On Some Topics in Automorphic Representations

Dihua Jiang University of Minnesota

December, 2007

イロト イポト イヨト イヨト

э

Introduction

Automorphic Representations

Automorphic L-functions

Langlands Functoriality

Beyond the Genericity

Final Remarks

イロン 不同と 不同と 不同と

-2

Automorphic Representations Automorphic L-functions Langlands Functoriality Beyond the Genericity Final Remarks

Acknowledgement

My research is supported in part by USA NSF Grants, by US-Israeli BSF Grants, and by the Chinese Academy of Sciences; and also by Project 111 at East China Normal University.

Automorphic Representations Automorphic L-functions Langlands Functoriality Beyond the Genericity Final Remarks

Basic Structures of Numbers

► Theorem (Foundamental Theorem of Arithmetic) For any r ∈ Q, there is prime numbers p₁, p₂, · · · , p_t and integers e₁, e₂, · · · , e_t such that

$$r=\pm p_1^{e_1}p_2^{e_2}\cdots p_t^{e_t}.$$

This is unique up to permutation.

イロン 不同と 不同と 不同と

-

Automorphic Representations Automorphic L-functions Langlands Functoriality Beyond the Genericity Final Remarks

Basic Structures of Numbers

► Theorem (Foundamental Theorem of Arithmetic) For any r ∈ Q, there is prime numbers p₁, p₂, · · · , p_t and integers e₁, e₂, · · · , e_t such that

$$r=\pm p_1^{e_1}p_2^{e_2}\cdots p_t^{e_t}.$$

This is unique up to permutation.

It is a multiplicative structure in terms of primes.

Automorphic Representations Automorphic L-functions Langlands Functoriality Beyond the Genericity Final Remarks

Basic Structures of Numbers

► Theorem (Foundamental Theorem of Arithmetic) For any r ∈ Q, there is prime numbers p₁, p₂, ..., p_t and integers e₁, e₂, ..., e_t such that

$$r=\pm p_1^{e_1}p_2^{e_2}\cdots p_t^{e_t}.$$

This is unique up to permutation.

- It is a multiplicative structure in terms of primes.
- The additive structure in terms of primes should be the Goldboch Conjecture, which asserts the expression of even integers as sum of two primes, and is a much harder problem.

Automorphic Representations Automorphic L-functions Langlands Functoriality Beyond the Genericity Final Remarks

Basic Structures of Numbers

It is much easier for kids to learn addition of numbers than the multiplication of numbers.

イロト イヨト イヨト イヨト

-2

Automorphic Representations Automorphic L-functions Langlands Functoriality Beyond the Genericity Final Remarks

Basic Structures of Numbers

- It is much easier for kids to learn addition of numbers than the multiplication of numbers.
- However, it seems that the multiplication has much better structure. The local-Global principle in modern number theory is one of the good examples related to the multiplicative structure of numbers.

(4 同) (4 回) (4 回)

Automorphic Representations Automorphic L-functions Langlands Functoriality Beyond the Genericity Final Remarks

Basic Structures of Numbers

- It is much easier for kids to learn addition of numbers than the multiplication of numbers.
- However, it seems that the multiplication has much better structure. The local-Global principle in modern number theory is one of the good examples related to the multiplicative structure of numbers.
- From $r = \pm p_1^{e_1} p_2^{e_2} \cdots p_t^{e_t}$, to know r is equivalent to know all $p_i^{e_i}$, individually

Automorphic Representations Automorphic L-functions Langlands Functoriality Beyond the Genericity Final Remarks

Basic Structures of Numbers

- It is much easier for kids to learn addition of numbers than the multiplication of numbers.
- However, it seems that the multiplication has much better structure. The local-Global principle in modern number theory is one of the good examples related to the multiplicative structure of numbers.
- From $r = \pm p_1^{e_1} p_2^{e_2} \cdots p_t^{e_t}$, to know r is equivalent to know all $p_i^{e_i}$, individually
- To measure r we use the usual absolute value; and to measure p_i^{e_i} we use the so called p-adic absolute value.

Automorphic Representations Automorphic L-functions Langlands Functoriality Beyond the Genericity Final Remarks

p-adic Absolute Value

• Given a prime p, any $r \in \mathbb{Q}^{\times}$, we have $r = p^e \cdot \frac{a}{b}$, where (p, a) = (p, b) = 1.

・ロン ・回 と ・ ヨン ・ ヨン

Automorphic Representations Automorphic L-functions Langlands Functoriality Beyond the Genericity Final Remarks

p-adic Absolute Value

- Given a prime p, any $r \in \mathbb{Q}^{\times}$, we have $r = p^e \cdot \frac{a}{b}$, where (p, a) = (p, b) = 1.
- Define the p-adic absolute value

$$|r|_p := \begin{cases} p^{-e}, & \text{if } r \neq 0; \\ 0, & \text{if } r = 0. \end{cases}$$

・ロン ・回 と ・ ヨン ・ ヨン

Automorphic Representations Automorphic L-functions Langlands Functoriality Beyond the Genericity Final Remarks

p-adic Absolute Value

- ▶ Given a prime p, any $r \in \mathbb{Q}^{\times}$, we have $r = p^e \cdot \frac{a}{b}$, where (p, a) = (p, b) = 1.
- Define the p-adic absolute value

$$|r|_p := \begin{cases} p^{-e}, & \text{if } r \neq 0; \\ 0, & \text{if } r = 0. \end{cases}$$

• $|\cdot|_p$ defines a nontrivial matric on \mathbb{Q} .

Automorphic Representations Automorphic L-functions Langlands Functoriality Beyond the Genericity Final Remarks

p-adic Absolute Value

- ▶ Given a prime p, any $r \in \mathbb{Q}^{\times}$, we have $r = p^e \cdot \frac{a}{b}$, where (p, a) = (p, b) = 1.
- Define the p-adic absolute value

$$|r|_p := egin{cases} p^{-e}, & ext{if } r
eq 0; \ 0, & ext{if } r = 0. \end{cases}$$

- $|\cdot|_p$ defines a nontrivial matric on \mathbb{Q} .
- For $r \in \mathbb{Q}^{\times}$, we have $\prod_{\nu} |r|_{\nu} = 1$.

・ロン ・回 と ・ ヨン ・ ヨン

Automorphic Representations Automorphic L-functions Langlands Functoriality Beyond the Genericity Final Remarks

Locally Compact Topological Fields

• Over \mathbb{Q} , we have $|\cdot|_{\infty}$ and $|\cdot|_{p}$ for all p's.

イロト イヨト イヨト イヨト

-2

Automorphic Representations Automorphic L-functions Langlands Functoriality Beyond the Genericity Final Remarks

Locally Compact Topological Fields

- Over \mathbb{Q} , we have $|\cdot|_{\infty}$ and $|\cdot|_{p}$ for all p's.
- Take the completion, we have

$$\overline{(\mathbb{Q},|\cdot|_{\infty})}=\mathbb{R}; \quad \overline{(\mathbb{Q},|\cdot|_{p})}=\mathbb{Q}_{p}.$$

イロト イポト イヨト イヨト

Automorphic Representations Automorphic L-functions Langlands Functoriality Beyond the Genericity Final Remarks

Locally Compact Topological Fields

- Over \mathbb{Q} , we have $|\cdot|_{\infty}$ and $|\cdot|_{p}$ for all p's.
- Take the completion, we have

$$\overline{(\mathbb{Q},|\cdot|_{\infty})} = \mathbb{R}; \quad \overline{(\mathbb{Q},|\cdot|_{p})} = \mathbb{Q}_{p}.$$

 They are only locally compact topological fields containing Q as a dense set.

Automorphic Representations Automorphic L-functions Langlands Functoriality Beyond the Genericity Final Remarks

Locally Compact Topological Fields

- Over \mathbb{Q} , we have $|\cdot|_{\infty}$ and $|\cdot|_{p}$ for all p's.
- Take the completion, we have

$$\overline{(\mathbb{Q},|\cdot|_{\infty})} = \mathbb{R}; \quad \overline{(\mathbb{Q},|\cdot|_{p})} = \mathbb{Q}_{p}.$$

- They are only locally compact topological fields containing Q as a dense set.
- For v = ∞ or p, denote the Haar measure dx_v on Q_v, which is unique up to a constant.

Automorphic Representations Automorphic L-functions Langlands Functoriality Beyond the Genericity Final Remarks

Locally Compact Topological Fields

- Over \mathbb{Q} , we have $|\cdot|_{\infty}$ and $|\cdot|_{p}$ for all p's.
- Take the completion, we have

$$\overline{(\mathbb{Q},|\cdot|_{\infty})} = \mathbb{R}; \quad \overline{(\mathbb{Q},|\cdot|_{p})} = \mathbb{Q}_{p}.$$

- They are only locally compact topological fields containing Q as a dense set.
- For v = ∞ or p, denote the Haar measure dx_v on Q_v, which is unique up to a constant.
- ► The Harmonic Analysis on (Q_v, dx_v) is expected to have deep impact in Number Theory.

・ロン ・回 と ・ ヨ と ・ ヨ と

Automorphic Representations Automorphic L-functions Langlands Functoriality Beyond the Genericity Final Remarks

The Riemann Zeta Function

•
$$\zeta(s) := \sum_{n=1}^{\infty} \frac{1}{n^s}$$
 converges absolutely for $Re(s) > 1$.

イロン イヨン イヨン イヨン

æ

Automorphic Representations Automorphic L-functions Langlands Functoriality Beyond the Genericity Final Remarks

The Riemann Zeta Function

- $\zeta(s) := \sum_{n=1}^{\infty} \frac{1}{n^s}$ converges absolutely for Re(s) > 1.
- By the Fundamental Theorem of Arithmetic, we have the eulerian product:

$$\zeta(s) = \prod_{p} \frac{1}{1 - p^{-s}}$$

・ロン ・回 と ・ ヨ と ・ ヨ と

Automorphic Representations Automorphic L-functions Langlands Functoriality Beyond the Genericity Final Remarks

The Riemann Zeta Function

- $\zeta(s) := \sum_{n=1}^{\infty} \frac{1}{n^s}$ converges absolutely for Re(s) > 1.
- By the Fundamental Theorem of Arithmetic, we have the eulerian product:

$$\zeta(s) = \prod_{p} \frac{1}{1 - p^{-s}}$$

The pole at s = 1 of ζ(s) implies there are infinitely many primes!

Automorphic Representations Automorphic L-functions Langlands Functoriality Beyond the Genericity Final Remarks

The Riemann Zeta Function

- $\zeta(s) := \sum_{n=1}^{\infty} \frac{1}{n^s}$ converges absolutely for Re(s) > 1.
- By the Fundamental Theorem of Arithmetic, we have the eulerian product:

$$\zeta(s) = \prod_{p} \frac{1}{1 - p^{-s}}$$

- The pole at s = 1 of ζ(s) implies there are infinitely many primes!

(日) (同) (E) (E) (E) (E)

Automorphic Representations Automorphic L-functions Langlands Functoriality Beyond the Genericity Final Remarks

Adele Ring of ${\mathbb Q}$

• One might consider $\prod_{\nu} \mathbb{Q}_{\nu}$, but it is not locally compact.

イロト イヨト イヨト イヨト

-2

Automorphic Representations Automorphic L-functions Langlands Functoriality Beyond the Genericity Final Remarks

Adele Ring of \mathbb{Q}

- One might consider $\prod_{\nu} \mathbb{Q}_{\nu}$, but it is not locally compact.
- For each $r = \pm p_1^{e_1} p_2^{e_2} \cdots p_t^{e_t}$ involves finitely many primes.

・ロン ・回 と ・ ヨ と ・ ヨ と

Automorphic Representations Automorphic L-functions Langlands Functoriality Beyond the Genericity Final Remarks

Adele Ring of \mathbb{Q}

- One might consider $\prod_{v} \mathbb{Q}_{v}$, but it is not locally compact.
- For each $r = \pm p_1^{e_1} p_2^{e_2} \cdots p_t^{e_t}$ involves finitely many primes.
- The ring of adeles is defined to be

$$\mathbb{A}:=\{(x_{m{v}})\in\prod_{m{v}}\mathbb{Q}_{m{v}}\ :\ |x_{m{p}}|_{m{p}}\leq 1, ext{ for almost all } p\}.$$

Automorphic Representations Automorphic L-functions Langlands Functoriality Beyond the Genericity Final Remarks

Adele Ring of \mathbb{Q}

- One might consider $\prod_{\nu} \mathbb{Q}_{\nu}$, but it is not locally compact.
- For each $r = \pm p_1^{e_1} p_2^{e_2} \cdots p_t^{e_t}$ involves finitely many primes.
- The ring of adeles is defined to be

$$\mathbb{A}:=\{(x_{m{v}})\in\prod_{m{v}}\mathbb{Q}_{m{v}}\ :\ |x_{m{p}}|_{m{p}}\leq 1, ext{ for almost all } m{p}\}.$$

▲ is a locally compact ring containing all Q_v; and Q is discrete in A such that A/Q is compact.

Automorphic Representations Automorphic L-functions Langlands Functoriality Beyond the Genericity Final Remarks

Adele Ring of \mathbb{Q}

- One might consider $\prod_{\nu} \mathbb{Q}_{\nu}$, but it is not locally compact.
- For each $r = \pm p_1^{e_1} p_2^{e_2} \cdots p_t^{e_t}$ involves finitely many primes.
- The ring of adeles is defined to be

$$\mathbb{A}:=\{(x_{m{v}})\in\prod_{m{v}}\mathbb{Q}_{m{v}}\ :\ |x_{m{p}}|_{m{p}}\leq 1, ext{ for almost all } m{p}\}.$$

- ▲ is a locally compact ring containing all Q_v; and Q is discrete in A such that A/Q is compact.
- (\mathbb{A}, \mathbb{Q}) is a modern analogy of the classical pair (\mathbb{R}, \mathbb{Z}) .

Automorphic Representations Automorphic L-functions Langlands Functoriality Beyond the Genericity Final Remarks

Tate's Thesis

▶ For each v, \exists a Schwartz function ϕ_v , s.t.

$$\int_{\mathbb{Q}_v^\times} \phi_v(x) |x|_v^s d^\times x_v = \begin{cases} \frac{1}{1-p^{-s}} & \text{if } v = p, \\ \pi^{-\frac{s}{2}} \Gamma(\frac{s}{2}) & \text{if } v = \infty. \end{cases}$$

イロン イヨン イヨン イヨン

-21

Automorphic Representations Automorphic L-functions Langlands Functoriality Beyond the Genericity Final Remarks

Tate's Thesis

▶ For each v, \exists a Schwartz function ϕ_v , s.t.

$$\int_{\mathbb{Q}_v^{\times}} \phi_v(x) |x|_v^s d^{\times} x_v = \begin{cases} \frac{1}{1-p^{-s}} & \text{if } v = p, \\ \pi^{-\frac{s}{2}} \Gamma(\frac{s}{2}) & \text{if } v = \infty. \end{cases}$$

▶ ∃ a Schwartz function $\phi = \otimes_{\mathbf{v}} \phi_{\mathbf{v}}$ on \mathbb{A} , s.t.

$$\int_{\mathbb{A}^{\times}} \phi(x) |x|_{\mathbb{A}}^{s} d^{\times} x = \pi^{-\frac{s}{2}} \Gamma(\frac{s}{2}) \cdot \prod_{p} \frac{1}{1 - p^{-s}}.$$

・ロン ・回 と ・ ヨン ・ ヨン

Automorphic Representations Automorphic L-functions Langlands Functoriality Beyond the Genericity Final Remarks

Tate's Thesis

▶ For each v, \exists a Schwartz function ϕ_v , s.t.

$$\int_{\mathbb{Q}_v^{\times}} \phi_v(x) |x|_v^s d^{\times} x_v = \begin{cases} \frac{1}{1-p^{-s}} & \text{if } v = p, \\ \pi^{-\frac{s}{2}} \Gamma(\frac{s}{2}) & \text{if } v = \infty. \end{cases}$$

▶ ∃ a Schwartz function $\phi = \otimes_{\mathbf{v}} \phi_{\mathbf{v}}$ on \mathbb{A} , s.t.

$$\int_{\mathbb{A}^{\times}} \phi(x) |x|_{\mathbb{A}}^{s} d^{\times} x = \pi^{-\frac{s}{2}} \Gamma(\frac{s}{2}) \cdot \prod_{p} \frac{1}{1 - p^{-s}}.$$

The local-global relation in harmonic analysis approaches the local-global relation in arithmetic!

・ロン ・回 と ・ ヨ と ・ ヨ と

Modern Theory of Automorphic Forms

▶ Generalization from GL(1) to general reductive algebraic groups defined over Q.

イロト イポト イヨト イヨト

Modern Theory of Automorphic Forms

- ▶ Generalization from GL(1) to general reductive algebraic groups defined over Q.
- ▶ Generalization from the trivial representation of GL(1) to ∞-dimensional representations of adelic groups (special locally compact groups).

Modern Theory of Automorphic Forms

- ▶ Generalization from GL(1) to general reductive algebraic groups defined over Q.
- ▶ Generalization from the trivial representation of GL(1) to ∞-dimensional representations of adelic groups (special locally compact groups).
- Generalization from $\zeta(s)$ to general automorphic L-functions.

Modern Theory of Automorphic Forms

- ▶ Generalization from GL(1) to general reductive algebraic groups defined over Q.
- ▶ Generalization from the trivial representation of GL(1) to ∞-dimensional representations of adelic groups (special locally compact groups).
- Generalization from $\zeta(s)$ to general automorphic L-functions.
- The Langlands Programme is to figure out the deep impacts of these generalizations to Number Theory and Arithmetic.

Algebraic Groups

 Algebraic groups G are algebraic varieties with group operations which are morphisms of algebraic varieties.

イロト イヨト イヨト イヨト

-2

Algebraic Groups

- Algebraic groups G are algebraic varieties with group operations which are morphisms of algebraic varieties.
- ▶ For simplicity, we take $G = GL_n$, SO_m , Sp_{2n} , classical groups

Algebraic Groups

- Algebraic groups G are algebraic varieties with group operations which are morphisms of algebraic varieties.
- ▶ For simplicity, we take $G = GL_n$, SO_m , Sp_{2n} , classical groups
- For example, SO_m = {g ∈ GL_m | ^tgJ_mg = J_m, det g = 1}, with J_m defined inductively by

$$J_m := egin{pmatrix} & 1 \ & J_{m-2} & \ & 1 \end{pmatrix}.$$

Automorphic Functions

• $G(\mathbb{Q})$ is a discrete subgroup of $G(\mathbb{A})$.

・ロン ・回 と ・ ヨ と ・ ヨ と

-2

Automorphic Functions

- $G(\mathbb{Q})$ is a discrete subgroup of $G(\mathbb{A})$.
- The quotient $Z_G(\mathbb{A})G(\mathbb{Q})\setminus G(\mathbb{A})$ has finite volume.

イロト イポト イヨト イヨト

3

Automorphic Functions

- $G(\mathbb{Q})$ is a discrete subgroup of $G(\mathbb{A})$.
- The quotient $Z_G(\mathbb{A})G(\mathbb{Q})\setminus G(\mathbb{A})$ has finite volume.
- $L^2(G)$ denotes the space of square-integrable functions:

$$\phi : Z_G(\mathbb{A})G(\mathbb{Q})\backslash G(\mathbb{A}) \to \mathbb{C}$$

such that

$$\int_{Z_G(\mathbb{A})G(\mathbb{Q})\backslash G(\mathbb{A})} |\phi(g)|^2 dg < \infty.$$

Automorphic Functions

- $G(\mathbb{Q})$ is a discrete subgroup of $G(\mathbb{A})$.
- The quotient $Z_G(\mathbb{A})G(\mathbb{Q})\setminus G(\mathbb{A})$ has finite volume.
- $L^2(G)$ denotes the space of square-integrable functions:

$$\phi : Z_G(\mathbb{A})G(\mathbb{Q})\backslash G(\mathbb{A}) \to \mathbb{C}$$

such that

$$\int_{Z_G(\mathbb{A})G(\mathbb{Q})\setminus G(\mathbb{A})} |\phi(g)|^2 dg <\infty.$$

Such functions \u03c6 are (square-integrable) automorphic functions

イロン 不同と 不同と 不同と

Automorphic Functions

- $G(\mathbb{Q})$ is a discrete subgroup of $G(\mathbb{A})$.
- The quotient $Z_G(\mathbb{A})G(\mathbb{Q})\setminus G(\mathbb{A})$ has finite volume.
- $L^2(G)$ denotes the space of square-integrable functions:

$$\phi : Z_G(\mathbb{A})G(\mathbb{Q})\backslash G(\mathbb{A}) \to \mathbb{C}$$

such that

$$\int_{Z_G(\mathbb{A})G(\mathbb{Q})\setminus G(\mathbb{A})} |\phi(g)|^2 dg <\infty.$$

Such functions \u03c6 are (square-integrable) automorphic functions

•
$$L^2(G)$$
 is a $G(\mathbb{A})$ -module by $g \cdot f(x) := f(xg)$.

Cuspidal Automorphic Functions

• An an automorphic functions ϕ is called **cuspidal** if

$$\int_{N(\mathbb{Q})\setminus N(\mathbb{A})}\phi(ng)dn=0$$

for almost all $g \in G(\mathbb{A})$, where N runs over the unipotent radical of all parabolic subgroups of G.

Cuspidal Automorphic Functions

• An an automorphic functions ϕ is called **cuspidal** if

$$\int_{N(\mathbb{Q})\setminus N(\mathbb{A})} \phi(ng) dn = 0$$

for almost all $g \in G(\mathbb{A})$, where N runs over the unipotent radical of all parabolic subgroups of G.

► An irreducible submodule of L²(G) generated by cuspidal automorphic functions is called cuspidal automorphic representation of G(A).

Cuspidal Automorphic Functions

• An an automorphic functions ϕ is called **cuspidal** if

$$\int_{N(\mathbb{Q})\setminus N(\mathbb{A})}\phi(ng)dn=0$$

for almost all $g \in G(\mathbb{A})$, where N runs over the unipotent radical of all parabolic subgroups of G.

- ► An irreducible submodule of L²(G) generated by cuspidal automorphic functions is called cuspidal automorphic representation of G(A).
- ► L²_c(G) denotes the subspace of L²(G) generated by all irredcuible cuspidal automorphic representations, which is called the cuspidal spectrum of G(A).

Cuspidal Spectrum

Theorem (Gelfand and Piatetski-Shapiro)

$$L^2_c(G) = \oplus_{\pi \in G(\mathbb{A})^{\vee}} m_c(\pi) V_{\pi}$$

with $m_c(\pi) < \infty$.

イロン イヨン イヨン イヨン

-2

Cuspidal Spectrum

Theorem (Gelfand and Piatetski-Shapiro)

$$L^2_c(G) = \oplus_{\pi \in G(\mathbb{A})^{\vee}} m_c(\pi) V_{\pi}$$

with $m_c(\pi) < \infty$.

▶ **Problem:** For each $(\pi, V_{\pi}) \in G(\mathbb{A})^{\vee}$, determine $m_c(\pi)$.

イロト イポト イヨト イヨト

3

Cuspidal Spectrum

Theorem (Gelfand and Piatetski-Shapiro)

$$L^2_c(G) = \oplus_{\pi \in G(\mathbb{A})^{\vee}} m_c(\pi) V_{\pi}$$

with $m_c(\pi) < \infty$.

- ▶ **Problem:** For each $(\pi, V_{\pi}) \in G(\mathbb{A})^{\vee}$, determine $m_c(\pi)$.
- ▶ For classical groups, G = SO_m or Sp_{2n}, the Arthur conjecture asserts that

$$m_c(\pi) \leq egin{cases} 1, & ext{if } G = SO_{2n+1}, Sp_{2n}\ 2, & ext{if } G = SO_{2n}. \end{cases}$$

Known Cases of Cuspidal Multiplicity: $m_c(\pi)$

•
$$G = GL_n$$
, $m_c(\pi) \le 1$ (J. Shalika; Piatetski-Shapiro)

・ロン ・回 と ・ ヨ と ・ ヨ と

3

Known Cases of Cuspidal Multiplicity: $m_c(\pi)$

- $G = GL_n$, $m_c(\pi) \le 1$ (J. Shalika; Piatetski-Shapiro)
- $G = SL_2$, $m_c(\pi) \le 1$ (Langlands-Lebasse; D. Ramkrishnan)

Known Cases of Cuspidal Multiplicity: $m_c(\pi)$

- $G = GL_n$, $m_c(\pi) \leq 1$ (J. Shalika; Piatetski-Shapiro)
- $G = SL_2$, $m_c(\pi) \le 1$ (Langlands-Lebasse; D. Ramkrishnan)
- $G = SL_n(n \ge 3)$, $m_c(\pi) > 1$ (D. Blasius; E. Lapid)

Known Cases of Cuspidal Multiplicity: $m_c(\pi)$

- $G = GL_n$, $m_c(\pi) \le 1$ (J. Shalika; Piatetski-Shapiro)
- $G = SL_2$, $m_c(\pi) \le 1$ (Langlands-Lebasse; D. Ramkrishnan)
- $G = SL_n(n \ge 3)$, $m_c(\pi) > 1$ (D. Blasius; E. Lapid)
- $G = U_3$, $m_c(\pi) \leq 1$ (J. Rogawski)

Known Cases of Cuspidal Multiplicity: $m_c(\pi)$

- $G = GL_n$, $m_c(\pi) \le 1$ (J. Shalika; Piatetski-Shapiro)
- $G = SL_2$, $m_c(\pi) \le 1$ (Langlands-Lebasse; D. Ramkrishnan)
- $G = SL_n(n \ge 3)$, $m_c(\pi) > 1$ (D. Blasius; E. Lapid)
- $G = U_3$, $m_c(\pi) \leq 1$ (J. Rogawski)
- G = G₂, m_c(π) unbounded (W.-T. Gan, N. Gurevich, and D.-H. Jiang; and by W.-T. Gan)

Known Cases of Cuspidal Multiplicity: $m_c(\pi)$

- $G = GL_n$, $m_c(\pi) \le 1$ (J. Shalika; Piatetski-Shapiro)
- $G = SL_2$, $m_c(\pi) \le 1$ (Langlands-Lebasse; D. Ramkrishnan)
- $G = SL_n (n \ge 3)$, $m_c(\pi) > 1$ (D. Blasius; E. Lapid)
- $G = U_3$, $m_c(\pi) \leq 1$ (J. Rogawski)
- $G = G_2$, $m_c(\pi)$ unbounded (W.-T. Gan, N. Gurevich, and D.-H. Jiang; and by W.-T. Gan)
- G = GSp₄, m_c(π) ≤ 1 with π generic (D.-H. Jiang and D. Soudry)

소리가 소문가 소문가 소문가

Tensor Structure of Automorphic Representations

• S denotes any finite set of primes p and ∞ .

3

Tensor Structure of Automorphic Representations

- S denotes any finite set of primes p and ∞ .
- The ring of adeles $\mathbb{A} = \lim_{S \to S} \mathbb{A}(S)$,

イロン イヨン イヨン

Tensor Structure of Automorphic Representations

- S denotes any finite set of primes p and ∞ .
- The ring of adeles $\mathbb{A} = \lim_{S \to S} \mathbb{A}(S)$,
- with $\mathbb{A}(S) = (\prod_{v \in S} \mathbb{Q}_v) \times (\prod_{p \notin S} \mathbb{Z}_p)$

- 4 同 6 4 日 6 4 日 6

Tensor Structure of Automorphic Representations

- S denotes any finite set of primes p and ∞ .
- The ring of adeles $\mathbb{A} = \lim_{S \to S} \mathbb{A}(S)$,
- with $\mathbb{A}(S) = (\prod_{v \in S} \mathbb{Q}_v) \times (\prod_{p \notin S} \mathbb{Z}_p)$
- Hence \mathbb{A} is a restricted direct product of $(\mathbb{Q}_{\nu}, \mathbb{Z}_{\nu})$.

(4月) (4日) (4日)

Tensor Structure of Automorphic Representations

- S denotes any finite set of primes p and ∞ .
- The ring of adeles $\mathbb{A} = \lim_{S \to S} \mathbb{A}(S)$,
- with $\mathbb{A}(S) = (\prod_{v \in S} \mathbb{Q}_v) \times (\prod_{p \notin S} \mathbb{Z}_p)$
- Hence \mathbb{A} is a restricted direct product of $(\mathbb{Q}_{\nu}, \mathbb{Z}_{\nu})$.

► Similarly,
$$G(\mathbb{A}) = \lim_{S \to S} G(\mathbb{A}(S))$$

(4月) (4日) (4日)

Tensor Structure of Automorphic Representations

- S denotes any finite set of primes p and ∞ .
- The ring of adeles $\mathbb{A} = \lim_{S \to S} \mathbb{A}(S)$,
- with $\mathbb{A}(S) = (\prod_{v \in S} \mathbb{Q}_v) \times (\prod_{p \notin S} \mathbb{Z}_p)$
- ► Hence A is a restricted direct product of (Q_ν, Z_ν).
- Similarly, $G(\mathbb{A}) = \lim_{S \to S} G(\mathbb{A}(S))$
- with $G(\mathbb{A}(S)) = (\prod_{v \in S} G(\mathbb{Q}_v)) \times (\prod_{p \notin S} G(\mathbb{Z}_p)).$

Tensor Structure of Automorphic Representations

- S denotes any finite set of primes p and ∞ .
- The ring of adeles $\mathbb{A} = \lim_{S \to S} \mathbb{A}(S)$,
- with $\mathbb{A}(S) = (\prod_{v \in S} \mathbb{Q}_v) \times (\prod_{p \notin S} \mathbb{Z}_p)$
- Hence \mathbb{A} is a restricted direct product of $(\mathbb{Q}_{\nu}, \mathbb{Z}_{\nu})$.
- Similarly, $G(\mathbb{A}) = \lim_{S \to S} G(\mathbb{A}(S))$
- with $G(\mathbb{A}(S)) = (\prod_{v \in S} G(\mathbb{Q}_v)) \times (\prod_{p \notin S} G(\mathbb{Z}_p)).$
- Hence $G(\mathbb{A})$ is a restricted direct product of $(G(\mathbb{Q}_{\nu}), G(\mathbb{Z}_{\nu}))$.

Tensor Structure of Automorphic Representations

- Theorem (Harish-Chandra; Bernstein)
 - Each $G(\mathbb{Q}_{v})$ is tame, i.e. of type I in the sense of C^{*}-algebras.

Tensor Structure of Automorphic Representations

- Theorem (Harish-Chandra; Bernstein)
 - Each $G(\mathbb{Q}_v)$ is tame, i.e. of type I in the sense of C^{*}-algebras.
 - An irreducible unitary representation π of G(A) is a restricted tensor product

 $\pi = \otimes_{\mathbf{v}} \pi_{\mathbf{v}}.$

Tensor Structure of Automorphic Representations

Theorem (Harish-Chandra; Bernstein)

Each $G(\mathbb{Q}_v)$ is tame, i.e. of type I in the sense of C^{*}-algebras.

An irreducible unitary representation π of G(A) is a restricted tensor product

$$\pi = \otimes_{\mathbf{v}} \pi_{\mathbf{v}}.$$

π_v is an irreducible admissible unitary representation of
 G(Q_v) and π_v is unramified or of type I for almost all local
 places v of Q.

Tensor Structure of Automorphic Representations

► Theorem (Harish-Chandra; Bernstein)

Each $G(\mathbb{Q}_v)$ is tame, i.e. of type I in the sense of C^{*}-algebras.

► An irreducible unitary representation π of G(A) is a restricted tensor product

$$\pi = \otimes_{\mathbf{v}} \pi_{\mathbf{v}}.$$

- π_v is an irreducible admissible unitary representation of
 G(Q_v) and π_v is unramified or of type I for almost all local
 places v of Q.
- π_p is unramified if π_p has nonzero $K_p = G(\mathbb{Z}_p)$ -fixed vectors.

The Satake Theory of spherical functions

• dim_C $V_{\pi_v}^{K_v} \leq 1$, where $V_{\pi_v}^{K_v} = \{ u \in V_{\pi_v} : \pi_v(h)(u) = u, \text{ for all } h \in K_v \}.$

-2

The Satake Theory of spherical functions

• dim_{\mathbb{C}} $V_{\pi_v}^{K_v} \leq 1$, where

$$V_{\pi_v}^{K_v} = \{ u \in V_{\pi_v} \; : \; \pi_v(h)(u) = u, ext{ for all } h \in K_v \}.$$

Irreducible unramified representations of G(Q_ν) are parametrized by semi-simple conjugacy classes c(π_ν) in the Langlands dual group ^LG, which is called the Satake parameter attached to π_ν.

The Satake Theory of spherical functions

• dim_{\mathbb{C}} $V_{\pi_v}^{K_v} \leq 1$, where

$$V_{\pi_{v}}^{K_{v}} = \{ u \in V_{\pi_{v}} \ : \ \pi_{v}(h)(u) = u, ext{ for all } h \in K_{v} \}.$$

- ► Irreducible unramified representations of G(Q_v) are parametrized by semi-simple conjugacy classes c(π_v) in the Langlands dual group ^LG, which is called the Satake parameter attached to π_v.
- ► Irreducible unramified representations of G(Q_v) are realized as the unramified irreducible constituent of the induced representation

$$Ind_{B(\mathbb{Q}_{\nu})}^{G(\mathbb{Q}_{\nu})}(\chi_{\nu}),$$

with unramified character χ_{ν} of $T(\mathbb{Q}_{\nu})$, where B = TU is the Borel subgroup of G.

The Langlands Dual Group of G

• (G, B, T) determines the root datum $(X, \Delta; X^{\vee}, \Delta^{\vee})$.

・ロン ・回 と ・ ヨ と ・ ヨ と

-2

The Langlands Dual Group of G

- (G, B, T) determines the root datum $(X, \Delta; X^{\vee}, \Delta^{\vee})$.
- Over \mathbb{C} , $(X, \Delta; X^{\vee}, \Delta^{\vee})$ determines $G(\mathbb{C})$.

イロト イポト イヨト イヨト

3

The Langlands Dual Group of G

- (G, B, T) determines the root datum $(X, \Delta; X^{\vee}, \Delta^{\vee})$.
- Over \mathbb{C} , $(X, \Delta; X^{\vee}, \Delta^{\vee})$ determines $G(\mathbb{C})$.
- The Langlands (complex) dual group $G^{\vee}(\mathbb{C})$ of G

$$\begin{array}{ccc} G & \Longleftrightarrow & (X,\Delta;X^{\vee},\Delta^{\vee}) \\ \uparrow & & \uparrow \\ G^{\vee}(\mathbb{C}) & \Longleftrightarrow & (X^{\vee},\Delta^{\vee};X,\Delta) \end{array}$$

イロト イポト イヨト イヨト

-

The Langlands Dual Group of G

- (G, B, T) determines the root datum $(X, \Delta; X^{\vee}, \Delta^{\vee})$.
- Over \mathbb{C} , $(X, \Delta; X^{\vee}, \Delta^{\vee})$ determines $G(\mathbb{C})$.
- The Langlands (complex) dual group $G^{\vee}(\mathbb{C})$ of G

$$egin{array}{ccc} G & \Longleftrightarrow & (X,\Delta;X^{ee},\Delta^{ee}) \ \hat{\downarrow} \ G^{ee}(\mathbb{C}) & \Longleftrightarrow & (X^{ee},\Delta^{ee};X,\Delta) \end{array}$$

• $GL_n^{\vee}(\mathbb{C}) = GL_n(\mathbb{C}) \text{ and } SO_{2n+1}^{\vee}(\mathbb{C}) = Sp_{2n}(\mathbb{C}).$

Near-Equivalence Classes

• S denotes any finite set of primes p and ∞ .

イロト イヨト イヨト イヨト

-2

Near-Equivalence Classes

- S denotes any finite set of primes p and ∞ .
- ▶ For $p \notin S$, take a semisimple conjugacy calss $c_p \in G^{\vee}(\mathbb{C})$.

イロト イポト イヨト イヨト

Near-Equivalence Classes

- S denotes any finite set of primes p and ∞ .
- ▶ For $p \notin S$, take a semisimple conjugacy calss $c_p \in G^{\vee}(\mathbb{C})$.

• We set
$$c(S) := \{c_v \mid v \notin S\}.$$

イロト イポト イヨト イヨト

Near-Equivalence Classes

- S denotes any finite set of primes p and ∞ .
- For $p \notin S$, take a semisimple conjugacy calss $c_p \in G^{\vee}(\mathbb{C})$.

• We set
$$c(S) := \{c_v \mid v \notin S\}.$$

For S and S', c(S) and c'(S') are equivalent if ∃ a set S", containing S ∪ S', s.t. c(S") = c'(S") as conjugacy classes in G[∨](ℂ).

Near-Equivalence Classes

- S denotes any finite set of primes p and ∞ .
- For $p \notin S$, take a semisimple conjugacy calss $c_p \in G^{\vee}(\mathbb{C})$.

• We set
$$c(S) := \{c_v \mid v \notin S\}.$$

- For S and S', c(S) and c'(S') are equivalent if ∃ a set S", containing S ∪ S', s.t. c(S") = c'(S") as conjugacy classes in G[∨](C).
- Denote by $\mathcal{C}(G)$ the equivalence classes of all such sets c(S).

Near-Equivalence Classes

- S denotes any finite set of primes p and ∞ .
- For $p \notin S$, take a semisimple conjugacy calss $c_p \in G^{\vee}(\mathbb{C})$.

• We set
$$c(S) := \{c_v \mid v \notin S\}.$$

- For S and S', c(S) and c'(S') are equivalent if ∃ a set S", containing S ∪ S', s.t. c(S") = c'(S") as conjugacy classes in G[∨](ℂ).
- Denote by $\mathcal{C}(G)$ the equivalence classes of all such sets c(S).
- ▶ Denote by A(G) the set of irreducible cuspidal automorphic representations of G(A) up to equivalence.

Near-Equivalence Classes

► For $\pi = \bigotimes_{\nu} \pi_{\nu} \in \mathcal{A}(G)$, \exists an S_{π} s.t. for $p \notin S_{\pi}$, π_p is unramified. Define $c(\pi) := c(S_{\pi})$.

イロト イポト イヨト イヨト

Near-Equivalence Classes

- ► For $\pi = \bigotimes_{\nu} \pi_{\nu} \in \mathcal{A}(G)$, \exists an S_{π} s.t. for $p \notin S_{\pi}$, π_p is unramified. Define $c(\pi) := c(S_{\pi})$.
- ▶ \exists a map $c : \pi \mapsto c(\pi)$ from $\mathcal{A}(G)$ to $\mathcal{C}(G)$. The fibre $\prod_{c(\pi)}$ is called the **nearly equivalence classes** of π .

Near-Equivalence Classes

- ► For $\pi = \bigotimes_{\nu} \pi_{\nu} \in \mathcal{A}(G)$, \exists an S_{π} s.t. for $p \notin S_{\pi}$, π_p is unramified. Define $c(\pi) := c(S_{\pi})$.
- ▶ \exists a map $c : \pi \mapsto c(\pi)$ from $\mathcal{A}(G)$ to $\mathcal{C}(G)$. The fibre $\prod_{c(\pi)}$ is called the **nearly equivalence classes** of π .
- π = ⊗_νπ_ν and π' = ⊗_νπ'_ν are of near-eqivalence if for almost all primes p, π_p and π'_p are equivalent.

Near-Equivalence Classes

- ► For $\pi = \bigotimes_{\nu} \pi_{\nu} \in \mathcal{A}(G)$, \exists an S_{π} s.t. for $p \notin S_{\pi}$, π_p is unramified. Define $c(\pi) := c(S_{\pi})$.
- ▶ \exists a map $c : \pi \mapsto c(\pi)$ from $\mathcal{A}(G)$ to $\mathcal{C}(G)$. The fibre $\prod_{c(\pi)}$ is called the **nearly equivalence classes** of π .
- π = ⊗_νπ_ν and π' = ⊗_νπ'_ν are of near-eqivalence if for almost all primes p, π_p and π'_p are equivalent.
- Problems:

Near-Equivalence Classes

- ► For $\pi = \bigotimes_{\nu} \pi_{\nu} \in \mathcal{A}(G)$, \exists an S_{π} s.t. for $p \notin S_{\pi}$, π_p is unramified. Define $c(\pi) := c(S_{\pi})$.
- ▶ \exists a map $c : \pi \mapsto c(\pi)$ from $\mathcal{A}(G)$ to $\mathcal{C}(G)$. The fibre $\prod_{c(\pi)}$ is called the **nearly equivalence classes** of π .
- π = ⊗_νπ_ν and π' = ⊗_νπ'_ν are of near-eqivalence if for almost all primes p, π_p and π'_p are equivalent.

Problems:

• (1) Describe the image $c(\mathcal{A}(G))$ in $\mathcal{C}(G)$.

Near-Equivalence Classes

- ► For $\pi = \bigotimes_{\nu} \pi_{\nu} \in \mathcal{A}(G)$, \exists an S_{π} s.t. for $p \notin S_{\pi}$, π_p is unramified. Define $c(\pi) := c(S_{\pi})$.
- ▶ \exists a map $c : \pi \mapsto c(\pi)$ from $\mathcal{A}(G)$ to $\mathcal{C}(G)$. The fibre $\prod_{c(\pi)}$ is called the **nearly equivalence classes** of π .
- π = ⊗_νπ_ν and π' = ⊗_νπ'_ν are of near-eqivalence if for almost all primes p, π_p and π'_p are equivalent.

Problems:

- (1) Describe the image $c(\mathcal{A}(G))$ in $\mathcal{C}(G)$.
- (2) Describe the fibre $\Pi_{c(\pi)}$.

Near-Equivalence Classes

- ► For $\pi = \bigotimes_{\nu} \pi_{\nu} \in \mathcal{A}(G)$, \exists an S_{π} s.t. for $p \notin S_{\pi}$, π_p is unramified. Define $c(\pi) := c(S_{\pi})$.
- ▶ \exists a map $c : \pi \mapsto c(\pi)$ from $\mathcal{A}(G)$ to $\mathcal{C}(G)$. The fibre $\prod_{c(\pi)}$ is called the **nearly equivalence classes** of π .
- π = ⊗_νπ_ν and π' = ⊗_νπ'_ν are of near-eqivalence if for almost all primes p, π_p and π'_p are equivalent.

Problems:

- (1) Describe the image $c(\mathcal{A}(G))$ in $\mathcal{C}(G)$.
- (2) Describe the fibre $\Pi_{c(\pi)}$.
- (3) Determine the structures of π in terms of $c(\pi)$.

Rigidity of Cuspidal Automorphic Representations

Theorem (Jacquet-Shalika, 1981)

For $G = GL_n$, $\Pi_{c(\pi)}$ contains one member. (For π , π' in $\mathcal{A}(G)$, if $c(\pi) = c(\pi')$, then π , π' are equivalent.)

Rigidity of Cuspidal Automorphic Representations

Theorem (Jacquet-Shalika, 1981)

For $G = GL_n$, $\Pi_{c(\pi)}$ contains one member. (For π , π' in $\mathcal{A}(G)$, if $c(\pi) = c(\pi')$, then π , π' are equivalent.)

► Theorem (Jiang-Soudry, 2003)

For $G = SO_{2n+1}$, $\Pi_{c(\pi)}$ contains at most one generic member; and if π is tempered, $\Pi_{c(\pi)}$ contains at least one generic member.

Rigidity of Cuspidal Automorphic Representations

▶ Theorem (Jacquet-Shalika, 1981)

For $G = GL_n$, $\Pi_{c(\pi)}$ contains one member. (For π , π' in $\mathcal{A}(G)$, if $c(\pi) = c(\pi')$, then π , π' are equivalent.)

► Theorem (Jiang-Soudry, 2003)

For $G = SO_{2n+1}$, $\Pi_{c(\pi)}$ contains at most one generic member; and if π is tempered, $\Pi_{c(\pi)}$ contains at least one generic member.

For G = SO_{2n+1}, if two generic π, π' in A(G) are of near-equivalence, then π, π' are equivalent. (rigidity)

Rigidity of Cuspidal Automorphic Representations

▶ Theorem (Jacquet-Shalika, 1981)

For $G = GL_n$, $\Pi_{c(\pi)}$ contains one member. (For π , π' in $\mathcal{A}(G)$, if $c(\pi) = c(\pi')$, then π , π' are equivalent.)

► Theorem (Jiang-Soudry, 2003)

For $G = SO_{2n+1}$, $\Pi_{c(\pi)}$ contains at most one generic member; and if π is tempered, $\Pi_{c(\pi)}$ contains at least one generic member.

- For G = SO_{2n+1}, if two generic π, π' in A(G) are of near-equivalence, then π, π' are equivalent. (rigidity)
- It is important to the Arthur trace formula approach.

Rigidity of Cuspidal Automorphic Representations

► Theorem (Jacquet-Shalika, 1981)

For $G = GL_n$, $\Pi_{c(\pi)}$ contains one member. (For π , π' in $\mathcal{A}(G)$, if $c(\pi) = c(\pi')$, then π , π' are equivalent.)

► Theorem (Jiang-Soudry, 2003)

For $G = SO_{2n+1}$, $\Pi_{c(\pi)}$ contains at most one generic member; and if π is tempered, $\Pi_{c(\pi)}$ contains at least one generic member.

- For G = SO_{2n+1}, if two generic π, π' in A(G) are of near-equivalence, then π, π' are equivalent. (rigidity)
- It is important to the Arthur trace formula approach.
- A slight modification holds for general reductive groups. For classical groups, it is my on-going joint work with D. Soudry.

Tensor Product L-functions

For π ∈ A(G) and τ ∈ A(GL_m), define S := S_{π,τ}, s.t. for p ∉ S, both π_p and τ_p are unramified.

イロト イポト イヨト イヨト

Tensor Product L-functions

- For π ∈ A(G) and τ ∈ A(GL_m), define S := S_{π,τ}, s.t. for p ∉ S, both π_p and τ_p are unramified.
- Define the (partial) Rankin-Selberg convolution L-function by

$$L^{\mathcal{S}}(s,\pi imes au):=\prod_{p
ot\in \mathcal{S}}rac{1}{\det(I-c(\pi_p)\otimes c(au_p)p^{-s})}.$$

- 4 同 ト 4 ヨ ト 4 ヨ ト

Tensor Product L-functions

- For π ∈ A(G) and τ ∈ A(GL_m), define S := S_{π,τ}, s.t. for p ∉ S, both π_p and τ_p are unramified.
- Define the (partial) Rankin-Selberg convolution L-function by

$$\mathcal{L}^{\mathcal{S}}(s,\pi imes au):=\prod_{p
ot\in \mathcal{S}}rac{1}{\det(I-c(\pi_p)\otimes c(au_p)p^{-s})}.$$

When G is classical, L^S(s, π × τ) has meromorphic continuation and functional equation.

- 4 同 6 4 日 6 4 日 6

Tensor Product L-functions

- For π ∈ A(G) and τ ∈ A(GL_m), define S := S_{π,τ}, s.t. for p ∉ S, both π_p and τ_p are unramified.
- Define the (partial) Rankin-Selberg convolution L-function by

$$\mathcal{L}^{\mathcal{S}}(s,\pi imes au):=\prod_{p
ot\in \mathcal{S}}rac{1}{\det(I-c(\pi_p)\otimes c(au_p)p^{-s})}.$$

- When G is classical, L^S(s, π × τ) has meromorphic continuation and functional equation.
- **Problem:** Determine the poles of $L^{S}(s, \pi \times \tau)$ for $s \geq \frac{1}{2}$.

Tensor Product L-functions

- For π ∈ A(G) and τ ∈ A(GL_m), define S := S_{π,τ}, s.t. for p ∉ S, both π_p and τ_p are unramified.
- Define the (partial) Rankin-Selberg convolution L-function by

$$\mathcal{L}^{\mathcal{S}}(s,\pi imes au):=\prod_{p
ot\in \mathcal{S}}rac{1}{\det(I-c(\pi_p)\otimes c(au_p)p^{-s})}.$$

- When G is classical, L^S(s, π × τ) has meromorphic continuation and functional equation.
- **Problem:** Determine the poles of $L^{S}(s, \pi \times \tau)$ for $s \geq \frac{1}{2}$.
- This is closely related to the structures of c(π) and π, i.e. the local-global relations.

Langlands Functorial Transfers

Weak Langlands Transfer Conjecture: Let G and H be k-split reductive algebraic groups and let ρ be any group homomorphism

$$\rho : H^{\vee}(\mathbb{C}) \to G^{\vee}(\mathbb{C}).$$

For any $\sigma \in \mathcal{A}(H)$, $\exists a \pi \in \mathcal{A}(G)$ (may not be cuspidal!) s.t.

$$c(\rho(\sigma)) = c(\pi)$$

as conjugacy classes in $G^{\vee}(\mathbb{C})$, where $c(\rho(\sigma)) = \{\rho(c(\sigma_v))\}$.

Langlands Functorial Transfers

Weak Langlands Transfer Conjecture: Let G and H be k-split reductive algebraic groups and let ρ be any group homomorphism

$$\rho : H^{\vee}(\mathbb{C}) \to G^{\vee}(\mathbb{C}).$$

For any $\sigma \in \mathcal{A}(H)$, $\exists a \pi \in \mathcal{A}(G)$ (may not be cuspidal!) s.t.

$$c(\rho(\sigma)) = c(\pi)$$

as conjugacy classes in $G^{\vee}(\mathbb{C})$, where $c(\rho(\sigma)) = \{\rho(c(\sigma_v))\}$.

The strong Langlands Functorial Transfer requires compatibility at all local palces or can be stated in terms of the complete tensor product L-functions.

Existence of the Weak Langlands Transfers

 Arthur-Clozel (1989) and Badulescu (2007): Generalized Jacquct-Langlands transfer between GL_n and its inner forms.

- 4 同 6 4 日 6 4 日 6

Existence of the Weak Langlands Transfers

- Arthur-Clozel (1989) and Badulescu (2007): Generalized Jacquct-Langlands transfer between GL_n and its inner forms.
- Cogdell, Kim, Piatetski-Shapiro, and Shahidi (2001, 2004): Langlands transfer from classical groups and *GL_n*-type.

Existence of the Weak Langlands Transfers

- Arthur-Clozel (1989) and Badulescu (2007): Generalized Jacquct-Langlands transfer between GL_n and its inner forms.
- Cogdell, Kim, Piatetski-Shapiro, and Shahidi (2001, 2004): Langlands transfer from classical groups and *GL_n*-type.
- Kim-Krishnamurthy (2004, 2005): U(n, n) and U(n + 1, n).

Existence of the Weak Langlands Transfers

- Arthur-Clozel (1989) and Badulescu (2007): Generalized Jacquct-Langlands transfer between GL_n and its inner forms.
- Cogdell, Kim, Piatetski-Shapiro, and Shahidi (2001, 2004): Langlands transfer from classical groups and *GL_n*-type.
- Kim-Krishnamurthy (2004, 2005): U(n, n) and U(n + 1, n).
- ▶ Asgari-Shahidi (2006): *GSpin_m*.

Existence of the Weak Langlands Transfers

- Arthur-Clozel (1989) and Badulescu (2007): Generalized Jacquct-Langlands transfer between GL_n and its inner forms.
- Cogdell, Kim, Piatetski-Shapiro, and Shahidi (2001, 2004): Langlands transfer from classical groups and *GL_n*-type.
- ▶ Kim-Krishnamurthy (2004, 2005): U(n, n) and U(n + 1, n).
- ▶ Asgari-Shahidi (2006): *GSpin_m*.
- Gelbart-Jacquet (1978): Sym²(GL₂); Kim-Shahidi (2002): Sym³(GL₂): Kim (2003): Sym⁴(GL₂); Ramakrishnan (2000): GL₂ ⊗ GL₂; Kim-Shahidi (2002): GL₂ ⊗ GL₃; Ginzburg-Jiang (2001): G₂ → GSp₆; Ginzburg (2005): GL₂ × GL₂ → G₂.

Refined Properties of Langlands Transfers

Local-Global Compatibility:

イロト イポト イヨト イヨト

-2

Refined Properties of Langlands Transfers

Local-Global Compatibility:

► Jiang-Soudry (2003): SO_{2n+1} ⇒ GL_{2n}; With explicit local descent, we obtain the local Langlands reciprocity map for SO_{2n+1}.

・ロン ・回 と ・ ヨ と ・ ヨ と

Refined Properties of Langlands Transfers

Local-Global Compatibility:

- ► Jiang-Soudry (2003): SO_{2n+1} ⇒ GL_{2n}; With explicit local descent, we obtain the local Langlands reciprocity map for SO_{2n+1}.
- Cogdell, Kim, Piatetski-Shapiro, and Shahidi (2004): SO_{2n} and Sp_{2n}; The local descent in these cases are the work in progress of Jiang-Soudry, which also implies the existence of the local Langlands reciprocity map.

Refined Properties of Langlands Transfers

Local-Global Compatibility:

- ▶ Jiang-Soudry (2003): SO_{2n+1} ⇒ GL_{2n}; With explicit local descent, we obtain the local Langlands reciprocity map for SO_{2n+1}.
- Cogdell, Kim, Piatetski-Shapiro, and Shahidi (2004): SO_{2n} and Sp_{2n}; The local descent in these cases are the work in progress of Jiang-Soudry, which also implies the existence of the local Langlands reciprocity map.
- Some other cases are known, but I omit the details here.

Refined Properties of Langlands Transfers

Image of the Langlands Transfers:

イロト イポト イヨト イヨト

-2

Refined Properties of Langlands Transfers

Image of the Langlands Transfers:

- Ginzburg-Rallis-Soudry automorphic descent from GL to classical groups characterizes the image of the Langlands transfer from classical groups to GL (a series of papers in 1997-2005)
- ▶ Jiang-Soudry (2003) prove the irreducibility of the image of the descent for SO_{2n+1}; the other cases are our work in progress.

Refined Properties of Langlands Transfers

Image of the Langlands Transfers:

- Ginzburg-Rallis-Soudry automorphic descent from GL to classical groups characterizes the image of the Langlands transfer from classical groups to GL (a series of papers in 1997-2005)
- ▶ Jiang-Soudry (2003) prove the irreducibility of the image of the descent for SO_{2n+1}; the other cases are our work in progress.
- ► C. Khare, M. Larsen, and G. Savin (2007): Use our result to study the Inverse Galois Problem over Q.

Endoscopy and Poles of Certain L-functions

Theorem (Jiang 2006)

Let $\pi \in \mathcal{A}(SO_{2n+1})$ be cuspidal and generic.

- 1 The 2nd fundamental L-function $L(s, \pi, \omega_2)$ is holomorphic for $Re(s) \geq \frac{1}{2}$ with possible pole at s = 1
- 2 The order of the pole at s=1 of L(s, π, ω₂) is r − 1 if and only if ∃ a partition n = ∑^r_{i=1} n_i s.t. π is an endoscopy transfer from the elliptic endoscopy group

$$SO_{2n_1+1} \times \cdots \times SO_{2n_r+1}.$$

Endoscopy and Poles of Certain L-functions

► Theorem (Jiang 2006)

Let $\pi \in \mathcal{A}(SO_{2n+1})$ be cuspidal and generic.

- 1 The 2nd fundamental L-function $L(s, \pi, \omega_2)$ is holomorphic for $Re(s) \ge \frac{1}{2}$ with possible pole at s = 1
- 2 The order of the pole at s=1 of L(s, π, ω₂) is r − 1 if and only if ∃ a partition n = ∑^r_{i=1} n_i s.t. π is an endoscopy transfer from the elliptic endoscopy group

$$SO_{2n_1+1} \times \cdots \times SO_{2n_r+1}$$
.

It is the work in progress of Ginzburg-Jiang to characterize the endoscopy transfers in terms of period of π, which will generalize our preliminary work in this aspect in 2001.

The Generalized Ramanujan Conjecture

 GRC: Any irreducible cuspidal automorphic representation is tempered

イロト イポト イヨト イヨト

-2

The Generalized Ramanujan Conjecture

- GRC: Any irreducible cuspidal automorphic representation is tempered
- ▶ R. Howe and Piatetski-Shapiro (1977): **GRC** is not true for $G \neq GL$.

イロト イポト イヨト イヨト

The Generalized Ramanujan Conjecture

- GRC: Any irreducible cuspidal automorphic representation is tempered
- ▶ R. Howe and Piatetski-Shapiro (1977): **GRC** is not true for $G \neq GL$.
- One of the refinements (Jiang, 2007): Any irreducible cuspidal automorphic representation with one local generic component is tempered.

The Generalized Ramanujan Conjecture

- GRC: Any irreducible cuspidal automorphic representation is tempered
- ▶ R. Howe and Piatetski-Shapiro (1977): **GRC** is not true for $G \neq GL$.
- One of the refinements (Jiang, 2007): Any irreducible cuspidal automorphic representation with one local generic component is tempered.
- This formulation holds for all known examples and is compatible with the Arthur conjecture on the discrete automorphic spectrum in general.

The CAP Conjecture

Assume that G is Q-quasisplit reductive group and G' be a Q-inner form of G. For any irreducible cuspidal automorphic representation π' of $G'(\mathbb{A})$, there exist a standard parabolic subgroup P = MN of G, an irreducible generic unitary cuspidal automorphic representation σ of $M(\mathbb{A})$, and an unramified character χ of $M(\mathbb{A})^1 \setminus M(\mathbb{A})$, such that π' is nearly equivalent to an irreducible constituent of the unitarily induced representation

 $Ind_{P(\mathbb{A})}^{G(\mathbb{A})}(\sigma \otimes \chi).$

The CAP Conjecture

 If P is proper parabolic in G, π' is called a CAP representation of G'.

・ロン ・回 と ・ ヨ と ・ ヨ と

-2

The CAP Conjecture

- If P is proper parabolic in G, π' is called a CAP representation of G'.
- The CAP representations are counter-examples to GRC, but is essential to understand the Arthur conjecture on the discrete automorphic spectrum.

The CAP Conjecture

- If P is proper parabolic in G, π' is called a CAP representation of G'.
- The CAP representations are counter-examples to GRC, but is essential to understand the Arthur conjecture on the discrete automorphic spectrum.
- ▶ Jiang-Soudry (2007): For G = SO_{2n+1}, the CAP datum (M, σ, χ) is determined by π', which is generalization of the rigidity of cuspidal automorphic representations.

The CAP Conjecture

- If P is proper parabolic in G, π' is called a CAP representation of G'.
- The CAP representations are counter-examples to GRC, but is essential to understand the Arthur conjecture on the discrete automorphic spectrum.
- ▶ Jiang-Soudry (2007): For G = SO_{2n+1}, the CAP datum (M, σ, χ) is determined by π', which is generalization of the rigidity of cuspidal automorphic representations.
- For other classical groups, suitable modifications are needed, which is the work in progress of Jiang-Soudry.

소리가 소리가 소문가 소문가

The CAP Conjecture

▶ Jacquet-Shalika (1981): the CAP conjecture holds for *GL_n*.

イロト イヨト イヨト イヨト

-2

The CAP Conjecture

- ▶ Jacquet-Shalika (1981): the CAP conjecture holds for GL_n .
- ► A. Badulescu (2007): it holds for GL_m(D), where D is a division algebra.

イロト イポト イヨト イヨト

The CAP Conjecture

- ▶ Jacquet-Shalika (1981): the CAP conjecture holds for *GL_n*.
- ► A. Badulescu (2007): it holds for GL_m(D), where D is a division algebra.
- ► Jiang-Soudry (2007): it holds for cuspidal automorphic representations of SO_{2n+1} with special Bessel models.

The CAP Conjecture

- ▶ Jacquet-Shalika (1981): the CAP conjecture holds for *GL_n*.
- ► A. Badulescu (2007): it holds for GL_m(D), where D is a division algebra.
- ► Jiang-Soudry (2007): it holds for cuspidal automorphic representations of SO_{2n+1} with special Bessel models.
- Gelbart-Rogawski-Soudry (1997): it holds for U(3).

The CAP Conjecture

- ▶ Jacquet-Shalika (1981): the CAP conjecture holds for *GL_n*.
- ► A. Badulescu (2007): it holds for GL_m(D), where D is a division algebra.
- ► Jiang-Soudry (2007): it holds for cuspidal automorphic representations of SO_{2n+1} with special Bessel models.
- Gelbart-Rogawski-Soudry (1997): it holds for U(3).
- Many families of CAP representations have been constructed, but we omit the details here.

Final Remarks

► The modern theory of automorphic forms is to understand the spectrum of L²(G) as representation of G(A).

・ロン ・回 と ・ ヨン ・ ヨン

Final Remarks

- ► The modern theory of automorphic forms is to understand the spectrum of L²(G) as representation of G(A).
- ► The L-function and the Converse Theorem approach gives the information about L²(G) via specific families of spectrum, but by constructive methods, based on L-functions.

Final Remarks

- ► The modern theory of automorphic forms is to understand the spectrum of L²(G) as representation of G(A).
- ► The L-function and the Converse Theorem approach gives the information about L²(G) via specific families of spectrum, but by constructive methods, based on L-functions.
- The Arthur-Selberg trace formula gets the complete structure of the spectrum, which yields the existence of endoscopy transfers in general, and has many potential applications.

Final Remarks

- ► The modern theory of automorphic forms is to understand the spectrum of L²(G) as representation of G(A).
- ► The L-function and the Converse Theorem approach gives the information about L²(G) via specific families of spectrum, but by constructive methods, based on L-functions.
- The Arthur-Selberg trace formula gets the complete structure of the spectrum, which yields the existence of endoscopy transfers in general, and has many potential applications.
- The rational combination of the Arthur trace formula with the L-function and the Converse Theorem methods is definitely a very interesting approach for the near future.

・ロト ・回ト ・ヨト ・ヨト