Spectral analysis for $\Gamma \backslash \mathbb{H}$

Erez Lapid

§3 Spherical functions (February 20, 2009)

Taking

$$
k(\theta)=\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right) \in K
$$

we know that $k(\theta)$ acts as the hyperbolic rotation with angle 2θ around the point i, since $k(\pi)=-I$ acts trivially. The pair (r, φ) is called the geodesic polar coordinates of the point $z \in \mathbb{H}$, where $r=\rho(z, i)$ and 2φ is the angle that the geodesic passing through z and i forms with $i \mathbb{R}$.

Recall we have given eigenfunctions f of Laplace operator Δ with eigenvalue λ, which satisfy

$$
f(n(x) z)=\chi(x) f(z), \quad \text { for all } n \in N .
$$

Here $\chi: N \rightarrow \mathbb{C}$ is the character given by

$$
\chi(n)=e(x), \quad \text { if } n=\left(\begin{array}{cc}
1 & x \\
& 1
\end{array}\right) .
$$

We assume

$$
f(z)=e(x) F(2 \pi y) .
$$

Specifically, we get the Whittaker function

$$
W_{s}(z)=2 \sqrt{y} K_{s-\frac{1}{2}}(2 \pi y) e(x),
$$

where $K(y)$ is Bessel function satisfying

$$
K(y) \sim e^{-y}, \quad \text { as } y \rightarrow \infty .
$$

In fact, by changing variable $z \mapsto r z=\left(\begin{array}{cc}\sqrt{r} \\ & \frac{1}{\sqrt{r}}\end{array}\right) z, W_{s}(r z)$ is also an eigenfunction of Δ with the same eigenvalue, and satisfies

$$
W_{s}(r z)=e(r x) F(2 \pi r y)
$$

since Δ commutes with the action of G.
Proposition. Any $f \in \mathcal{C}_{c}^{\infty}(\mathbb{H})$ has the integral representation

$$
f(z)=\frac{1}{2 \pi i} \int_{\mathfrak{R} s=\frac{1}{2}} \int_{\mathbb{R}} W_{s}(r z) f_{s}(r) \gamma_{s}(r) d r d s
$$

where the outer integration is taken over the vertical line $s=1 / 2+i t$,

$$
f_{s}(r)=\left(f, W_{s}(r)\right)=\int_{\mathbb{H}} f(z) W_{s}(r z) d \mu z,
$$

and $\gamma_{s}(r)=(2 \pi|r|)^{-1} t \sinh \pi t$.

The proof is based on Fourier inversion formula in (r, x) variable and the following KontorovitchLebedev inversion in (t, y) variables:

$$
G(x)=\int_{0}^{+\infty} K_{i x}(y) g(y) y^{-1} d y
$$

then

$$
g(x)=\pi^{-2} \int_{0}^{\infty} K_{i x}(r) G(t) t \sinh (\pi t) d t
$$

Proposition. Let $f(z)$ be an eigenfunction of Δ with eigenvalue $\lambda=s(1-s)$ which satisfies the following transformation

$$
f(z+m)=f(z) \quad \text { for all } m \in \mathbb{Z}
$$

and the growth condition

$$
f(z)=o\left(e^{2 \pi y}\right) \quad \text { as } y \rightarrow+\infty .
$$

Then $f(z)$ has the expansion

$$
f(z)=f_{0}(y)+\sum_{n \neq 0} f_{n} W_{s}(n z),
$$

where $f_{n}=\left(f, W_{s}(n)\right)_{\Gamma_{\infty} \backslash \mathbb{H}}$ and f_{0} is a linear combination of y^{s} and y^{1-s} if $\lambda \neq \frac{1}{4}$; or $y^{\frac{1}{2}}$ and $y^{\frac{1}{2}} \log y$ if $\lambda=\frac{1}{4}$.

The proof follows from usual Fourier series expansion for periodic function and the uniqueness of rapidly decreasing solution.

We can get similar solutions in polar coordinates. Consider solutions of $(\Delta+\lambda) f=0$ which satisfy

$$
f(k z)=\chi_{m}(k) f(z), \quad \text { for all } k \in K,
$$

where $\chi: K \rightarrow \mathbb{C}$ is the character given by $($ for $m \in \mathbb{Z})$

$$
\chi_{m}(k(\theta))=e^{2 i m \theta}, \quad \text { if } k(\theta)=\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right) .
$$

With respect to $z=k(\varphi) e^{-r} i$, we can take

$$
\begin{aligned}
f(z) & =\frac{1}{\pi} \int_{0}^{\pi}(\operatorname{Im} k(\theta) z)^{s} \overline{\chi(k)} d \theta \\
& =\frac{\Gamma(1-s)}{\Gamma(1-s+m)} P_{-s}^{m}(\cosh r) e^{2 i m \varphi}
\end{aligned}
$$

where $P_{-s}^{m}(v)$ is the Legendre function.
We give the definition of the classical spherical function as

$$
U_{s}^{m}(z)=P_{-s}^{m}(\cosh r) e^{2 i m \varphi}=P_{-s}^{m}(2 u+1) e^{2 i m \varphi} .
$$

We have a similar expansion for any $f \in \mathcal{C}_{c}^{\infty}(\mathbb{H})$.

Proposition. Any $f \in \mathcal{C}_{c}^{\infty}(\mathbb{H})$ has the expansion

$$
f(z)=\sum_{m \in \mathbb{Z}} \frac{(-1)^{m}}{2 \pi i} \int_{\Re s=1 / 2} U_{s}^{m}(z) f^{m}(s) \delta(s) d s
$$

where

$$
f^{m}(s)=\left(f, U_{s}^{m}\right)=\int_{\mathbb{H}} f(z) U_{s}^{m}(z) d \mu z, \quad \delta(s)=t \tanh \pi t .
$$

The proof is based on expanding the Fourier series in φ with the following inversion formula due to F. G. Mehler and V. A. Fock. If

$$
G(t)=\int_{0}^{+\infty} P_{-\frac{1}{2}+i t}(y) g(y) \frac{d y}{y},
$$

then

$$
g(u)=\int_{0}^{\infty} P_{-\frac{1}{2}+i t}(u) G(t) t \tanh (\pi t) d t .
$$

Here $P_{s}(v)=P_{s}^{0}(v)$ denotes the Legendre function of order $m=0$.
The spherical functions of order zero are special; they depend only on the hyperbolic distance $\rho(z, i)$.

Theorem. For any λ, there is a unique spherical function of Δ which satisfies $f(i)=1$ and $(\Delta+\lambda) f=0$.
Proof. We have $f(z)=F(u)$ since $f(z)$ is spherical, where $\cosh r=1+2 u$. With respect to the polar coordinates, $F(u)$ satisfies a $2^{\text {nd }}$ order differential equation in u, i.e.

$$
u(u+1) F^{\prime \prime}(u)+(2 u+1) F^{\prime}+s(1-s) F=0
$$

This has a unique solution with $F(0)=1$, since the other one has singularity at 0 .
This is important. We will want to study the eigenfunctions of Δ subject to additional conditions. It is better sometimes to replace differential operators by integral operators (equations).

What kind of integral operators? Consider a general integral operator on \mathbb{H} which is defined by

$$
\left(L_{k} f\right)(z)=\int_{\mathbb{H}} k(z, w) f(w) d \mu(w) .
$$

Here $d \mu$ is the Riemannian measure and $k: \mathbb{H} \times \mathbb{H} \rightarrow \mathbb{C}$ is a given function, called the kernel of L_{k}. Define $T_{g} f(z)=f(g z)$. The next question is when L_{k} commutes with all these T_{g}, \forall $g \in G$? In fact, we have

$$
\begin{aligned}
L_{k}\left(T_{g} f\right)=T_{g}\left(L_{k} f\right) & \Leftrightarrow \int_{\mathbb{H}} k(g z, w) f(w) d \mu(w)=\int_{\mathbb{H}} k\left(z, g^{-1} w\right) f(w) d \mu(w) \\
& \Leftrightarrow k(g z, g w)=k(z, w)
\end{aligned}
$$

It is necessary and sufficient that $k(z, w)$ depends only on $\rho(z, w)$. A function with this property is called point-pair invariant.

Remark. In the Euclidean case, the G-invariant integral operator is just the convolution operator

$$
(F * f)(x)=\int_{\mathbb{R}} F(x-y) f(y) \mathrm{d} y
$$

where $F(x-y)$ is the kernel function.
Back to \mathbb{H}, we usually write

$$
k=k(u(z, w)),
$$

where $k(u)$ is a function in one variable $u \geq 0$ and $u(z, w)$ is given in $\S 2$. As usual, $\cosh \rho(z, w)=1+2 u(z, w)$.

Theorem. Any eigenfunction of \triangle is also an eigenfunction of the G-invariant integral L_{k}. In fact, if $(\Delta+\lambda) f=0$, then

$$
\int_{\mathbb{H}} k(u(z, w)) f(w) \mathrm{d} \mu(w)=\Lambda f(z)
$$

where $\Lambda=\Lambda(\lambda, k) \in \mathbb{C}$, depending on λ and k but not on f.
Conversely, if f is a eigenfunction of all L_{k} (k is point-pair invariant), then f is \triangle eigenfunction.

Proof. What the Theorem basically says is that L_{k} is in the algebra generated by \triangle in a suitable sense, or a function of \triangle.

$$
F(\triangle) f+F(\lambda) f=0 \quad \text { for any } F
$$

To prove the theorem, We shall give a proposition firstly.
Proposition. There exits a unique function $\omega(z, w)$ satisfies the following three condition:
i) For any fixed $w, z \mapsto \omega(z, w)$ depends only on $\rho(z, w)$;
ii) $\left(\Delta_{z}+\lambda\right) \omega(z, w)=0$;
iii) $\omega(w, w)=1$.

In fact $\omega(z, w)=F_{s}(u(z, w))$, where F_{s} is a Legendre function.
Proof. We have proved it for $w=i$. If $w=g i$, then

$$
\omega(z, w)=\omega\left(g^{-1} z, i\right)=F_{s}\left(u\left(g^{-1} z, i\right)\right)=F_{s}(u(g z, w))
$$

We come back to the proof. Suppose that $(\triangle+\lambda) f=0$. Fix $w \in \mathbb{H}$ and introduce mean value operator at w by

$$
f_{w}(z)=\int_{G_{w}} f(g z) \mathrm{d} g
$$

where $G_{w}=\operatorname{Stab}(w)=h^{-1} K h$, if $w=h i$. And $\mathrm{d} g$ is a Haar measure in G_{w} normalized by $\operatorname{vol}\left(G_{w}\right)=1$.

We have $(\triangle+\lambda) f_{w}=0$, because \triangle commutes with G. $f_{w}(z)$ depends only on $\rho(z, w)$ and $f_{w}(g z)=f_{w}(z), \forall g \in G_{w}$. By the proposition, we obtain

$$
\begin{equation*}
f_{w}(z)=f_{w}(w) \omega(z, w)=f(w) \omega(z, w) \tag{0.1}
\end{equation*}
$$

because

$$
f_{w}(w)=\int_{G_{w}} f(g w) \mathrm{d} g=\int_{G_{w}} f(w) \mathrm{d} g=f(w) .
$$

Now we claim that

$$
(L f)(z)=\left(L f_{z}\right)(z)
$$

Indeed, we have

$$
\begin{aligned}
\left(L f_{z}\right)(z) & =\int_{\mathbb{H}} k(z, w) f_{z}(w) \mathrm{d} \mu(w)=\int_{\mathbb{H}} \int_{G_{z}} k(z, w) f(g w) \mathrm{d} g \mathrm{~d} \mu(w) \\
& =\int_{G_{z}} \int_{\mathbb{H}} k(z, w) f(g w) \mathrm{d} \mu(w) \mathrm{d} g \xlongequal{\text { chang } w \text { to } g^{-1} w} \int_{G_{z}} \int_{\mathbb{H}} k\left(z, g^{-1} w\right) f(w) \mathrm{d} \mu(w) \mathrm{d} g \\
& \xlongequal{k \text { point-pair invariant }} \int_{G_{z}} \int_{\mathbb{H}} k(g z, w) f(w) \mathrm{d} \mu(w) \mathrm{d} g=\int_{\mathbb{H}} \int_{G_{z}} k(g z, w) f(w) \mathrm{d} \mu(w) \mathrm{d} g \\
& =\int_{\mathbb{H}} \int_{G_{z}} k(z, w) f(w) \mathrm{d} \mu(w) \mathrm{d} g=\int_{\mathbb{H}} k(z, w) f(w) \mathrm{d} \mu(w) \\
& =(L f)(z) .
\end{aligned}
$$

Going back and using (0.1), we get

$$
\begin{aligned}
(L f)(z) & =\left(L f_{z}\right)(z)=L(w \mapsto f(z) \omega(z, w))(z) \\
& =f(z) L(\omega(z, w))(z)
\end{aligned}
$$

where ω is symmetric and

$$
L(\omega(z, w))(z)=\Lambda_{k, \lambda}=\int_{\mathbb{H}} F_{s}(u(z, w)) k((z, w)) \mathrm{d} \mu(w) .
$$

We still have another part of this theorem. Note that L commutes with \triangle. Indeed, we have

$$
\begin{aligned}
L(\triangle f)(z) & =\int_{\mathbb{H}} k(z, w)(\triangle f)(w) \mathrm{d} \mu(w) \\
& =\int_{\mathbb{H}} \triangle_{w} k(z, w) f(w) \mathrm{d} \mu(w) \\
& =\int_{\mathbb{H}} \triangle_{z} k(z, w) f(w) \mathrm{d} \mu(w) \\
& =\triangle\left(z \mapsto \int_{\mathbb{H}} k(z, w) f(w) \mathrm{d} \mu(w)\right) \\
& =(\triangle L f)(z) .
\end{aligned}
$$

Because

$$
\triangle_{w} k(z, w)={ }_{5} \triangle_{z} k(z, w) .
$$

To check it, using polar coordinates, one can check that

$$
\begin{aligned}
\triangle_{z} k(z, w) & =u(u+1) k^{\prime \prime}(u)+(2 u+1) k^{\prime}(u) \\
& =\triangle_{w} k(z, w)
\end{aligned}
$$

This deduces that $\triangle_{z} k(z, w)$ is a point-pair invariant function.
Converse direction: Suppose that f is an eigenfunction of L_{k} for all k point-pair invariant. Then we show that f is a eigenfunction of \triangle. Without loss of generality, we assume $f(i) \neq 0$, otherwise, we can translate f. Then we take k, s. t.

$$
\int k(i, w) f(w) \mathrm{d} \mu(w) \neq 0
$$

where $k(0)=1, k$ has small support near 0 .
By assumption,

$$
(L f)(z)=\int_{\mathbb{H}} k(z, w) f(w) \mathrm{d} \mu(w)=\Lambda f(z), \Lambda \neq 0 .
$$

Simply apply \triangle to the above equation, we get

$$
L \triangle f=\triangle L f=\Lambda \triangle f
$$

since \triangle and L commutes. This deduces that $\triangle f$ is also an eigenfunction of L.
On the other hand, we have

$$
\triangle L f=\int_{\mathbb{H}} \triangle_{z} k(z, w) f(w) \mathrm{d} \mu(w),
$$

where $\triangle_{z} k(z, w)$ is also a point-pair invariant function.
By assumption, we have

$$
L_{\tilde{k}} f=\Lambda^{\prime} f
$$

Then we get

$$
\Delta f=\frac{L \triangle f}{\Lambda}=\frac{\triangle L f}{\Lambda}=\frac{\Lambda^{\prime} f}{\Lambda} .
$$

Remarks.

(1) How to obtain $\Lambda(k, \lambda)$? The map

$$
k \mapsto h(s)=\Lambda(k, \lambda)=\int \omega(z, w) h(z, w) \mathrm{d} \mu(w)
$$

where $\lambda=s(1-s)$. In fact,

$$
h(t)=4 \pi \int_{0}^{\infty} F_{s}(u) k(u) \mathrm{d} u .
$$

The inversion formula is given by,

$$
k(u)=\frac{1}{4 \pi} \int_{0}^{\infty} F_{s}(u) h(t) t \tanh \pi t \mathrm{~d} t .
$$

(2) From the expansion of $f \in \mathcal{C}_{c}^{\infty}(\mathbb{H})$ in terms of $W_{s}, \mathfrak{R} s=\frac{1}{2}$, we deduce that

$$
\operatorname{Spec}(\triangle) \subseteq\left(-\infty,-\frac{1}{4}\right]
$$

which is equivalent to

$$
\frac{1}{4}\|f\|_{2} \leq\|\triangle f\|_{2}
$$

One can see it directly, (I add: there is something wrong to a square!)
Let $f \in \mathcal{C}_{c}^{\infty}(\mathbb{H})$, then we have

$$
\begin{aligned}
\int_{0}^{\infty} f^{2}(x+i y) \frac{\mathrm{d} y}{y^{2}} & =2 \int_{0}^{\infty} f(x+i y) \frac{\partial f}{\partial y}(x+i y) \frac{\mathrm{d} y}{y} \\
& \leq 2\left(\int_{0}^{\infty}\left(\frac{\partial f}{\partial y}\right)^{2}(x+i y) \mathrm{d} y\right)^{1 / 2}\left(\int_{0}^{\infty} f^{2}(x+i y) \frac{\mathrm{d} y}{y^{2}}\right)^{1 / 2}
\end{aligned}
$$

and then

$$
\begin{aligned}
\frac{1}{4} \int_{0}^{\infty} f^{2}(x+i y) \frac{\mathrm{d} y}{y^{2}} & \leq \int_{0}^{\infty}\left(\frac{\partial f}{\partial y}\right)^{2}(x+i y) \mathrm{d} y \\
& \leq \int_{0}^{\infty}\left|\left(\frac{\partial f}{\partial x}\right)^{2}(x+i y)+\left(\frac{\partial f}{\partial y}\right)^{2}(x+i y)\right| \mathrm{d} y \\
& =\int_{0}^{\infty}|\triangle f|^{2} \frac{\mathrm{~d} y}{y^{2}}
\end{aligned}
$$

We can get

$$
(\triangle f, f)=\int_{0}^{\infty}\left|\frac{\partial^{2} f}{\partial x^{2}}\right| \mathrm{d} x
$$

Integrating over x, we have

$$
\frac{1}{4} \int_{\mathbb{H}} f^{2}(z) \mathrm{d} \mu(z) \leq \int_{\mathbb{H}}(\triangle f)^{2}(z) \mathrm{d} \mu(z) .
$$

An attractive way to get $k \mapsto h$ is using $y^{s}, \lambda=s(1-s)$ in the following three steps. We have

$$
q(v)=\int_{v}^{\infty} k(u)(u-v)^{-1 / 2} \mathrm{~d} u
$$

By Abel transform, we get

$$
g(r)=2 q\left(\sinh (r / 2)^{2}\right)
$$

and

$$
h(t)=\int_{\mathbb{R}} e^{i r t} g(r) \mathrm{d} r
$$

References

[1] V. A. Fock, On the representation of an arbitrary function by an integral involving Legendre's function with a complex index. C. R. (Dokl.) Acad. Sci. URSs 39 (1943), 253-256.

