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Basic Structures of Numbers

I Theorem (Foundamental Theorem of Arithmetic)

For any r ∈ Q, there is prime numbers p1, p2, · · · , pt and integers
e1, e2, · · · , et such that

r = ±pe1
1 pe2

2 · · · pet
t .

This is unique up to permutation.

I It is a multiplicative structure in terms of primes.

I The additive structure in terms of primes should be the
Goldboch Conjecture, which asserts the expression of even
integers as sum of two primes, and is a much harder problem.
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Basic Structures of Numbers

I It is much easier for kids to learn addition of numbers than
the multiplication of numbers.

I However, it seems that the multiplication has much better
structure. The local-Global principle in modern number theory
is one of the good examples related to the multiplicative
structure of numbers.

I From r = ±pe1
1 pe2

2 · · · pet
t , to know r is equivalent to know all

pei
i , individually

I To measure r we use the usual absolute value; and to measure
pei
i we use the so called p-adic absolute value.
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p-adic Absolute Value

I Given a prime p, any r ∈ Q×, we have r = pe · a
b , where

(p, a) = (p, b) = 1.

I Define the p-adic absolute value

|r |p :=

{
p−e , if r 6= 0;

0, if r = 0.

I | · |p defines a nontrivial matric on Q.

I For r ∈ Q×, we have
∏

v |r |v = 1.
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Locally Compact Topological Fields

I Over Q, we have | · |∞ and | · |p for all p’s.

I Take the completion, we have

(Q, | · |∞) = R; (Q, | · |p) = Qp.

I They are only locally compact topological fields containing Q
as a dense set.

I For v = ∞ or p, denote the Haar measure dxv on Qv , which
is unique up to a constant.

I The Harmonic Analysis on (Qv , dxv ) is expected to have deep
impact in Number Theory.
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The Riemann Zeta Function

I ζ(s) :=
∑∞

n=1
1
ns converges absolutely for Re(s) > 1.

I By the Fundamental Theorem of Arithmetic, we have the
eulerian product:

ζ(s) =
∏
p

1

1− p−s
.

I The pole at s = 1 of ζ(s) implies there are infinitely many
primes!

I The p-factor has something to do with harmonic analysis over
Qp.
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Adele Ring of Q

I One might consider
∏

v Qv , but it is not locally compact.

I For each r = ±pe1
1 pe2

2 · · · pet
t involves finitely many primes.

I The ring of adeles is defined to be

A := {(xv ) ∈
∏
v

Qv : |xp|p ≤ 1, for almost all p}.

I A is a locally compact ring containing all Qv ; and Q is
discrete in A such that A/Q is compact.

I (A, Q) is a modern analogy of the classical pair (R, Z).
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Tate’s Thesis

I For each v , ∃ a Schwartz function φv , s.t.∫
Q×v

φv (x)|x |svd×xv =

{
1

1−p−s if v = p,

π−
s
2 Γ( s

2) if v = ∞.

I ∃ a Schwartz function φ = ⊗vφv on A, s.t.∫
A×

φ(x)|x |sAd×x = π−
s
2 Γ(

s

2
) ·

∏
p

1

1− p−s
.

I The local-global relation in harmonic analysis approaches the
local-global relation in arithmetic!
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Modern Theory of Automorphic Forms

I Generalization from GL(1) to general reductive algebraic
groups defined over Q.

I Generalization from the trivial representation of GL(1) to
∞-dimensional representations of adelic groups (special locally
compact groups).

I Generalization from ζ(s) to general automorphic L-functions.

I The Langlands Programme is to figure out the deep impacts
of these generalizations to Number Theory and Arithmetic.
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Algebraic Groups

I Algebraic groups G are algebraic varieties with group
operations which are morphisms of algebraic varieties.

I For simplicity, we take G = GLn, SOm, Sp2n, classical groups

I For example, SOm = {g ∈ GLm | tgJmg = Jm, det g = 1},
with Jm defined inductively by

Jm :=

 1
Jm−2

1

 .
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Automorphic Functions

I G (Q) is a discrete subgroup of G (A).

I The quotient ZG (A)G (Q)\G (A) has finite volume.

I L2(G ) denotes the space of square-integrable functions:

φ : ZG (A)G (Q)\G (A) → C

such that ∫
ZG (A)G(Q)\G(A)

|φ(g)|2dg < ∞.

I Such functions φ are (square-integrable) automorphic
functions

I L2(G ) is a G (A)-module by g · f (x) := f (xg).
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Cuspidal Automorphic Functions

I An an automorphic functions φ is called cuspidal if∫
N(Q)\N(A)

φ(ng)dn = 0

for almost all g ∈ G (A), where N runs over the unipotent
radical of all parabolic subgroups of G .

I An irreducible submodule of L2(G ) generated by cuspidal
automorphic functions is called cuspidal automorphic
representation of G (A).

I L2
c(G ) denotes the subspace of L2(G ) generated by all

irredcuible cuspidal automorphic representations, which is
called the cuspidal spectrum of G (A).

Dihua Jiang University of Minnesota On Some Topics in Automorphic Representations
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Cuspidal Spectrum

I Theorem (Gelfand and Piatetski-Shapiro)

L2
c(G ) = ⊕π∈G(A)∨mc(π)Vπ

with mc(π) < ∞.

I Problem: For each (π,Vπ) ∈ G (A)∨, determine mc(π).

I For classical groups, G = SOm or Sp2n, the Arthur conjecture
asserts that

mc(π) ≤

{
1, if G = SO2n+1,Sp2n

2, if G = SO2n.
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Known Cases of Cuspidal Multiplicity: mc(π)

I G = GLn, mc(π) ≤ 1 (J. Shalika; Piatetski-Shapiro)

I G = SL2, mc(π) ≤ 1 (Langlands-Lebasse; D. Ramkrishnan)

I G = SLn(n ≥ 3), mc(π) > 1 (D. Blasius; E. Lapid)

I G = U3, mc(π) ≤ 1 (J. Rogawski)

I G = G2, mc(π) unbounded (W.-T. Gan, N. Gurevich, and
D.-H. Jiang; and by W.-T. Gan)

I G = GSp4, mc(π) ≤ 1 with π generic (D.-H. Jiang and D.
Soudry)
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Tensor Structure of Automorphic Representations

I S denotes any finite set of primes p and ∞.

I The ring of adeles A = lim−→
S

A(S),

I with A(S) = (
∏

v∈S Qv )× (
∏

p 6∈S Zp)

I Hence A is a restricted direct product of (Qv , Zv ).

I Similarly, G (A) = lim−→
S

G (A(S))

I with G (A(S)) = (
∏

v∈S G (Qv ))× (
∏

p 6∈S G (Zp)).

I Hence G (A) is a restricted direct product of (G (Qv ),G (Zv )).
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Tensor Structure of Automorphic Representations

I Theorem (Harish-Chandra; Bernstein)

Each G (Qv ) is tame, i.e. of type I in the sense of C ∗-algebras.

I An irreducible unitary representation π of G (A) is a restricted
tensor product

π = ⊗vπv .

I πv is an irreducible admissible unitary representation of
G (Qv ) and πv is unramified or of type I for almost all local
places v of Q.

I πp is unramified if πp has nonzero Kp = G (Zp)-fixed vectors.
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The Satake Theory of spherical functions

I dimC V Kv
πv

≤ 1, where

V Kv
πv

= {u ∈ Vπv : πv (h)(u) = u, for all h ∈ Kv}.

I Irreducible unramified representations of G (Qv ) are
parametrized by semi-simple conjugacy classes c(πv ) in the
Langlands dual group LG , which is called the Satake
parameter attached to πv .

I Irreducible unramified representations of G (Qv ) are realized as
the unramified irreducible constituent of the induced
representation

Ind
G(Qv )
B(Qv ) (χv ),

with unramified character χv of T (Qv ), where B = TU is the
Borel subgroup of G .

Dihua Jiang University of Minnesota On Some Topics in Automorphic Representations



Introduction
Automorphic Representations

Automorphic L-functions
Langlands Functoriality
Beyond the Genericity

Final Remarks

The Satake Theory of spherical functions

I dimC V Kv
πv

≤ 1, where

V Kv
πv

= {u ∈ Vπv : πv (h)(u) = u, for all h ∈ Kv}.
I Irreducible unramified representations of G (Qv ) are

parametrized by semi-simple conjugacy classes c(πv ) in the
Langlands dual group LG , which is called the Satake
parameter attached to πv .

I Irreducible unramified representations of G (Qv ) are realized as
the unramified irreducible constituent of the induced
representation

Ind
G(Qv )
B(Qv ) (χv ),

with unramified character χv of T (Qv ), where B = TU is the
Borel subgroup of G .

Dihua Jiang University of Minnesota On Some Topics in Automorphic Representations



Introduction
Automorphic Representations

Automorphic L-functions
Langlands Functoriality
Beyond the Genericity

Final Remarks

The Satake Theory of spherical functions

I dimC V Kv
πv

≤ 1, where

V Kv
πv

= {u ∈ Vπv : πv (h)(u) = u, for all h ∈ Kv}.
I Irreducible unramified representations of G (Qv ) are

parametrized by semi-simple conjugacy classes c(πv ) in the
Langlands dual group LG , which is called the Satake
parameter attached to πv .

I Irreducible unramified representations of G (Qv ) are realized as
the unramified irreducible constituent of the induced
representation

Ind
G(Qv )
B(Qv ) (χv ),

with unramified character χv of T (Qv ), where B = TU is the
Borel subgroup of G .

Dihua Jiang University of Minnesota On Some Topics in Automorphic Representations



Introduction
Automorphic Representations

Automorphic L-functions
Langlands Functoriality
Beyond the Genericity

Final Remarks

The Langlands Dual Group of G

I (G ,B,T ) determines the root datum (X ,∆; X∨,∆∨).

I Over C, (X ,∆; X∨,∆∨) determines G (C).

I The Langlands (complex) dual group G∨(C) of G

G ⇐⇒ (X ,∆; X∨,∆∨)
l l

G∨(C) ⇐⇒ (X∨,∆∨;X ,∆)

I GL∨n (C) = GLn(C) and SO∨
2n+1(C) = Sp2n(C).
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Near-Equivalence Classes

I S denotes any finite set of primes p and ∞.

I For p 6∈ S , take a semisimple conjugacy calss cp ∈ G∨(C).

I We set c(S) := {cv | v 6∈ S}.
I For S and S ′, c(S) and c ′(S ′) are equivalent if ∃ a set S ′′,

containing S ∪ S ′, s.t. c(S ′′) = c ′(S ′′) as conjugacy classes in
G∨(C).

I Denote by C(G ) the equivalence classes of all such sets c(S).

I Denote by A(G ) the set of irreducible cuspidal automorphic
representations of G (A) up to equivalence.
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Near-Equivalence Classes

I For π = ⊗vπv ∈ A(G ), ∃ an Sπ s.t. for p 6∈ Sπ, πp is
unramified. Define c(π) := c(Sπ).

I ∃ a map c : π 7→ c(π) from A(G ) to C(G ). The fibre Πc(π)

is called the nearly equivalence classes of π.

I π = ⊗vπv and π′ = ⊗vπ′v are of near-eqivalence if for
almost all primes p, πp and π′p are equivalent.

I Problems:

I (1) Describe the image c(A(G )) in C(G ).

I (2) Describe the fibre Πc(π).

I (3) Determine the structures of π in terms of c(π).
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Rigidity of Cuspidal Automorphic Representations

I Theorem (Jacquet-Shalika, 1981)

For G = GLn, Πc(π) contains one member. (For π, π′ in A(G ), if
c(π) = c(π′), then π, π′ are equivalent.)

I Theorem (Jiang-Soudry, 2003)

For G = SO2n+1, Πc(π) contains at most one generic member; and
if π is tempered, Πc(π) contains at least one generic member.

I For G = SO2n+1, if two generic π, π′ in A(G ) are of
near-equivalence, then π, π′ are equivalent. (rigidity)

I It is important to the Arthur trace formula approach.
I A slight modification holds for general reductive groups. For

classical groups, it is my on-going joint work with D. Soudry.
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Tensor Product L-functions

I For π ∈ A(G ) and τ ∈ A(GLm), define S := Sπ,τ , s.t. for
p 6∈ S , both πp and τp are unramified.

I Define the (partial) Rankin-Selberg convolution L-function by

LS(s, π × τ) :=
∏
p 6∈S

1

det(I − c(πp)⊗ c(τp)p−s)
.

I When G is classical, LS(s, π × τ) has meromorphic
continuation and functional equation.

I Problem: Determine the poles of LS(s, π × τ) for s ≥ 1
2 .

I This is closely related to the structures of c(π) and π, i.e. the
local-global relations.
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Langlands Functorial Transfers

I Weak Langlands Transfer Conjecture: Let G and H be
k-split reductive algebraic groups and let ρ be any group
homomorphism

ρ : H∨(C) → G∨(C).

For any σ ∈ A(H), ∃ a π ∈ A(G ) (may not be cuspidal!) s.t.

c(ρ(σ)) = c(π)

as conjugacy classes in G∨(C), where c(ρ(σ)) = {ρ(c(σv ))}.

I The strong Langlands Functorial Transfer requires
compatibility at all local palces or can be stated in terms of
the complete tensor product L-functions.
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Existence of the Weak Langlands Transfers

I Arthur-Clozel (1989) and Badulescu (2007): Generalized
Jacquct-Langlands transfer between GLn and its inner forms.

I Cogdell, Kim, Piatetski-Shapiro, and Shahidi (2001, 2004):
Langlands transfer from classical groups and GLn-type.

I Kim-Krishnamurthy (2004, 2005): U(n, n) and U(n + 1, n).

I Asgari-Shahidi (2006): GSpinm.

I Gelbart-Jacquet (1978): Sym2(GL2); Kim-Shahidi (2002):
Sym3(GL2): Kim (2003): Sym4(GL2); Ramakrishnan (2000):
GL2 ⊗ GL2; Kim-Shahidi (2002): GL2 ⊗ GL3; Ginzburg-Jiang
(2001): G2 → GSp6; Ginzburg (2005): GL2 × GL2 → G2.

Dihua Jiang University of Minnesota On Some Topics in Automorphic Representations



Introduction
Automorphic Representations

Automorphic L-functions
Langlands Functoriality
Beyond the Genericity

Final Remarks

Existence of the Weak Langlands Transfers

I Arthur-Clozel (1989) and Badulescu (2007): Generalized
Jacquct-Langlands transfer between GLn and its inner forms.

I Cogdell, Kim, Piatetski-Shapiro, and Shahidi (2001, 2004):
Langlands transfer from classical groups and GLn-type.

I Kim-Krishnamurthy (2004, 2005): U(n, n) and U(n + 1, n).

I Asgari-Shahidi (2006): GSpinm.

I Gelbart-Jacquet (1978): Sym2(GL2); Kim-Shahidi (2002):
Sym3(GL2): Kim (2003): Sym4(GL2); Ramakrishnan (2000):
GL2 ⊗ GL2; Kim-Shahidi (2002): GL2 ⊗ GL3; Ginzburg-Jiang
(2001): G2 → GSp6; Ginzburg (2005): GL2 × GL2 → G2.

Dihua Jiang University of Minnesota On Some Topics in Automorphic Representations



Introduction
Automorphic Representations

Automorphic L-functions
Langlands Functoriality
Beyond the Genericity

Final Remarks

Existence of the Weak Langlands Transfers

I Arthur-Clozel (1989) and Badulescu (2007): Generalized
Jacquct-Langlands transfer between GLn and its inner forms.

I Cogdell, Kim, Piatetski-Shapiro, and Shahidi (2001, 2004):
Langlands transfer from classical groups and GLn-type.

I Kim-Krishnamurthy (2004, 2005): U(n, n) and U(n + 1, n).

I Asgari-Shahidi (2006): GSpinm.

I Gelbart-Jacquet (1978): Sym2(GL2); Kim-Shahidi (2002):
Sym3(GL2): Kim (2003): Sym4(GL2); Ramakrishnan (2000):
GL2 ⊗ GL2; Kim-Shahidi (2002): GL2 ⊗ GL3; Ginzburg-Jiang
(2001): G2 → GSp6; Ginzburg (2005): GL2 × GL2 → G2.

Dihua Jiang University of Minnesota On Some Topics in Automorphic Representations



Introduction
Automorphic Representations

Automorphic L-functions
Langlands Functoriality
Beyond the Genericity

Final Remarks

Existence of the Weak Langlands Transfers

I Arthur-Clozel (1989) and Badulescu (2007): Generalized
Jacquct-Langlands transfer between GLn and its inner forms.

I Cogdell, Kim, Piatetski-Shapiro, and Shahidi (2001, 2004):
Langlands transfer from classical groups and GLn-type.

I Kim-Krishnamurthy (2004, 2005): U(n, n) and U(n + 1, n).

I Asgari-Shahidi (2006): GSpinm.

I Gelbart-Jacquet (1978): Sym2(GL2); Kim-Shahidi (2002):
Sym3(GL2): Kim (2003): Sym4(GL2); Ramakrishnan (2000):
GL2 ⊗ GL2; Kim-Shahidi (2002): GL2 ⊗ GL3; Ginzburg-Jiang
(2001): G2 → GSp6; Ginzburg (2005): GL2 × GL2 → G2.

Dihua Jiang University of Minnesota On Some Topics in Automorphic Representations



Introduction
Automorphic Representations

Automorphic L-functions
Langlands Functoriality
Beyond the Genericity

Final Remarks

Existence of the Weak Langlands Transfers

I Arthur-Clozel (1989) and Badulescu (2007): Generalized
Jacquct-Langlands transfer between GLn and its inner forms.

I Cogdell, Kim, Piatetski-Shapiro, and Shahidi (2001, 2004):
Langlands transfer from classical groups and GLn-type.

I Kim-Krishnamurthy (2004, 2005): U(n, n) and U(n + 1, n).

I Asgari-Shahidi (2006): GSpinm.

I Gelbart-Jacquet (1978): Sym2(GL2); Kim-Shahidi (2002):
Sym3(GL2): Kim (2003): Sym4(GL2); Ramakrishnan (2000):
GL2 ⊗ GL2; Kim-Shahidi (2002): GL2 ⊗ GL3; Ginzburg-Jiang
(2001): G2 → GSp6; Ginzburg (2005): GL2 × GL2 → G2.

Dihua Jiang University of Minnesota On Some Topics in Automorphic Representations



Introduction
Automorphic Representations

Automorphic L-functions
Langlands Functoriality
Beyond the Genericity

Final Remarks

Refined Properties of Langlands Transfers

I Local-Global Compatibility:

I Jiang-Soudry (2003): SO2n+1 =⇒ GL2n; With explicit local
descent, we obtain the local Langlands reciprocity map for
SO2n+1.

I Cogdell, Kim, Piatetski-Shapiro, and Shahidi (2004): SO2n

and Sp2n; The local descent in these cases are the work in
progress of Jiang-Soudry, which also implies the existence of
the local Langlands reciprocity map.

I Some other cases are known, but I omit the details here.

Dihua Jiang University of Minnesota On Some Topics in Automorphic Representations



Introduction
Automorphic Representations

Automorphic L-functions
Langlands Functoriality
Beyond the Genericity

Final Remarks

Refined Properties of Langlands Transfers

I Local-Global Compatibility:

I Jiang-Soudry (2003): SO2n+1 =⇒ GL2n; With explicit local
descent, we obtain the local Langlands reciprocity map for
SO2n+1.

I Cogdell, Kim, Piatetski-Shapiro, and Shahidi (2004): SO2n

and Sp2n; The local descent in these cases are the work in
progress of Jiang-Soudry, which also implies the existence of
the local Langlands reciprocity map.

I Some other cases are known, but I omit the details here.

Dihua Jiang University of Minnesota On Some Topics in Automorphic Representations



Introduction
Automorphic Representations

Automorphic L-functions
Langlands Functoriality
Beyond the Genericity

Final Remarks

Refined Properties of Langlands Transfers

I Local-Global Compatibility:

I Jiang-Soudry (2003): SO2n+1 =⇒ GL2n; With explicit local
descent, we obtain the local Langlands reciprocity map for
SO2n+1.

I Cogdell, Kim, Piatetski-Shapiro, and Shahidi (2004): SO2n

and Sp2n; The local descent in these cases are the work in
progress of Jiang-Soudry, which also implies the existence of
the local Langlands reciprocity map.

I Some other cases are known, but I omit the details here.

Dihua Jiang University of Minnesota On Some Topics in Automorphic Representations



Introduction
Automorphic Representations

Automorphic L-functions
Langlands Functoriality
Beyond the Genericity

Final Remarks

Refined Properties of Langlands Transfers

I Local-Global Compatibility:

I Jiang-Soudry (2003): SO2n+1 =⇒ GL2n; With explicit local
descent, we obtain the local Langlands reciprocity map for
SO2n+1.

I Cogdell, Kim, Piatetski-Shapiro, and Shahidi (2004): SO2n

and Sp2n; The local descent in these cases are the work in
progress of Jiang-Soudry, which also implies the existence of
the local Langlands reciprocity map.

I Some other cases are known, but I omit the details here.

Dihua Jiang University of Minnesota On Some Topics in Automorphic Representations



Introduction
Automorphic Representations

Automorphic L-functions
Langlands Functoriality
Beyond the Genericity

Final Remarks

Refined Properties of Langlands Transfers

I Image of the Langlands Transfers:

I Ginzburg-Rallis-Soudry automorphic descent from GL to
classical groups characterizes the image of the Langlands
transfer from classical groups to GL (a series of papers in
1997-2005)

I Jiang-Soudry (2003) prove the irreducibility of the image of
the descent for SO2n+1; the other cases are our work in
progress.

I C. Khare, M. Larsen, and G. Savin (2007): Use our result to
study the Inverse Galois Problem over Q.
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Endoscopy and Poles of Certain L-functions

I Theorem (Jiang 2006)
Let π ∈ A(SO2n+1) be cuspidal and generic.

1 The 2nd fundamental L-function L(s, π, ω2) is holomorphic for
Re(s) ≥ 1

2 with possible pole at s = 1
2 The order of the pole at s=1 of L(s, π, ω2) is r − 1 if and only

if ∃ a partition n =
∑r

i=1 ni s.t. π is an endoscopy transfer
from the elliptic endoscopy group

SO2n1+1 × · · · × SO2nr+1.

I It is the work in progress of Ginzburg-Jiang to characterize the
endoscopy transfers in terms of period of π, which will
generalize our preliminary work in this aspect in 2001.
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The Generalized Ramanujan Conjecture

I GRC: Any irreducible cuspidal automorphic representation is
tempered

I R. Howe and Piatetski-Shapiro (1977): GRC is not true for
G 6= GL.

I One of the refinements (Jiang, 2007): Any irreducible cuspidal
automorphic representation with one local generic component
is tempered.

I This formulation holds for all known examples and is
compatible with the Arthur conjecture on the discrete
automorphic spectrum in general.
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The CAP Conjecture

Assume that G is Q-quasisplit reductive group and G ′ be a
Q-inner form of G. For any irreducible cuspidal automorphic
representation π′ of G ′(A), there exist a standard parabolic
subgroup P = MN of G, an irreducible generic unitary cuspidal
automorphic representation σ of M(A), and an unramified
character χ of M(A)1\M(A), such that π′ is nearly equivalent to
an irreducible constituent of the unitarily induced representation

Ind
G(A)
P(A) (σ ⊗ χ).
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The CAP Conjecture

I If P is proper parabolic in G , π′ is called a CAP
representation of G ′.

I The CAP representations are counter-examples to GRC, but
is essential to understand the Arthur conjecture on the
discrete automorphic spectrum.

I Jiang-Soudry (2007): For G = SO2n+1, the CAP datum
(M, σ, χ) is determined by π′, which is generalization of the
rigidity of cuspidal automorphic representations.

I For other classical groups, suitable modifications are needed,
which is the work in progress of Jiang-Soudry.
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The CAP Conjecture

I Jacquet-Shalika (1981): the CAP conjecture holds for GLn.

I A. Badulescu (2007): it holds for GLm(D), where D is a
division algebra.

I Jiang-Soudry (2007): it holds for cuspidal automorphic
representations of SO2n+1 with special Bessel models.

I Gelbart-Rogawski-Soudry (1997): it holds for U(3).

I Many families of CAP representations have been constructed,
but we omit the details here.
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I The modern theory of automorphic forms is to understand the
spectrum of L2(G ) as representation of G (A).

I The L-function and the Converse Theorem approach gives the
information about L2(G ) via specific families of spectrum, but
by constructive methods, based on L-functions.

I The Arthur-Selberg trace formula gets the complete structure
of the spectrum, which yields the existence of endoscopy
transfers in general, and has many potential applications.

I The rational combination of the Arthur trace formula with the
L-function and the Converse Theorem methods is definitely a
very interesting approach for the near future.
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