Spectral analysis for I'\H
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§3 Spherical functions (February 20, 2009)

k(9) = < cosf sinf ) e
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—sinf cos6

we know that k() acts as the hyperbolic rotation with angle 26 around the point 4, since
k(m) = —I acts trivially. The pair (r, ¢) is called the geodesic polar coordinates of the point

z € H, where r = p(z,1) and 2y is the angle that the geodesic passing through z and ¢ forms
with iR.

Recall we have given eigenfunctions f of Laplace operator A with eigenvalue A, which
satisfy

f(n(z)z) = x(x)f(z), forallne N.
Here x : N — C is the character given by

() = e(x), ifn= <1 ff)

We assume
f(z) = e(x)F(2my).
Specifically, we get the Whittaker function

WS(Z) = Zﬂsté(Zﬂ-y)e(x)a
where K (y) is Bessel function satisfying

K(y) ~e™, asy— oc.

In fact, by changing variable z — rz = (\/; ! ) z, Wy(rz) is also an eigenfunction of A

T

with the same eigenvalue, and satisfies
W(rz) = e(rz)F(2rry),
since A commutes with the action of G.

Proposition. Any f € C°(H) has the integral representation
1
16 =5 [ [Wean s
Tt Jms=1 JR
where the outer integration is taken over the vertical line s = 1/2 + it,

) = (F0) = [ FEW )

and ~y,(r) = (2x|r|) "'t sinh 7t.



The proof is based on Fourier inversion formula in (7, x) variable and the following Kontorovitch-
Lebedev inversion in (¢,y) variables:

+oo

G(z) = i Kia(y)g(y)y~'dy,

then

g(x) =n2 /000 K. (r)G(t)t sinh(nt)dt.

Proposition. Let f(z) be an eigenfunction of A with eigenvalue A = s(1—s) which satisfies
the following transformation

fz4+m)=f(z) forallmelZ

and the growth condition
f(z) =o(e*™) asy — +oo.

Then f(z) has the expansion
F(2) = foly) + Y faWil(n2),

n#0

where f, = (f,Ws(n))rom and fo is a linear combination of y* and y*=* if X # 1, or Y3
and y% logy if A = i.

The proof follows from usual Fourier series expansion for periodic function and the unique-
ness of rapidly decreasing solution.

We can get similar solutions in polar coordinates. Consider solutions of (A + A\)f = 0
which satisfy

f(kz) = xm(k)f(z), forall ke K,
where x : K — C is the character given by (for m € Z)

X (K (0)) = €™, iﬂf(&)z(cose Sme).

—sinf cos®

With respect to z = k(p)e i, we can take

flz) =1 / " (Imk(6)2) X (k)6

™

I'(1—s) 0
-\ 2 pm h imep
I'(1—s+m) Za(coshr)e™,

where P (v) is the Legendre function.
We give the definition of the classical spherical function as

U™(2) = P™ (coshr)e?™ = P™ (2 + 1)e2™,

s

We have a similar expansion for any f € C2°(H).
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Proposition. Any f € C°*(H) has the expansion

=Y G [ mrer@es

27

where
f™(s) = (f,U") = /Hf(z)Usm(z)duz, §(s) = ttanhrt.

The proof is based on expanding the Fourier series in ¢ with the following inversion formula
due to F. G. Mehler and V. A. Fock. If

G(t) :/0 mP_5+it(y)g(y)—,
then
g(u) = /0 TPy (WGt tanh(rt)dt.

Here Pi(v) = PY(v) denotes the Legendre function of order m = 0.

The spherical functions of order zero are special; they depend only on the hyperbolic
distance p(z,1).
Theorem. For any A, there is a unique spherical function of A which satisfies f(i) = 1 and
(A+N)f=0.
Proof. We have f(z) = F(u) since f(z) is spherical, where coshr = 1 + 2u. With respect

to the polar coordinates, F'(u) satisfies a 2"¢ order differential equation in v, i.e.
wlu+ 1) F"(u)+ 2u+ 1)F' +s(1—s)F =0.
This has a unique solution with F'(0) = 1, since the other one has singularity at 0. O

This is important. We will want to study the eigenfunctions of A subject to additional
conditions. It is better sometimes to replace differential operators by integral operators
(equations).

What kind of integral operators? Consider a general integral operator on H which is

defined by

(Lof)(z) = /H (2 w) f(w)dp(w).

Here dp is the Riemannian measure and k : H x H — C is a given function, called the kernel
of Lj. Define T, f(z) = f(gz). The next question is when L; commutes with all these 7}, V
g € G? In fact, we have

Lu(T,f) = Ty(Lif) / k(g2 w) f(w)dp(w) = / k(2 g~ w) f(w)da(w)

& k(gz, gw) = k(z,w)
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It is necessary and sufficient that k(z,w) depends only on p(z,w). A function with this
property is called point-pair invariant.

Remark. In the Euclidean case, the G-invariant integral operator is just the convolution
operator

<F*ﬁ@%34F@—yV@m%

where F'(x — y) is the kernel function.
Back to H, we usually write

k= k(u(z, w)),

where k(u) is a function in one variable v > 0 and u(z,w) is given in §2. As usual,
cosh p(z,w) = 1 + 2u(z,w).

Theorem. Any eigenfunction of /\ is also an eigenfunction of the G-invariant integral Ly,.
In fact, if (A +N)f =0, then

AMM%MHWMMM—Aﬂ%

where A = A(\, k) € C, depending on A and k but not on f.
Conversely, if f is a eigenfunction of all Ly (k is point-pair invariant), then f is A-
eigenfunction.

Proof. What the Theorem basically says is that L; is in the algebra generated by A in a
suitable sense, or a function of A.

F(AN)f+F(A\)f=0 forany F.
To prove the theorem, We shall give a proposition firstly.

Proposition. There ezits a unique function w(z,w) satisfies the following three condition:
i) For any fivzed w, z — w(z,w) depends only on p(z,w);
i) (A, + Nw(z,w) =0;
iii) w(w,w) = 1.
In fact w(z,w) = Fy(u(z,w)), where F; is a Legendre function.
Proof. We have proved it for w = 4. If w = gi, then

w(z,w) =w(g'z,i) = F,(u(g'2,1)) = Fy(u(gz,w)). O
We come back to the proof. Suppose that (A + \)f = 0. Fix w € H and introduce mean
value operator at w by

fuw(z) = f(gz)dy,

Gu

where G, = Stab(w) = h™'Kh, if w = hi. And dg is a Haar measure in G, normalized by

vol(G,) = 1.
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We have (A +A) f,, = 0, because A commutes with G. f,,(z) depends only on p(z,w) and
fw(92) = fu(2), Vg € G,,. By the proposition, we obtain

fu(2) = fu(w)w(z,w) = flw)w(z,w), (0.1)

_ /G Slgu)dg = /G ) =

(LA)(z) = (Lf)(2).

because

Now we claim that

Indeed, we have

(LF)G) = [ Ko f () // (2,0) f(gw)dgdu(uo)
// 2y0) f (g)da(ew // (2,97 ) f(w)dpu(w)dg
/ / k=) f(o)dutw)dg = [ [ (g ) f()duw)dg
/ / (2,w) widg = [ ke.w)f(w)dp(w

Going back and using (0.1), we get
(Lf)(2) = (Lf:)(2) = L(w — f(z)w(z,w)) (2)
= f(2)L(w(z,w))(2),

where w is symmetric and

L{w(z,w))(2) = Aex = /HFS(U(Z,w))k((zaw))du(w)-

We still have another part of this theorem. Note that L commutes with A. Indeed, we
have

:/HAwk(z w )
:/HAZk(z w )

=0 (s [ ke st
— (AL)(:).

Because
Apk(z,w) = ANk(z,w).
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To check it, using polar coordinates, one can check that
Ak(z,w) = u(u + DE" (u) + (2u + 1)K (u)
= Nyk(z,w).
This deduces that A k(z,w) is a point-pair invariant function.

Converse direction: Suppose that f is an eigenfunction of L;, for all k£ point-pair invariant.
Then we show that f is a eigenfunction of A. Without loss of generality, we assume f(z) # 0,
otherwise, we can translate f. Then we take k, s. t.

/ (i, w) f (w)du(w) # 0,

where £(0) = 1, k has small support near 0.
By assumption,

(Lf)(z) = / k() f(w)dp(w) = Af(2), A#0.

Simply apply A to the above equation, we get
LAf=ALf=AAf,

since A and L commutes. This deduces that Af is also an eigenfunction of L.
On the other hand, we have

ALF = /H Ak, w) f(w)dp(w),

where A k(z,w) is also a point-pair invariant function.
By assumption, we have

Lif =Af.
Then we get
_LAf_ALf_A’f
Af= A A AT
Remarks.

(1) How to obtain A(k, A\)? The map

k— h(s) =A(k,\) = /w(z,w)h(z,w)du(w),

where A = s(1 — s). In fact,

B(u) = — /0 " Fu(u)h(t)t tanh mtdt.
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(2) From the expansion of f € C2°(H) in terms of W;, Rs = 1, we deduce that

Spec(A) C (—o0, —i],

which is equivalent to
1
o<l A e

One can see it directly, (I add: there is something wrong to a square!)
Let f € C°(H), then we have

o .d > L Of .d
/0f2($+zy)y—g=2/o f(x+zy)a—y(w+zy);y

§2</0m<g—£>2(x+zydy> (/ [+ iy) >/2,

and then
/ f2:c—|—zy—‘g§/0 (g—g) (z +iy)dy
g/ooo (a_f) ( +7Jy)+(a—) (z +iy)| dy
— [ 1ase
0
We can get
@rn= [ 55|

Integrating over x, we have

/f (> /(Af)() ul2).

An attractive way to get k +— h is using y*, A = s(1 — s) in the following three steps. We

have
q(v) = / k(u)(u — v)"Y2du.
By Abel transform, we get
g(r) = 2q (sinh(r/2)*)
and

ht) = /R e g(r)dr.
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