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§3 Spherical functions (February 20, 2009)

Taking

k(θ) =

(
cos θ sin θ
− sin θ cos θ

)
∈ K,

we know that k(θ) acts as the hyperbolic rotation with angle 2θ around the point i, since

k(π) = −I acts trivially. The pair (r, ϕ) is called the geodesic polar coordinates of the point

z ∈ H, where r = ρ(z, i) and 2ϕ is the angle that the geodesic passing through z and i forms

with iR.

Recall we have given eigenfunctions f of Laplace operator ∆ with eigenvalue λ, which

satisfy

f(n(x)z) = χ(x)f(z), for all n ∈ N.

Here χ : N → C is the character given by

χ(n) = e(x), if n =

(
1 x

1

)
.

We assume

f(z) = e(x)F (2πy).

Specifically, we get the Whittaker function

Ws(z) = 2
√

yKs− 1
2
(2πy)e(x),

where K(y) is Bessel function satisfying

K(y) ∼ e−y, as y →∞.

In fact, by changing variable z 7→ rz =
(√

r
1√
r

)
z, Ws(rz) is also an eigenfunction of ∆

with the same eigenvalue, and satisfies

Ws(rz) = e(rx)F (2πry),

since ∆ commutes with the action of G.

Proposition. Any f ∈ C∞c (H) has the integral representation

f(z) =
1

2πi

∫

Rs= 1
2

∫

R
Ws(rz)fs(r)γs(r)drds,

where the outer integration is taken over the vertical line s = 1/2 + it,

fs(r) =
(
f, Ws(r)

)
=

∫

H
f(z)Ws(rz)dµz,

and γs(r) = (2π|r|)−1t sinh πt.
1



The proof is based on Fourier inversion formula in (r, x) variable and the following Kontorovitch-

Lebedev inversion in (t, y) variables:

G(x) =

∫ +∞

0

Kix(y)g(y)y−1dy,

then

g(x) = π−2

∫ ∞

0

Kix(r)G(t)t sinh(πt)dt.

Proposition. Let f(z) be an eigenfunction of ∆ with eigenvalue λ = s(1−s) which satisfies

the following transformation

f(z + m) = f(z) for all m ∈ Z
and the growth condition

f(z) = o(e2πy) as y → +∞.

Then f(z) has the expansion

f(z) = f0(y) +
∑

n6=0

fnWs(nz),

where fn = (f, Ws(n))Γ∞\H and f0 is a linear combination of ys and y1−s if λ 6= 1
4
; or y

1
2

and y
1
2 log y if λ = 1

4
.

The proof follows from usual Fourier series expansion for periodic function and the unique-

ness of rapidly decreasing solution.

We can get similar solutions in polar coordinates. Consider solutions of (∆ + λ)f = 0

which satisfy

f(kz) = χm(k)f(z), for all k ∈ K,

where χ : K → C is the character given by (for m ∈ Z)

χm(k(θ)) = e2imθ, if k(θ) =

(
cos θ sin θ
− sin θ cos θ

)
.

With respect to z = k(ϕ)e−ri, we can take

f(z) =
1

π

∫ π

0

(Imk(θ)z)sχ(k)dθ

=
Γ(1− s)

Γ(1− s + m)
Pm
−s(cosh r)e2imϕ,

where Pm
−s(v) is the Legendre function.

We give the definition of the classical spherical function as

Um
s (z) = Pm

−s(cosh r)e2imϕ = Pm
−s(2u + 1)e2imϕ.

We have a similar expansion for any f ∈ C∞c (H).
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Proposition. Any f ∈ C∞c (H) has the expansion

f(z) =
∑

m∈Z

(−1)m

2πi

∫

<s=1/2

Um
s (z)fm(s)δ(s)ds,

where

fm(s) =
(
f, Um

s

)
=

∫

H
f(z)Um

s (z)dµz, δ(s) = t tanh πt.

The proof is based on expanding the Fourier series in ϕ with the following inversion formula

due to F. G. Mehler and V. A. Fock. If

G(t) =

∫ +∞

0

P− 1
2
+it(y)g(y)

dy

y
,

then

g(u) =

∫ ∞

0

P− 1
2
+it(u)G(t)t tanh(πt)dt.

Here Ps(v) = P 0
s (v) denotes the Legendre function of order m = 0.

The spherical functions of order zero are special; they depend only on the hyperbolic

distance ρ(z, i).

Theorem. For any λ, there is a unique spherical function of ∆ which satisfies f(i) = 1 and

(∆ + λ)f = 0.

Proof. We have f(z) = F (u) since f(z) is spherical, where cosh r = 1 + 2u. With respect

to the polar coordinates, F (u) satisfies a 2nd order differential equation in u, i.e.

u(u + 1)F ′′(u) + (2u + 1)F ′ + s(1− s)F = 0.

This has a unique solution with F (0) = 1, since the other one has singularity at 0. ¤

This is important. We will want to study the eigenfunctions of ∆ subject to additional

conditions. It is better sometimes to replace differential operators by integral operators

(equations).

What kind of integral operators? Consider a general integral operator on H which is

defined by

(Lkf)(z) =

∫

H
k(z, w)f(w)dµ(w).

Here dµ is the Riemannian measure and k : H×H→ C is a given function, called the kernel

of Lk. Define Tgf(z) = f(gz). The next question is when Lk commutes with all these Tg, ∀
g ∈ G? In fact, we have

Lk(Tgf) = Tg(Lkf) ⇔
∫

H
k(gz, w)f(w)dµ(w) =

∫

H
k(z, g−1w)f(w)dµ(w)

⇔ k(gz, gw) = k(z, w)
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It is necessary and sufficient that k(z, w) depends only on ρ(z, w). A function with this

property is called point-pair invariant.

Remark. In the Euclidean case, the G-invariant integral operator is just the convolution
operator

(F ∗ f)(x) =

∫

R
F (x− y)f(y)dy,

where F (x− y) is the kernel function.

Back to H, we usually write

k = k(u(z, w)),

where k(u) is a function in one variable u ≥ 0 and u(z, w) is given in §2. As usual,

cosh ρ(z, w) = 1 + 2u(z, w).

Theorem. Any eigenfunction of 4 is also an eigenfunction of the G-invariant integral Lk.

In fact, if (4+ λ)f = 0, then

∫

H
k(u(z, w))f(w)dµ(w) = Λf(z),

where Λ = Λ(λ, k) ∈ C, depending on λ and k but not on f .

Conversely, if f is a eigenfunction of all Lk (k is point-pair invariant), then f is 4-

eigenfunction.

Proof. What the Theorem basically says is that Lk is in the algebra generated by 4 in a

suitable sense, or a function of 4.

F (4)f + F (λ)f = 0 for any F.

To prove the theorem, We shall give a proposition firstly.

Proposition. There exits a unique function ω(z, w) satisfies the following three condition:

i) For any fixed w, z 7→ ω(z, w) depends only on ρ(z, w);

ii) (∆z + λ)ω(z, w) = 0;

iii) ω(w, w) = 1.

In fact ω(z, w) = Fs(u(z, w)), where Fs is a Legendre function.

Proof. We have proved it for w = i. If w = gi, then

ω(z, w) = ω(g−1z, i) = Fs(u(g−1z, i)) = Fs(u(gz, w)). ¤

We come back to the proof. Suppose that (4+ λ)f = 0. Fix w ∈ H and introduce mean

value operator at w by

fw(z) =

∫

Gw

f(gz)dg,

where Gw = Stab(w) = h−1Kh, if w = hi. And dg is a Haar measure in Gw normalized by

vol(Gw) = 1.
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We have (4+λ)fw = 0, because 4 commutes with G. fw(z) depends only on ρ(z, w) and

fw(gz) = fw(z), ∀g ∈ Gw. By the proposition, we obtain

fw(z) = fw(w)ω(z, w) = f(w)ω(z, w), (0.1)

because

fw(w) =

∫

Gw

f(gw)dg =

∫

Gw

f(w)dg = f(w).

Now we claim that
(Lf)(z) = (Lfz)(z).

Indeed, we have

(Lfz)(z) =

∫

H
k(z, w)fz(w)dµ(w) =

∫

H

∫

Gz

k(z, w)f(gw)dgdµ(w)

=

∫

Gz

∫

H
k(z, w)f(gw)dµ(w)dg

chang w to g−1w
==========

∫

Gz

∫

H
k(z, g−1w)f(w)dµ(w)dg

k point−pair invariant
============

∫

Gz

∫

H
k(gz, w)f(w)dµ(w)dg =

∫

H

∫

Gz

k(gz, w)f(w)dµ(w)dg

=

∫

H

∫

Gz

k(z, w)f(w)dµ(w)dg =

∫

H
k(z, w)f(w)dµ(w)

= (Lf)(z).

Going back and using (0.1), we get

(Lf)(z) = (Lfz)(z) = L (w 7→ f(z)ω(z, w)) (z)

= f(z)L(ω(z, w))(z),

where ω is symmetric and

L(ω(z, w))(z) = Λk,λ =

∫

H
Fs(u(z, w))k((z, w))dµ(w).

We still have another part of this theorem. Note that L commutes with 4. Indeed, we

have

L(4f)(z) =

∫

H
k(z, w)(4f)(w)dµ(w)

=

∫

H
4wk(z, w)f(w)dµ(w)

=

∫

H
4zk(z, w)f(w)dµ(w)

= 4
(

z 7→
∫

H
k(z, w)f(w)dµ(w)

)

= (4Lf)(z).

Because
4wk(z, w) = 4zk(z, w).
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To check it, using polar coordinates, one can check that

4zk(z, w) = u(u + 1)k′′(u) + (2u + 1)k′(u)

= 4wk(z, w).

This deduces that 4zk(z, w) is a point-pair invariant function.

Converse direction: Suppose that f is an eigenfunction of Lk for all k point-pair invariant.

Then we show that f is a eigenfunction of4. Without loss of generality, we assume f(i) 6= 0,

otherwise, we can translate f . Then we take k, s. t.
∫

k(i, w)f(w)dµ(w) 6= 0,

where k(0) = 1, k has small support near 0.

By assumption,

(Lf)(z) =

∫

H
k(z, w)f(w)dµ(w) = Λf(z), Λ 6= 0.

Simply apply 4 to the above equation, we get

L4f = 4Lf = Λ4f,

since 4 and L commutes. This deduces that 4f is also an eigenfunction of L.

On the other hand, we have

4Lf =

∫

H
4zk(z, w)f(w)dµ(w),

where 4zk(z, w) is also a point-pair invariant function.

By assumption, we have

Lk̃f = Λ
′
f.

Then we get

4f =
L4f

Λ
=
4Lf

Λ
=

Λ
′
f

Λ
.

Remarks.
(1) How to obtain Λ(k, λ)? The map

k 7→ h(s) = Λ(k, λ) =

∫
ω(z, w)h(z, w)dµ(w),

where λ = s(1− s). In fact,

h(t) = 4π

∫ ∞

0

Fs(u)k(u)du.

The inversion formula is given by,

k(u) =
1

4π

∫ ∞

0

Fs(u)h(t)t tanh πtdt.
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(2) From the expansion of f ∈ C∞c (H) in terms of Ws, Rs = 1
2
, we deduce that

Spec(4) ⊆ (−∞,−1

4
],

which is equivalent to

1

4
‖ f ‖2≤‖ 4f ‖2 .

One can see it directly, (I add: there is something wrong to a square!)

Let f ∈ C∞c (H), then we have
∫ ∞

0

f 2(x + iy)
dy

y2
= 2

∫ ∞

0

f(x + iy)
∂f

∂y
(x + iy)

dy

y

≤ 2

(∫ ∞

0

(
∂f

∂y

)2

(x + iy)dy

)1/2 (∫ ∞

0

f 2(x + iy)
dy

y2

)1/2

,

and then

1

4

∫ ∞

0

f 2(x + iy)
dy

y2
≤

∫ ∞

0

(
∂f

∂y

)2

(x + iy)dy

≤
∫ ∞

0

∣∣∣∣∣
(

∂f

∂x

)2

(x + iy) +

(
∂f

∂y

)2

(x + iy)

∣∣∣∣∣ dy

=

∫ ∞

0

|4f |2 dy

y2
.

We can get

(4f, f) =

∫ ∞

0

∣∣∣∣
∂2f

∂x2

∣∣∣∣ dx.

Integrating over x, we have

1

4

∫

H
f 2(z)dµ(z) ≤

∫

H
(4f)2(z)dµ(z).

An attractive way to get k 7→ h is using ys, λ = s(1− s) in the following three steps. We

have

q(v) =

∫ ∞

v

k(u)(u− v)−1/2du.

By Abel transform, we get

g(r) = 2q
(
sinh(r/2)2

)
,

and

h(t) =

∫

R
eirtg(r)dr.

7



References

[1] V. A. Fock, On the representation of an arbitrary function by an integral involving Legendre’s function
with a complex index. C. R. (Dokl.) Acad. Sci. URSs 39 (1943), 253-256.

8


