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§8 Automorphic representations for GL2(A) (Mar. 23)

Recall the GL1 theory. Tate did the following.

(1) For Grossencharacter χ =
∏

v χv, where χv is unramified for almost all v, the corre-
sponding L-function is

L(s, χ) =
∏
v

L(s, χv).

(2) The local zeta function Z(s, fv, χv) has analytic continuation, i.e.

Z(1− s, f̂v, χ
−1
v )

Z(s, fv, χv)
= γ(s, χv, ψv),

where γ(s, χv, ψv) is independent the choice of fv.
(3) The local L function satisfies

γ(s, χv, ψv) = ε(s, χv, ψv)
L(1− s, χ−1

v )
L(s, χv)

,

and

L(s, χv) = P (s, fv, χv)Z(s, fv, χv),

where P (s, fv, χv) is non-zero.
(4) The global zeta function satisfies

Z(s, f, χ) = Z(1− s, f̂ , χ−1),

and the global L function has functional equation

1 = ε(s, χ)
L(1− s, χ−1)

L(s, χ)
.

Following Tate, Jacquet-Langlands succeeded in replacing Grossencharacter χ =
∏

v χv by
automorphic cuspidal representation π =

⊗
v πv. Indeed, they did this as follows.

(1) Form an automorphic representation π =
⊗

v πv.
(2) Let Wv be a Whittaker function of GL2(Fv). The local zeta function Z(s,Wv, gv) con-

verges in some half-plane, and

Z(1− s,Wv, ωgv)
Z(s,Wv, gv)

has analytic continuation to all of s, where ω =
(

0 1
−1 0

)
.
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(3) Construct the local L-function associated to πv, and show that

Z(1− s,Wv, ωgv)
Z(s,Wv, gv)

= εv(s)
L(1− s, ψ−1

v πv)
L(s, πv)

,

where εv(s) is independent of Wv. Moreover, they proved

Z(g, Wv, s)
L(s, πv)

is almost entire. In fact, by choosing some W 0
v for unramified v, they did show

L(s, πv) = Z(s,W 0
v , 1).

(4) The global zeta function satisfies

Z(s,W, g) =
∏
v

Z(s,Wv, gv) = Z(1− s,W, ωg).

(5) According to (4), they proved that π =
⊗

v πv is an automorphic cuspidal representation,
i.e. an irreducible unitary representation occurring in L2

0(ZAGF \GA, ψ), if and only if
its L function satisfies a simple analytic continuation and functional equation, i.e.

L(s, π) =
∏
v

L(s, πv) = ε(s)L(1− s, ψ−1 × π),

where ε(s) =
∏

v εv(s).

The hardest part of Jacquet-Langlands theory is to construct automorphic representation π.
It is generally non-trivial to write π as tensor product of πv over all v, where πv is infinite
dimensional representation of GL2(Fv) = GL2(Qp). In order to do this, we need to classify all
the irreducible representation of GQp = GL2(Qp).

1. Representations For Local Case

Case: Archimedean.

For G = GL2(R) = G∞ and K = O(2,R), denote U(g) as the universal enveloping algebra of
Lie algebra g of G. Let

H (g) = U(g)
⊕ (

1 0
0 −1

)
U(g).

We consider H (g) instead of U(g) because K = O(2,R) is not connected.
For V be a C-vector space, a representation π : H (g) → GL(V ) is called “nice”, if the

restriction of π to Lie algebra of K∞ has form

π
∣∣
Lie(K∞) =

⊕
σ

σl,

where σ is finite dimensional irreducible representation of Lie(K∞) with multiplicity l < ∞. By
describing all possible irreducible “nice” representations of H (g), Harish-Chandra showed that
representations which are “nice” and irreducible are a sub-set of the following space.

Let H(µ1, µ2) be the space of functions ϕ(g) on GL2(R) which are right K∞-finite and satisfy

ϕ

((
t1 ∗
0 t2

)
g

)
= µ1(t1)µ2(t2)

∣∣∣∣
t1
t2

∣∣∣∣
1
2

ϕ(g).
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Here µ1 and µ2 are characters (not necessarily unitary) of R×, given by

µ1(t) = sgn(t)ε1 |t|s1 , µ2(t) = sgn(t)ε2 |t|s2

where ε1, ε2 ∈ {0, 1} and satisfy
ε1 + ε2 ≡ ε mod 2.

It is easy to check that H(µ1, µ2) has a basis of functions {ϕn}n≡ε mod 2 given by

ϕn(g) = µ1(t1)µ2(t2)
∣∣∣∣
t1
t2

∣∣∣∣
1
2

e−inθ, for g =
(

t1 ∗
0 t2

)(
cos θ sin θ
− sin θ cos θ

)
.

Let π(µ1, µ2) be the representation of G acting on H(µ1, µ2) by right translation. We have

Theorem 8.1. Below are the infinite dimensional irreducible nice representations of G =
GL2(R).

(1) π(µ1, µ2) is irreducible nice representation, if

µ1µ
−1
2 (t) 6= |t|psgn(t)ε, for some p ∈ Z.

(2) If µ1µ
−1
2 (t) = |t|psgn(t)ε, for some 0 < p ∈ Z and p ≡ ε mod 2, then π(µ1, µ2) is not

irreducible. However, it contains exactly one irreducible sub-representation generated by
functions

{· · · , ϕ−p−3, ϕ−p−1, ϕp+1, ϕp+3, · · · }. (8.1)

(3) Duality, if µ1µ
−1
2 (t) = |t|psgn(t)ε, for some 0 > p ∈ Z and p ≡ ε mod 2, then π(µ1, µ2)

contains exactly one irreducible quotient representation generated by functions in (8.1).

Case: Non-Archimedean.

For p < ∞, denote G = GL2(Qp). We know K = GL2(Zp) is a maximal compact open
subgroup. Let B = NA, where

N =
{(

1 x
0 1

)
, x ∈ Qp

}
, A =

{(
y 0
0 1

)
, y ∈ Q×p

}
.

Analogy to the case GL2(R), a representation π of GL2(Qp) is called “nice”, if

π
∣∣
Lie(K) =

⊕
σl,

where σ is an irreducible representation of Lie(K) with multiplicity l < ∞. Similarly, H(µ1, µ2)
is defined as the space generated by locally constant functions ϕ which satisfy

ϕ

((
t1 ∗
0 t2

)
g

)
= µ1(t1)µ2(t2)

∣∣∣∣
t1
t2

∣∣∣∣
1
2

p

ϕ(g),

where µ1 and µ2 are quasi-characters of Q×p . Denote π(µ1, µ2) as the representation of G acting
on H(µ1, µ2) through right translation.

Theorem 8.2 (Jacquet-Langlands). We have
(1) π(µ1, µ2) is irreducible and nice unless µ1µ

−1
2 (t) = |t| or |t|−1. In this case, it is called

a principle series representation.
(2) If µ1µ

−1
2 (t) = |t|, π(µ1, µ2) contains exactly one co-dimensional one sub-representation,

called a special representation.
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(3) Duality, if µ1µ
−1
2 (t) = |t|−1, π(µ1, µ2) contains exactly one quotient-representation.

The above theorem explains that some of the irreducible nice representations are induced
from the irreducible one dimensional representations of subgroup B. In fact, there exist other
irreducible “nice” representations which are not accounted for by the induced representations.

Definition 8.3. Suppose (π, V ) is an irreducible nice representation of G. Denote

V (π, N) = {v ∈ V :
∫

U
π(n)vdn = 0, for some open compact subgroup U of N}.

π is called supercuspidal if V (π, N) = V .

Proposition 8.4. Supercuspidal representations do exist. All the irreducible nice representa-
tions of G can be classified as principle, special and supercuspidal.

Now we have the classification of all infinite dimensional irreducible “nice” representations of
GL2(Qp). Recall the Grossencharacter ψ =

∏
v ψv, where ψv is unramified for all but finite many

v. Analogy to GL1 theory, we need to define “unramified” for the irreducible nice representation
of GL2(Qp).

Definition 8.5. An irreducible nice representation π of G is called class 1 or spherical if its
restriction to K contains the identity representation at least one.

Theorem 8.6. An irreducible nice representation π of G is class 1 if and only if π = π(µ1, µ2)
is principle, and µi are unramified characters of Q×p . In this case the identity representation is
contained exactly once in π.

Next, we need to consider the relation between irreducible “nice” representation and irre-
ducible unitary representation of G. We omit details here, but give the result in the following
theorem.

Theorem 8.7. The only unitary representations which are irreducible and “nice” are
(1) The principle series with µ1 and µ2 unitary, called continuous series.
(2) The principle series with µ1µ

−1
2 (t) = |t|s, where −1 < s < 1, called complementary

series.
(3) The special representation π is unitary, if the restriction of π to the center of G is

unitary.
(4) The supercuspidal representation π is unitary, if the restriction of π to the center of G

is unitary.

2. Representations For Global Case.

Now we define the representation π of GA as tensor product of πp for all p ≤ ∞ by the
following steps.

(1) For every p, we give an irreducible nice representation πp, where πp is class one for almost
every p.

(2) For πp of class one, we choose ξ0
p as a function which generates the 1-dimensional trivial

subspaces of Kp.
(3) Let S0 be the set of places containing Archimedean places and places corresponding to

non-class one representations. Then |S0| is finite.
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(4) For any S ⊃ S0, set HS =
⊗

p∈S Hp. For each S′ ⊃ S, we have the map from HS to HS′

defined by
ξ 7→ ξ × (

⊗

p∈S′\S
ξ0
p).

It implies that we have a directed system {HS , S} and can take the inductive limit

H = lim→
S

HS =
⊗

p

Hp,

where if ξ = (ξp) ∈
⊗

p Hp, ξp = ξ0
p for all but finite many p.

(5) Replacing H by its Hilbert completion space, we can define the unitary representation
π =

⊗
p πp of GA as following. For g = (gp) ∈ GA, gp ∈ Kp for almost all p. Since

π =
⊗

p πp where πp is class one for almost all p. Given any ξ = (ξp), ξp = ξ0
p for almost

all p, we define
π(g)ξ =

⊗
p

πp(gp)ξp,

It is easy to check that πp(gp)ξ0
p = ξ0

p for almost all p.
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