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§7 Selberg Trace Formula (March 2, 2009)

In 1956, A. Selberg derived the trace formula from the spectral theorem, which established

a quantitative connection between the spectrum and the geometry of the Riemaan surface.

A simple case is:

Γ\H is compact ⇐⇒ Γ\G is compact.

Let Lk be the invariant operators, such that

Lf(z) =

∫

H

k(z, w)f(w)dµ(w), (0.1)

where

k(z, w) = k(u(z, w)), and u(z, w) =
|z − w|2

4ImzImw
.

We have
cosh ρ(z, w) = 1 + 2u(z, w).

k(z, w) is a point-pair invariant function.

Denote

L : L2(Γ\H) → L2(Γ\H)

be the integral operator with kernel K(z, w) =
∑

γ∈Γ k(z, γw).

Theorem. If ϕ is an eigenfunction of ∆ with eigenvalue λ = s(1 − s) = 1
4

+ t2, where

s = 1
2

+ it, t ∈ C, then Lϕ = h(t)ϕ.

We need an explicit expression for h in terms of the eigenvalue λ and the kernel function

k(u). This is given by the Selberg transform in the following three steps:

q(v) =

∫ ∞

0

k(u)(u − v)−1/2du,

g(r) = 2q
((

sinh
r

2

)2)
,

h(t) =

∫ +∞

−∞
eirtg(r)dr.

Since Γ\H is compact, then L is a trace-class operator on L2(Γ\H), and

TrL =

∫

Γ\H

K(z, z)dµ(z).

We know ∆ has discrete spectrum on Γ\H, so does L. We can write down

K(z, w) =
∞∑

j=0

h(tj)uj(z)uj(w),

where {uj}∞j=0 is the orthonormal basis of eigenfunctions of ∆ in the space L2(Γ\H).
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If we denote

(∆ + λj)uj = 0, where λj =
1

4
+ t2j ,

we obtain ∫

Γ\H

K(z, z)dµ(z) =
∑

j

h(tj)

∫

Γ\H

|uj(z)|2dµ(z) =
∑

j

h(tj).

Question. Can we write the trace in a different way?

Following Selberg, we partition the group Γ into conjugacy classes. Given the conjugacy

classes C in Γ, then we have Γ =
∐

C and we can also write

K(z, z) =
∑

γ∈Γ

k(z, γz) =
∑

C

∑

γ∈C
k(z, γz) =

∑

C
K̃C,

where K̃C(z) =
∑

γ∈C k(z, γz) is a Γ-invariant function of z. On the other hand, we get

∫

Γ\H

K(z, z)dµ(z) =
∑

C

∫

Γ\H

K̃C(z)dµ(z).

Question. How to compute the summands?

We define the conjugacy class C = [γ] = {τ−1γτ : τ ∈ Γ} and the centralizer CΓ(γ) = {ρ ∈
Γ : ργ = γρ}. Take C ↔ CΓ(γ)\Γ: γ 7→ τ−1γτ and choose γ ∈ C, we can write

K̃C(z) =
∑

τ∈CΓ(γ)\Γ
k(z, τ−1γτz) =

∑

τ∈CΓ(γ)\Γ
k(τz, γτz).

Therefore ∫

Γ\H

K̃C(z)dµz =

∫

Γ\H

∑

τ∈CΓ(γ)\Γ
k(τz, γτz)dµz

=

∫

CΓ(γ)\H

k(z, γz)dµ(z).

Observe that this expression depends only on τ and not on γ itself. It is simple because

CΓ(γ) is simple, and the fundamental domain of CΓ(γ) in H is well-understood. Each element

in G is conjugate to either N , A or K, where

N =

{(
1 x
0 1

)
: x ∈ R

}
,

A =

{(
a

a−1

)
: a > 0

}
,

K =

{(
cos θ sin θ
− sin θ cos θ

)
: θ ∈ R

}
.

If γ 6= I, CΓ(γ) ⊆ {stabilizer in Γ of the fixed points of γ ∈ Ĉ}, the stabilizer is a cyclic
group.
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The fundamental domain CΓ(γ)\H is as simple as a vertical strip, a horizontal strip or a

sector in H, after γ is brought to N , A, K, respectively, by conjugation, we have following
pictures

Figure 1

Since Γ is co-compact, it does not contain parabolic elements, so only the last two possi-

bilities can occur.

Computing the trace for the identity motion.

For C = 1, we have K̃C(z) = k(z, z) and

∫

Γ\H

K̃C(z)dµz =

∫

Γ\H

k(z, z)dµz = k(0)area(Γ\H),

where

k(0) =
1

4π

∫ +∞

−∞
r tanh(πr)h(r)dr.

We would like to have an identity involving g, h (Fourier transform of each other).

Computing the trace for hyperbolic classes.

Now we compute in the case: γ is hyperbolic.

We denote the primitive hyperbolic conjugacy classes in Γ by P , which correspond to closed

geodesics. Let C = P l, choose γ = γl
P , l ∈ Z and γP ∈ P is primitive(γP generates the

stabilizer in Γ of its fixed points in Ĉ). Then CΓ(γ) = CΓ(γP ). By conjugation, γp ∼(√
p √

p−1

)
. Then log p is the hyperbolic distance of i to pi, thus also the distance of z

to γPz for any z on the geodesic joining the fixed points of γP . This geodesic closes on the

surface Γ\H. The length of the geodesic in Γ\H =
log p

winding ♯
. Its fundamental domain is

the horizontal strip 1 < y < p. Hence we get

∫

CΓ(γ)\H

k(z, γz)dµ(z) =

∫ p

1

∫ +∞

−∞
k(z, plz)dµ(z)
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for γ =

(√
p l

√
p −l

)
. Putting 2d = |pl/2 − p−l/2|(d = sinh pl/2), we continue the compu-

tation as follows:
∫ p

1

∫ +∞

−∞
k(z, plz)dµ(z) =

∫ p

1

∫ +∞

−∞
k

((
d|z|
y

)2
)

dxdy

y2

x 7→xy
===

∫ p

1

dy

y

∫ +∞

−∞
k(d2(x2 + 1))dx

u=d2(x2+1)
======

log p

d

∫ +∞

d2

k(u)√
u − d2

du =
log p

d
q(d2)

=
log p

2d
g
(
2 log(

√
d2 + 1 + d)

)
=

log p

2d
g(l log p)

= |pl/2 − p−l/2|−1g(l log p) log p.

If Γ has no torsion, then we have done. Otherwise, there are finitely many elliptic conjugacy

classes.
Computing the trace for elliptic classes.

Denote by R a primitive elliptic conjugacy class (rotation with minimum angle) in Γ of

order m. Any elliptic class having the same fixed points as R is C = Rl with 0 < l < m.

Conjugating R in G, we can assume the representative to be k(θ), this acts as a rotation of

angle 2θ around i, where θ = π
m

. Since it generates the centralizer, i. e. 〈k(θ)〉 = CΓ(γ), the

fundamental domain S of that centralizer is a hyperbolic sector of angle 2θ.

Therefore,

our integral is =

∫

S
k
(
z, k(θl)z

)
dµ(z) =

1

m

∫

H

k
(
z, k(θl)z

)
dµ(z), (0.2)

because it takes m images of S to cover H exactly (except for a zero measure set).

We shall continue computation using geodesic polar coordinates z = k(ϕ)e−ri, where ϕ

ranges over [0, π) and r over [0, +∞). Since k(ϕ) commutes with k(θl), we get

k
(
k(ϕ)z, k(θl)k(ϕ)z

)
= k

(
z, k(θl)z

)
,

which is a function depends only on variable r. (0.2) becomes

π

m

∫ ∞

0

k
(
e−ri, k(θl)e−ri

)
(2 sinh r)dr.

By u
(
z, k(θ)z

)
=

|z2 + 1|2 sin2 θ
(2y)2 = (sinh r sin θ)2 if z = e−ri, we get

TrL =
π

m

∫ ∞

0

k
(
(sinh r sin θl)2

)
(2 sinh r)dr

u=sinh r sin θl
========

π

m sin θl

∫ ∞

0

k(u)du√
u2 + sin2 θl

.
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Let σ = sin θl, we get
∫ ∞

0

k(u)du√
u2 + σ2

integration by parts
========== −1

π

∫ ∞

0

q′(v)

∫ v

0

1√
(v − u)(u2 + σ2)

dudv

linear change of variable in u
============== −1

π

∫ ∞

0

q′(v)

∫ v/(v+σ2)

0

du√
u(1 − u)

dv

integration by parts
==========

σ

π

∫ ∞

0

q(v)
du

(v + σ2)
√

v
dv

by changing v=sinh2(r/2)
============

σ

2π

∫ ∞

0

g(r) cosh(r/2)

sinh2(r/2) + σ2
dr,

in which

q(v) =

∫ ∞

v

k(u)du√
v − u

,

and

g(r) = 2q
(
sinh(r/2)2

)
.

For σ = sin α > 0 this yields
∫ ∞

0

k(u)du√
u2 + sin α2

=
sin α

π

∫ ∞

0

g(r) cosh(r/2)

cosh r − cos 2α
dr,

where α = πl
m

.

If one wants to have an expression in terms of h rather than g, we use
∫ ∞

0

g(r)f(r)dr =

∫ ∞

0

h(r)f̂(r)dr.

So we need to compute Fourier transform of f .

Ex. 1 The Fourier transform of f is

1

2 sin α

cosh(π − 2α)r

cosh πr
.

By Ex 1 we get

TrL =
1

2m sin(πl/m)

∫ +∞

−∞
h(r)

cosh π(1 − 2l/m)r

cosh πr
dr.

This finishes the story for the co-compact case, now uniform case (Γ = SL2(Z)). There

are several problems:

(1) L (as in the integral operator) with kernel k(z, w) is not of trace class.

(2)
∫
Γ\H

K(z, z)dµ(z) does not converge.

(3) One has continuous spectrum. Need regularization.

Naive way ∫

F(T )

K(z, z)dµ(z)
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It turns out that it is

A log T + B + o(1), as T → ∞.

Use truncation, for any ϕ on H

ΛT ϕ = ϕ −
∑

γ∈Γ∞\Γ
ϕp(Imγz)χ>T (Imγz),

where ΛT ϕ is Γ-invariant, and χ>T is the character function of (T,∞).

For z ∈ F ,

ΛT
z ϕ(z) =

{
ϕ(z), Imz ≤ T,
ϕ(z) − ϕP (y), Imz > T,

We will compute
∫

Γ\H

ΛT
z K(z, w)

∣∣∣
w=z

dµ(z),

denote the integrated function by KT (z).

Spectral side: Starting point

K(z, w) =
∑

h(tj)uj(z)uj(w) +
1

4π

∫ +∞

−∞
h(r)E(z;

1

2
+ ir)E(w,

1

2
+ ir)dr,

where u0 = 1√
area(Γ\H)

, uj are cusp forms, j > 0, and λj = 1
4

+ t2j , t0 = i
2
.

∫

Γ\H

KT (z)dµ(z) = h(
i

2
)
area(F(T ))

area(Γ\H)
+

∞∑

j=1

h(tj)

+
1

4π

∫ +∞

−∞
h(r) ‖ ΛT E(z;

1

2
+ it) ‖2,

where ΛT uj = uj for j > 0.

Ex 2. Prove

ΛT 1 = χF(T )

Ex 3. Prove

(ΛT ϕ1, ϕ2) = (ϕ1, Λ
Tϕ2)

By Maass-Selberg relations,

‖ ΛTE(z;
1

2
+ it) ‖2= 2 log T − φ′

φ
(
1

2
+ ir) +

φ(1
2
− ir)T 2ir − φ(1

2
+ ir)T−2ir

2ir
,

where

φ(s) =
ζ∗(2s − 1)

ζ∗(2s)
.
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Hence we need to compute

1

4π

∫ +∞

−∞
h(r)

φ(1
2
− ir)T 2ir − φ(1

2
+ ir)T−2ir

2ir
dr

=
1

4πi

∫ +∞

−∞
h(r)

φ(1
2
− ir)T 2ir − φ(1

2
)

r
dr

=
1

4πi

∫ +∞

−∞
h(r)

φ(1
2
− ir) − φ(1

2
)

2ir
T 2irdr

− 1

4πi
φ(

1

2
)

∫ +∞

−∞
h(r)

T 2ir−1

r
dr

=
1

4πi

∫ +∞

−∞
h(r)

φ(1
2
− ir) − φ(1

2
)

2ir
T 2irdr

− 1

4πi
φ(

1

2
)

∫ 2 log T

−2 log T

h(r)dr

by giving and taking back φ(1
2
) and then using symmetry h(r) = h(−r).

The first summand is the Fourier transform of a L1-function at log T , it tends to 0 as

T → ∞. The second term tends to 1
4
h(0)φ(1

2
) as T → ∞.

Finally, summating h(tj) over the discrete spectrum as well as integrating other parts

against h(r), we conclude the following for the truncated trace:

∞∑

j=1

h(tj) −
1

4π

∫ +∞

−∞

φ′

φ
(
1

2
+ ir)h(r)dr

+
1

4
h(0)φ(

1

2
) + g(0) logT + o(1).

Remark. This formula is exact for large T . In our case, φ(1
2
) = −1.

What about the geometric side? Only parabolic case has to be modified, hyperbolic and

elliptic cases are the same as before. We will see the effect of truncation. Consider the

parabolic element

γ =

(
1 l
0 1

)
, l ∈ Z, l 6= 0.

Then we have

TrT KC =

∫

Γ∞\Imz≤T

∑

l 6=0

k(z; z + l)dµ(z) + O(1). (0.3)
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And

∑

l 6=0

∫ 1

0

∫ T

0

k(z; z + l)dµ(z) =
∑

l 6=0

∫ T

0

k
(( l

2k

))dy

y2

=
∑

l 6=0

|l|−1

∫ +∞

(l/2T )2
k(u)

du√
u

= 2

∫ +∞

(2T )−2

k(u)
∑

1≤l<2T
√

u

1

l

du√
u
.

Since
∑

1≤l≤x

1

l
= γ + log x + O(

1

x
),

where γ is the Euler constant.

We have

2

∫ +∞

(2T )−2

k(u)
(

log 2T
√

u + γ + O
( 1

T
√

u

)) du√
u

= 2

∫ ∞

0

k(u)
(

log 2T
√

u + γ
) du√

u
+ O(1)

= g(0)(log 2T + γ) +

∫ ∞

0

k(u) logu
du√

u
,

where the first term is obtained by

∫ ∞

0

k(u)
du√

u
= g(0) = q(0).

For the second term, we have
∫ ∞

0

k(u) log u
du√

u
= −1

π

∫ ∞

0

q′(v)

∫ v

0

log u√
u(v − u)

dudv

= −1

π

∫ ∞

0

∫ 1

0

q′(v)
log uv√
u(1 − u)

dudv

=
1

π
q(0)

∫ 1

0

log u√
u(1 − u)

du − 1

π

∫ 1

0

du√
u(1 − u)

∫ ∞

0

log vq′(v)dv.

In the last line, the first integral is −2π log 2, the second is π, and the third is

∫ ∞

0

log vq′(v)dv =

∫ ∞

0

g′(r) log
(
sinh

r

2

)
dr,

upon changing v to (sinh(r/2))2. Collecting the above together, we get

g(0)(log 2T + γ) −
∫ ∞

0

g′(r) log
(
sinh

r

2

)
dr.
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If one prefers to have an expression in terms of h, we apply the formula∫ ∞

0

g′(r) log
(
sinh

r

2

)
dr = g(0)(γ + log 2) − 1

4
h(0)

+
1

2π

∫ +∞

−∞
h(t)

Γ′

Γ
(s)dt.

For the proof we write

g′(r) = − 1

2πi

∫

Imt=ε

eirth(t)tdt

and apply

t

∫ ∞

0

log
(
sinh

r

2

)
dr = γ + log 2 +

1

2it
+

Γ′

Γ
(1 − it).

Combining altogether, we obtain

g(0)(γ + log 2) +
1

4
h(0) − 1

2π

∫ +∞

−∞
h(t)

Γ′

Γ
(s)dt.
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