Bombieri–Vinogradov theorem. The
reader will find discussion of the number-theoretic aspects of the large sieve in [20, 49, 171]
and of the analytic side of the story in [49, 171, 172].

Alternative form of the error term in the sieve. Iwaniec [106] obtained a variant of
the linear sieve featuring an error term that is better suited for certain applications than the
error term R defined in (4.13). It is of the form

(4.34)
∑

m<M
m|P (z)

∑

n<N
n|P (z)

ambnr(X, mn),

where the coefficients am and bn are bounded above in absolute value and r(X, mn) are
the remainder terms defined earlier. In some applications, one can use the bilinearity of this
expression to estimate the double sum when the product MN is larger than the largest value
of y for which one can obtain a satisfactory bound for R. Iwaniec [104] used this idea in his
proof that certain quadratic polynomials take on infinitely P2-numbers (recall §2.4).

Prime detecting sieves. For a long time it was believed that sieve methods are not
capable of detecting prime numbers; there are even a couple of prominent papers (see [21,
205]) that quantify the shortcomings of the classical sieve technology. In short, classical
sieves are incapable of distinguishing between integers having even number of prime divisors
and those having an odd number of prime divisors (this is known in sieve theory as the parity

obstacle). A prime detecting sieve overcomes the parity obstacle by combining the general
sieve philosophy with additional analytic information. A variant of the basic idea can be
traced all the way back to Vinogradov’s work on sums over primes, but the first explicit
uses of prime detecting sieves appeared in the late 1970s in investigations of the distribution
of primes in short intervals (see [91, 107]). The method flourished during the last decade
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and has been instrumental in the proofs of several of the restults mentioned in the previous
sections: the result of Friedlander and Iwaniec [58] on prime values of x2 + y4; the results
of Heath-Brown and Moroz [89, 92] on prime values of binary cubic forms; and the result
of Baker, Harman, and Pintz [9] on primes in short intervals are just three such examples.
Compared to classical sieve methods, the theory of prime detecting sieves is still in its infancy
and thus the general literature on the subject is relatively scarce, but the reader eager to
learn more about such matters will find two excellent expositions in [59] and [79].

5 Other work on the Waring–Goldbach problem

In the Introduction, we mentioned the cornerstones in the study of the Goldbach and Waring–
Goldbach problems. However, as is often the case in mathematics, those results are inter-
twined with a myriad of other results on various aspects and variants of the two main
problems. In this final section, we describe some of the more important results of the latter
kind. The circle method, sieve methods, or a combination of them play an essential role in
the proofs of all these.

5.1 Estimates for exceptional sets

Inspired by the work of Chudakov [42] and Estermann [54] on the exceptional set in the
binary Goldbach problem, Hua studied the function h(k), defined to be the least s such that
almost all integers n ≤ x, n ≡ s (mod K(k)), can be written as the sum of s kth powers of
primes (K(k) is defined by (1.12)). Let Ek,s(x) denote the number of exceptions, that is, the
number of integers n, with n ≤ x and n ≡ s (mod K(k)), for which (1.14) has no solution
in primes p1, . . . , ps. Hua showed (essentially) that if H(k) ≤ s0(k), then Ek,s(x) = o(x) for
any s ≥ 1

2
s0(k). Later, Schwarz [202] refined Hua’s method to show that

(5.1) Ek,s(x) ≪ x(log x)−A

for any fixed A > 0.
In recent years, motivated by the estimate (1.6) of Montgomery and Vaughan, several

authors have pursued similar estimates for exceptional sets for squares and higher powers of
primes. The first to obtain such an estimate were Leung and Liu [134], who showed that
E2,3(x) ≪ x1−δ, with an absolute constant δ > 0. Explicit versions of this result were later
given in [16, 80, 128, 159, 160], the best result to date being the estimate (see Harman and
Kumchev [80])

E2,3(x) ≪ x6/7+ε.

Furthermore, several authors [80, 147, 149, 155, 249] obtained improvements on Hua’s bound
(5.1) for E2,4(x), the most recent being the bound

E2,4(x) ≪ x5/14+ε,
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established by Harman and Kumchev [80]. Ren [194] studied the exceptional set for sums of
five cubes of primes and proved that

E3,s(x) ≪ x1−(s−4)/153 (5 ≤ s ≤ 8).

This estimate has since been improved by Wooley [248] and Kumchev [126]. In particular,
Kumchev [126] showed that

E3,5(x) ≪ x79/84, E3,6(x) ≪ x31/35,

E3,7(x) ≪ x51/84, E3,8(x) ≪ x23/84.

Finally, Kumchev [126] has developed the necessary machinery to obtain estimates of the
form Ek,s(x) ≪ x1−δ, with explicit values of δ = δ(k, s) > 0, for all pairs of integers k ≥ 4
and s for which an estimate of the form (5.1) is known.

In 1973 Ramachandra [192] considered the exceptional set for the binary Goldbach prob-
lem in short intervals. He proved that if y ≥ x7/12+ε and A > 0, then

E(x + y) − E(x) ≪ y(log x)−A,

where the implied constant depends only on A and ε. After a series of improvements on this
result [8, 52, 53, 111, 112, 115, 135, 167, 182], this estimate is now known for y ≥ x7/108+ε

(see Jia [115]). Lou and Yao [164, 250] were the first to pursue a short interval version of
the estimate (1.6) of Montgomery and Vaughan. Their result was substantially improved by
Peneva [180] and the best result in this direction, due to Languasco [131], states that there
exists a small constant δ > 0 such that

E(x + y) − E(x) ≪ y1−δ/600,

whenever y ≥ x7/24+7δ .
Furthermore, J. Liu and Zhan [157] and Mikawa [169] studied the quantity E2,3(x) in

short intervals and the latter author showed that

E2,3(x + y) − E2,3(x) ≪ y(log x)−A

for any fixed A > 0 and any y ≥ x1/2+ε.

5.2 The Waring–Goldbach problem with almost
primes

There have also been attempts to gain further knowledge about the Waring–Goldbach prob-
lem by studying closely related but more accessible problems. The most common such vari-
ants relax the multiplicative constraint on (some of) the variables. Consider, for example,
Lagrange’s equation

(5.2) x2
1 + x2

2 + x2
3 + x2

4 = n.
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Greaves [62] proved that every sufficiently large n 6≡ 0, 1, 5 (mod 8) can be represented in
the form (5.2) with x1, x2 primes and x3, x4 (unrestricted) integers. Later, Plaksin [189] and
Shields [207] found independently an asymptotic formula for the number of such representa-
tions. Brüdern and Fouvry [24] proved that every sufficiently large integer n ≡ 4 (mod 24)
can be written as the sum of four squares of P34-numbers. Heath-Brown and Tolev [94]
established, under the same hypothesis on n, that one can solve (5.2) in one prime and three
almost primes of type P101 or in four almost primes, each of type P25. Tolev [218] has recently
improved the results in [94], replacing the types of the almost primes involved by P80 and
P21, respectively. We must also mention the recent result by Blomer and Brüdern [17] that
all sufficiently large integers n such that n ≡ 3 (mod 24) and 5 ∤ n are sums of three almost
primes of type P521 (and of type P371 if n is also squarefree).

In 1951 Roth [200] proved that if n is sufficiently large, the equation

(5.3) x3 + p3
1 + · · ·+ p3

7 = n

has solutions in primes p1, . . . , p7 and an integer x. Brüdern [22] showed that if n ≡
4 (mod 18), then x can be taken to be a P4-number, and Kawada [118] used an idea from
Chen’s proof of Theorem 2 to obtain a variant of Brüdern’s result for almost primes of type
P3. Furthemore, Brüdern [23] proved that every sufficiently large integer is the sum of the
cubes of a prime and six almost-primes (five P5-numbers and a P69-number) and Kawada
[119] has shown that every sufficiently large integer is the sum of seven cubes of P4-numbers.

Wooley [249] showed that all but O
(

(log x)6+ε
)

integers n ≤ x, satisfying certain natural
congruence conditions can be represented in the form (5.2) with prime variables x1, x2, x3

and an integer x4. Tolev [219] established a result of similar strength for the exceptional set
for equation (5.2) with primes x1, x2, x3 and an almost prime x4 of type P11.

5.3 The Waring–Goldbach problem with restricted

variables

Through the years, a number of authors have studied variants of the Goldbach and Waring–
Goldbach problems with additional restrictions on the variables. In 1951 Haselgrove [82]
announced that every sufficiently large odd integer n is the sum of three primes p1, p2, p3

such that |pi − n/3| ≤ n63/64+ε. In other words, one can take the primes in Vinogradov’s
three prime theorem to be “almost equal”. Subsequent work by several mathematicians
[7, 34, 109, 110, 177, 254] tightened the range for the pi’s to |pi−n/3| ≤ n4/7 (see Baker and
Harman [7]).

Furthermore, Bauer, Liu, and Zhan [13, 156, 158] considered the problem of representa-
tions of an integer as sums of five squares of almost equal primes. The best result to date is
due to Liu and Zhan [158], who proved that every sufficiently large integer n ≡ 5 (mod 24)
can be written as

n = p2
1 + · · ·+ p2

5,

with primes p1, . . . , p5 satisfying |p2
i − n/5| < n45/46+ε. Liu and Zhan [156] also showed that

the exponent 45
46

can be replaced by 19
20

on the assumption of GRH.
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In 1986 Wirsing [244] proved that there exist sparse sequences of primes S such that
every sufficiently large odd integer can be represented as the sum of three primes from S.
However, his method was probabilistic and did not yield an example of such a sequence.
Thus, Wirsing proposed the problem of finding “natural” examples of arithmetic sequences
having this property. The first explicit example was given by Balog and Friedlander [12].
They proved that the sequence of Piatetski-Shapiro primes (recall (2.13)) is admissible for
1 < c < 21/20. Jia [113] improved the range for c to 1 < c < 16/15, and Peneva [181]
studied the binary problem with a Piatetski-Shapiro prime and an almost prime. Tolev [215]–
[217] and Peneva [179] considered additive problems with prime variables p such that the
integers p + 2 are almost-primes. For example, Tolev [217] proved that every sufficiently
large n ≡ 3 (mod 6) can be represented as the sum of primes p1, p2, p3 such that p1 +2 = P2,
p1 + 2 = P5, and p1 + 2 = P7. Green and Tao announced at the end of [64] that, using their
method, one can prove that there are arbitrarily long non trivial arithmetic progressions
consisting of primes p such that p + 2 = P2. They presented in [65] a proof of this result for
progressions of three primes.

5.4 Linnik’s problem and variants

In the early 1950s Linnik proposed the problem of finding sparse sequences A such that all
sufficiently large integers n (possibly subject to some parity condition) can be represented
as sums of two primes and an element of A. He considered two special sequences. First,
he showed [143] that if GRH holds, then every sufficiently large odd n is the sum of three
primes p1, p2, p3 with p1 ≪ (log n)3. Montgomery and Vaughan [173] sharpened the bound
on p1 to p1 ≪ (log n)2 and also obtained an unconditional result with p1 ≪ n7/72+ε; the
latter bound has been subsequently improved to p1 ≪ n0.02625 (this follows by the original
argument of Montgomery and Vaughan from recent results of Baker, Harman, and Pintz [9]
and Jia [114]).

Linnik [142, 144] was also the first to study additive representations as sums of two primes
and a fixed number of powers of 2. He proved, first under GRH and later unconditionally,
that there is an absolute constant r such that every sufficiently large even integer n can be
expressed as the sum of two primes and r powers of 2, that is, the equation

p1 + p2 + 2ν1 + · · ·+ 2νr = n,

has solutions in primes p1, p2 and non-negative integers ν1, . . . , νr. Later Gallagher [60]
established the same result by a different method. Several authors have used Gallagher’s
approach to find explicit values of the constant r above (see [137, 138, 150, 151, 152, 242]);
in particular, Li [138] proved that r = 1906 is admissible and Wang [242] obtained r =
160 under GRH. Recently, Heath-Brown and Puchta [93] and Pintz and Ruzsa [187] made
(independently) an important discovery that leads to a substantial improvement on the
earlier results. Their device establishes Linnik’s result with r = 13 (see [93]) and with
r = 7 under GRH (see [93, 187]). Furthermore, Pintz and Rusza [188] have announced an
unconditional proof of the case r = 8.
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There is a similar approximation to the Waring–Goldbach problem for four squares of
primes. J. Y. Liu, M. C. Liu, and Zhan [153, 154] proved that there exists a constant r such
that every sufficiently large even integer n can be expressed in the form

p2
1 + p2

2 + p2
3 + p2

4 + 2ν1 + · · ·+ 2νr = n,

where p1, . . . , p4 are primes and ν1, . . . , νr are non-negative integers. J. Y. Liu and M. C. Liu
[148] established this result with r = 8330 and considered also the related problem about
representations of integers as sums of a prime, two squares of primes and several powers of
2.

5.5 Additive problems with mixed powers

In 1923 Hardy and Littlewood [71] used the general philosophy underlying the circle method
to formulate several interesting conjectures. For example, they stated a conjectural asymp-
totic formula for the number of representations of a large integer n in the form

(5.4) p + x2 + y2 = n,

where p is a prime and x, y are integers. Their prediction was confirmed in the late 1950s,
first by Hooley [97] under the assumption of GRH and then unconditionally by Linnik [145].
The reader will find the details of the proof in [98, 146].

In another conjecture, Hardy and Littlewood proposed an asymptotic formula for the
number of representations of a large integer n as the sum of a prime and a square. While
such a result appears to lie beyond the reach of present methods, Miech [166] showed that
this conjecture holds for almost all integers n ≤ x. Let Ek(x), k ≥ 2, denote the number of
integers n ≤ x such that the equation n = p+xk has no solution in a prime p and an integer
x. Miech obtained the bound E2(x) ≪ x(log x)−A for any fixed A > 0. Subsequent work
of Brüdern, Brünner, Languasco, Mikawa, Perelli, Pintz, Polyakov, A. I. Vinogradov, and
Zaccagnini [26, 28, 132, 168, 183, 190, 235, 251] extended and sharpened Miech’s estimate
considerably. Here is a list of some of their results:

• For any fixed k ≥ 2, we have Ek(x) ≪ x1−δk , where δk > 0 depends at most on k; see
[28, 190, 235] for the case k = 2 and [183, 251] for the general case.

• Assuming GRH, we have Ek(x) ≪ x1−δk , where δk = 1/(k2k) or δk = 1/(25k) according
as 2 ≤ k ≤ 4 or k ≥ 5; see [183] and [26].

• If k ≥ 2 is a fixed integer and K = 2k−2 then there exists a small absolute constant
δ > 0 such that

Ek(x + y) − Ek(x) ≪ y1−δ/(5K),

provided that x(7/12)(1−1/k)+δ ≤ y ≤ x; see [132].
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Furthermore, several mathematicians [14, 15, 26, 157] obtained variants of the above bounds
in the case when the variable x is also restricted to primes, while Zaccagnini [252] studied
the more general problem of representing a large integer n in the form n = p + f(x), where
f(X) ∈ Z[X].

Several interesting theorems were proved by Brüdern and Kawada [25]. For example, one
of them states that if k is an integer with 3 ≤ k ≤ 5, then all sufficiently large integers n
can be represented as

x + p2
1 + p3

2 + pk
3 = n,

where pi are primes and x = P2.

5.6 The Waring–Goldbach problem “with coefficients”

In this section we discuss the solubility of equations of the form (1.16), which we intro-
duced in §1.4 as a natural generalization of the Waring–Goldbach problem. There are two
substantially different contexts in which one can study this problem. Suppose first that
all a1, . . . , as, n are all of the same sign. Then one expects that (1.16) must have solutions
for sufficiently large |n|. When “sufficiently large” is understood as |n| ≥ C(a1, . . . , as),
with some unspecified constant depending on the aj ’s, this is a trivial modification of the
Waring–Goldbach problem (that can be handled using essentially the same tools). On
the other hand, the problem of finding solution when |n| is not too large compared to
|a|∞ = max{|a1|, . . . , |as|} is significantly more challanging. Similarly, if a1, . . . , as are not
all of the same sign, one wants to find solutions of (1.16) in primes p1, . . . , ps that are not
too large compared to |a|∞ and |n|. Such questions were investigated first by Baker [5], who
studied the case k = 1 and s = 3. Later, Liu and Tsang [161] showed, again for k = 1 and
s = 3, that (1.16) has solutions when:

• a1, a2, a3 are of the same sign and |n| ≫ |a|A∞ for some absolute constant A > 0;

• a1, a2, a3 are not of the same sign and max{p1, p2, p3} ≪ |a|A−1
∞ + |n|.

In these results, the coefficients a1, a2, a3, n must satisfy also certain necessary congruence
conditions (which generalize the requirement that n be odd in Vinogradov’s three primes
theorem). Through the efforts of several mathematicians, the constant A has been evaluated
and it is known that the value A = 38 is admissible (see Li [139]). Furthermore, if we replace
the natural arithmetic conditions on the coefficients by another set of conditions, which are
somewhat more restrictive but also simplify greatly the analysis, we can decrease the value
of A further. In particular, Choi and Kumchev [38] have shown that A = 23/3 is admissible
under such stronger hypotheses.

Liu and Tsang [162] studied also the quadratic case of (1.16) in five variables and obtained
results similar to those stated above for the linear case. In this problem, explicit values of
the analogue of A above were given by Choi and Liu [39, 40], Choi and Kumchev [37], and
Harman and Kumchev [80]. In particular, it is proved in [80] that (1.16) with k = 2 and
s = 5 has solutions when:
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• a1, . . . , a5 are of the same sign and |n| ≫ |a|15+ε
∞ ;

• a1, . . . , a5 are not of the same sign and max{p1, . . . , p5} ≪ |a|7+ε
∞ + |n|1/2.

5.7 Diophantine inequalities with primes

Some variants of the Waring–Goldbach problem are stated most naturally in terms of dio-
phantine inequalities. The best-known problem of this kind concerns the distribution of the
values of the forms

(5.5) λ1p
k
1 + · · ·+ λsp

k
s ,

where k and s are positive integers, λ1, . . . , λs are nonzero real numbers, and p1, . . . , ps are
prime variables. It is natural to conjecture that if λ1, . . . , λs are not all of the same sign
and if λi/λj is irrational for some pair of indices i, j, then the values attained by the form
(5.5) are dense in R whenever s ≥ s0(k). In other words, given any ε > 0 and α ∈ R, the
inequality

(5.6)
∣

∣λ1p
k
1 + · · ·+ λsp

k
s − α

∣

∣ < ε

should have a solution in primes p1, . . . , ps. The first results in this problem were obtained
by Schwarz [203], who established the solvability of (5.6) under the same restrictions on
s as in Theorem 3. Baker [5] and Vaughan [221, 222, 224] proposed the more difficult
problem of replacing the fixed number ε on the right side of (5.6) by an explicit function
of max{p1, . . . , ps} that approaches 0 as max{p1, . . . , ps} → ∞. Further work has focused
primarily on the case of small k. For example, Harman [78] has shown that under the above
assumptions on λ1, λ2, λ3, the diophantine inequality

∣

∣λ1p1 + λ2p2 + λ3p3 − α
∣

∣ < max{p1, p2, p3}−1/5+ε

has infinitely many solutions in primes p1, p2, p3. Baker and Harman [6] showed that on
GRH the exponent 1

5
in this result can be replaced by 1

4
. Furthermore, Harman [77] proved

that if λ1/λ2 is a negative irrational number, then for any real α the inequality

∣

∣λ1p + λ2P3 − α
∣

∣ < p−1/300

has infinitely many solutions in a prime p and a P3-almost prime. (This improves on an
earlier result of Vaughan [224], where the almost prime is a P4-number.)

In 1952 Piatetski-Shapiro [184] considered a variant of the Waring–Goldbach problem for
non-integer exponents c > 1. He showed that for any fixed c > 1, which is not an integer,
there exists an integer H(c) with the following property: if s ≥ H(c), the inequality

(5.7)
∣

∣pc
1 + · · ·+ pc

s − α
∣

∣ < ε

has solutions in primes p1, . . . , ps for any fixed ε > 0 and α ≥ α0(ε, c). In particular,
Piatetski-Shapiro showed that H(c) ≤ 5 for 1 < c < 3/2. Motivated by Vinogradov’s three
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prime theorem, Tolev [213] proved that H(c) ≤ 3 for 1 < c < 15/14. The range of validity of
Tolev’s result was subsequently extended by several authors [32, 33, 125, 130]; in particular,
Kumchev [125] has given the range 1 < c < 61/55. Furthemore, it follows from the work
of Kumchev and Laporta [129, 133] that H(c) ≤ 4 for 1 < c < 6/5 and for almost all (in
the sense of Lebesgue measure) 1 < c < 2, while Garaev [61] has showed that H(c) ≤ 5 for
1 < c < (1 +

√
5)/2 = 1.61 . . . . Finally, Tolev [214] and Zhai [253] have studied systems of

inequalities of the form (5.7).
Several authors [1, 2, 30, 31] have studied variants of Goldbach’s problem, suggested by

results about additive inequalities. For example, Arkhipov, Chen, and Chubarikov [2] proved
that if λ1/λ2 is an algebraic irrationality, then all but O(x2/3+ε) positive integers n ≤ x can
be represented in the form

[λ1p1] + [λ2p2] = n,

where p1, p2 are primes.

6 A new path: arithmetic progressions of

primes

Finally, we should say a few words about the astonishing result of Green and Tao [64] on
the existence of arbitrarily long arithmetic progressions of prime numbers. They deduce the
existence of such arithmetic progressions from a generalization of a celebrated theorem of
Szemerédi [209, 210], which is itself a deep result in combinatorial number theory. Let A be
a set of positive integers with positive upper density, that is,

δ(A) = lim sup
N→∞

#{n ∈ A : n ≤ N}
N

> 0.

In its original, most basic form, Szemerédi’s theorem asserts that such a set A contains an
arithmetic progression of length k for all integers k ≥ 3. From this basic statement, Green
and Tao deduce the following more general result.

Theorem 9 (Szemerédi’s theorem for pseudorandom measures). Let δ ∈ (0, 1] be a

fixed real number, let k ≥ 3 be a fixed integer, and let N be a large prime. Suppose that ν is a

“k-pseudorandom measure8” on ZN = (Z/NZ) and f : ZN → [0,∞) is a function satisfying

(6.1) 0 ≤ f(x) ≤ ν(x) for all x ∈ ZN

and
∑

x∈ZN

f(x) ≥ δN.

8A k-pseudorandom measure on ZN is a non-negative function on ZN whose average over ZN is close to
1 and which is subject to a couple of additional constraints that are too technical to state here. See [64] for
details.
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Then

(6.2)
∑

x∈ZN

∑

r∈ZN

f(x)f(x + r) . . . f(x + (k − 1)r) ≫ N2,

the implied constant depending at most on δ and k.

To relate this result to the version of Szemerédi’s theorem stated earlier, consider the case
where ν(x) = 1 for all x (this is a k-pseudorandom measure) and f(x) is the characteristic
function of the set AN = A∩ [1, N ] considered as a subset of ZN . Then the left side of (6.2)
counts (essentially) the k-term arithmetic progressions in the set AN (the majority of which
are also k-term arithmetic progressions in A ∩ Z).

To derive the result on arithmetic progressions of primes, Green and Tao take f(x) to be a
function which, in some sense (see [64] for details), approximates the characteristic function
of the primes in the interval [c1N, c2N ], where 0 < c1 < c2 < 1 are suitable constants.
Then they construct a pseudorandom measure ν(x) such that (6.1) holds. This leads to the
following theorem.

Theorem 10 (Green and Tao, 2004). Let k ≥ 3 and let A be a set of prime numbers

such that

lim sup
N→∞

#{n ∈ A : n ≤ N}
π(N)

> 0.

Then A contains infinitely many k-term arithmetic progresions. In particular, there are

infinitely many k-term arithmetic progresions of prime numbers.

We remark that the infinitude of the k-term progressions of primes is a consequence of
(6.2). In fact, using the explicit form of the function f(x) to which they apply Theorem
9, Green and Tao establish the existence of ≫ N2(log N)−k k-term progressions within
A ∩ [1, N ].

Several other interesing results are announced in [64]. For example, one of them asserts
that there are infinitely many progressions of primes p1, . . . , pk such that each pi + 2 is a
P2-number (a proof of this result in the case k = 3 is presented in [65]).

Conclusion. With this, our survey comes to a close. We tried to describe the central problems
and the main directions of research in the additive theory of prime numbers and to introduce
the reader to the classical methods. Complete success in such an undertaking is perhaps an
impossibility, but hopefully we have been able to paint a representative picture of the current
state of the subject and to motivate the reader to seek more information from the literature.
Maybe some of our readers will one day join the ranks of the number theorists trying to turn
the great conjectures mentioned above into beautiful theorems!
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[52] G. Dufner, Binäres Goldbachproblem in kursen Intervallen. I. Die explizite Formel, Period. Math.
Hungar. 29 (1994), 213–243.
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