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Selberg’s trace formula: an introduction

Jens Marklof

School of Mathematics, University of Bristol, Bristol BS8 1TW, U.K.
j.marklof@bristol.ac.uk

The aim of this short lecture course is to develop Selberg’s trace formula for
a compact hyperbolic surface M, and discuss some of its applications. The
main motivation for our studies is quantum chaos: the Laplace-Beltrami oper-
ator −∆ on the surface M represents the quantum Hamiltonian of a particle,
whose classical dynamics is governed by the (strongly chaotic) geodesic flow
on the unit tangent bundle of M. The trace formula is currently the only avail-
able tool to analyze the fine structure of the spectrum of −∆; no individual
formulas for its eigenvalues are known. In the case of more general quan-
tum systems, the role of Selberg’s formula is taken over by the semiclassical
Gutzwiller trace formula [10], [7].

We begin by reviewing the trace formulas for the simplest compact man-
ifolds, the circle S

1 (Section 1) and the sphere S
2 (Section 2). In both cases,

the corresponding geodesic flow is integrable, and the trace formula is a con-
sequence of the Poisson summation formula. In the remaining sections we
shall discuss the following topics: the Laplacian on the hyperbolic plane and
isometries (Section 3); Green’s functions (Section 4); Selberg’s point pair in-
variants (Section 5); The ghost of the sphere (Section 6); Linear operators on
hyperbolic surfaces (Section 7); A trace formula for hyperbolic cylinders and
poles of the scattering matrix (Section 8); Back to general hyperbolic surfaces
(Section 9); The spectrum of a compact surface, Selberg’s pre-trace and trace
formulas (Section 10); Heat kernel and Weyl’s law (Section 11); Density of
closed geodesics (Section 12); Trace of the resolvent (Section 13); Selberg’s
zeta function (Section 14); Suggestions for exercises and further reading (Sec-
tion 15).

Our main references are Hejhal’s classic lecture notes [12, Chapters one

and two], Balazs and Voros’ excellent introduction [1], and Cartier and Voros’
nouvelle interprétation [6]. Section 15 comprises a list of references for further
reading.

These notes are based on lectures given at the International School Quan-
tum Chaos on Hyperbolic Manifolds, Schloss Reisensburg (Günzburg, Ger-
many), 4-11 October 2003.

http://arxiv.org/abs/math/0407288v1
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1 Poisson summation

The Poisson summation formula reads

∑

m∈Z

h(m) =
∑

n∈Z

∫

R

h(ρ) e2πınρ dρ (1)

for any sufficiently nice test function h : R → C. One may for instance take
h ∈ C2(R) with |h(ρ)| ≪ (1 + |ρ|)−1−δ for some δ > 0. (The notation x ≪ y
means here there exists a constant C > 0 such that x ≤ Cy.) Then both sums
in (1) converge absolutely. (1) is proved by expanding the periodic function

f(ρ) =
∑

m∈Z

h(ρ+m) (2)

in its Fourier series, and then setting ρ = 0.
The Poisson summation formula is our first example of a trace formula:

The eigenvalues of the positive Laplacian −∆ = − d2

dx2 on the circle S1 of
length 2π are m2 where m = 0,±1,±2, . . ., with corresponding eigenfunctions
ϕm(x) = (2π)−1/2eımx. Consider the linear operator L acting on 2π-periodic
functions by

[Lf ](x) :=

∫ 2π

0

k(x, y)f(y) dy (3)

with kernel
k(x, y) =

∑

m∈Z

h(m)ϕm(x)ϕm(y). (4)

Then
Lϕm = h(m)ϕm (5)

and hence the Poisson summation formula says that

TrL =
∑

m∈Z

h(m) =
∑

n∈Z

∫

R

h(ρ) e2πınρ dρ. (6)

The right hand side in turn has a geometric interpretation as a sum over the
periodic orbits of the geodesic flow on S1, whose lengths are 2π|n|, n ∈ Z.

An important example for a linear operator of the above type is the re-
solvent of the Laplacian, (∆ + ρ2)−1, with Im ρ < 0. The corresponding test

function is h(ρ′) = (ρ2 − ρ′
2
)−1. Poisson summation yields in this case

∑

m∈Z

(ρ2 −m2)−1 =
∑

n∈Z

∫

R

e−2πı|n|ρ′

ρ2 − ρ′2
dρ′ (7)

and by shifting the contour to −ı∞ and collecting the residue at ρ′ = ρ,
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ρ

−ρ

Reρ

Im ρ

’

’

we find ∑

m∈Z

(ρ2 −m2)−1 =
πı

ρ

∑

n∈Z

e−2πı|n|ρ. (8)

The right hand side resembles the geometric series expansion of cot z for
Im z < 0,

cot z =
2ıe−ız cos z

1 − e−2ız
= ı(1 + e−2ız)

∞∑

n=0

e−2ınz = ı
∑

n∈Z

e−2ı|n|z. (9)

Hence ∑

m∈Z

(ρ2 −m2)−1 =
π

ρ
cot(πρ), (10)

which can also be written in the form

1

2

∑

m∈Z

[
1

ρ−m
+

1

ρ+m

]
= π cot(πρ), (11)

The above h is an example of a test function with particularly useful analytical
properties. More generally, suppose

(i) h is analytic for | Im ρ| ≤ σ for some σ > 0;
(ii) |h(ρ)| ≪ (1 + |Re ρ|)−1−δ for some δ > 0, uniformly for all ρ in the strip

| Im ρ| ≤ σ.

Theorem 1. If h satisfies (i), (ii), then

∑

m∈Z

h(m) =
1

2ı

∫

C=

h(ρ) cot(πρ) dρ (12)

where the path of integration C= is

σ

σ Reρ

Im ρ



4 Jens Marklof

Proof. The Poisson summation formula (1) may be written in the form

∑

m∈Z

h(m) =
1

2

∑

n∈Z

∫

R

[h(ρ) + h(−ρ)] e−2πı|n|ρ dρ. (13)

We shift the contour of the integral to
∫∞−ıσ

−∞−ıσ
. The geometric series expansion

of cot z in (9) converges absolutely, uniformly for all z with fixed negative
imaginary part. We may therefore exchange summation and integration,

∑

m∈Z

h(m) =
1

2ı

∫ ∞−ıσ

−∞−ıσ

[h(ρ) + h(−ρ)] cot(πρ) dρ. (14)

We conclude with the observation that

1

2ı

∫ ∞−ıσ

−∞−ıσ

h(−ρ) cot(πρ) dρ =
1

2ı

∫ −∞+ıσ

∞+ıσ

h(ρ) cot(πρ) dρ (15)

since cot z is odd. ⊓⊔

Remark 1. This theorem can of course also be proved by shifting the lower
contour in (12) across the poles to the upper contour, and evaluating the
corresponding residues.

2 A trace formula for the sphere

The Laplacian on the sphere S2 is given by

∆ =
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂φ2
(16)

where θ ∈ [0, π), φ ∈ [0, 2π) are the standard spherical coordinates. The
eigenvalue problem

(∆+ λ)f = 0 (17)

is solved by the spherical harmonics f = Y ml for integers l = 0, 1, 2, . . .,
m = 0,±1,±2, . . . ,±l, where

Y ml (θ, φ) = (−1)m
[

(2l + 1)

4π

(l −m)!

(l +m)!

]1/2
Pml (cos θ) eımφ (18)

and Pml denotes the associated Legendre function of the first kind. The eigen-
value corresponding to Y ml is λ = l(l+1), and hence appears with multiplicity
2l+ 1. Let us label all eigenvalues (counting multiplicity) by

0 = λ0 < λ1 ≤ λ2 ≤ . . .→ ∞, (19)



Selberg’s trace formula: an introduction 5

and set ρj =
√
λj + 1

4 > 0. For any test function h ∈ C2(R) with the bound

|h(ρ)| ≪ (1 + |Re ρ|)−2−δ for some δ > 0 (assume this bound also holds for
the first and second derivative) we have

∞∑

j=0

h(ρj) =
∞∑

l=0

(2l + 1)h(l+ 1
2 ) (20)

=
∞∑

l=−∞

|l + 1
2 |h(l + 1

2 ) (21)

=

∞∑

n=−∞

∫

R

|l + 1
2 |h(l + 1

2 )e2πılndl (22)

= 2
∑

n∈Z

(−1)n
∫ ∞

0

ρ h(ρ) cos(2πnρ) dρ, (23)

in view of the Poisson summation formula. We used the test function |ρ|h(ρ)
which is not continuously differentiable at ρ = 0. This is not a problem, since
we check that (using integration by parts twice)

∫ ∞

0

ρ h(ρ) cos(2πnρ) dρ = O(n−2) (24)

hence all sums are absolutely convergent. With Area(S2) = 4π, it is suggestive
to write the trace formula (23) for the sphere in the form

∞∑

j=0

h(ρj) =
Area(S2)

4π

∫

R

|ρ|h(ρ) dρ+
∑

n6=0

(−1)n
∫

R

|ρ|h(ρ) e2πınρ dρ. (25)

As in the trace formula for the circle, the sum on the right hand side may
again be viewed as a sum over the closed geodesics of the sphere which, of
course, all have lengths 2π|n|. The factor (−1)n accounts for the number of
conjugate points traversed by the corresponding orbit.

The sum in (23) resembles the geometric series expansion for tan z for
Im z < 0,

tan z = − cot(z + π/2) = −ı
∑

n∈Z

(−1)ne−2ı|n|z. (26)

As remarked earlier, the sum converges uniformly for all z with fixed Im z < 0.
We have in fact the uniform bound

∑

n∈Z

∣∣∣(−1)ne−2ı|n|z
∣∣∣ ≤ 1+2

∞∑

n=1

e2n Im z ≤ 1+2

∫ ∞

0

e2x Im z dx = 1− 1

Im z
(27)

which holds for all z with Im z < 0.
Let us use this identity to rewrite the trace formula. Assume h satisfies

the following hypotheses.
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(i) h is analytic for | Im ρ| ≤ σ for some σ > 0;
(ii) h is even, i.e., h(−ρ) = h(ρ);
(iii) |h(ρ)| ≪ (1 + |Re ρ|)−2−δ for some δ > 0, uniformly for all ρ in the strip

| Im ρ| ≤ σ.

Theorem 2. If h satisfies (i), (ii), (iii), then

∞∑

j=0

h(ρj) = − 1

2ı

∫

C×

h(ρ) ρ tan(πρ) dρ, (28)

with the path of integration

σ

σ Reρ

Im ρ

Proof. We express (23) in the form

∑

n∈Z

(−1)n
∫ ∞

0

ρ h(ρ) e2πı|n|ρ dρ+
∑

n∈Z

(−1)n
∫ ∞

0

ρ h(ρ) e−2πı|n|ρ dρ. (29)

which equals

−
∑

n∈Z

(−1)n
∫ 0

−∞

ρ h(ρ) e−2πı|n|ρ dρ+
∑

n∈Z

(−1)n
∫ ∞

0

ρ h(ρ) e−2πı|n|ρ dρ. (30)

Let us first consider the second integral. We change the path of integration to
C1:

σ

σ

CC

-C

1

1

2

Im ρ

Reρ

Due to the uniform bound (27) and

∫

C1

∣∣ρ h(ρ)[1 − (2π Im ρ)−1] dρ
∣∣ <∞ (31)

we may exchange integration and summation, and hence the second integral
in (30) evaluates to
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∑

n∈Z

(−1)n
∫ ∞

0

ρ h(ρ) e−2πı|n|ρ dρ = ı

∫

C1

h(ρ) ρ tan(πρ) dρ (32)

The first integral in (30) is analogous, we have

−
∑

n∈Z

(−1)n
∫ 0

−∞

ρ h(ρ) e−2πı|n|ρ dρ = −ı

∫

C2

h(ρ) ρ tan(πρ) dρ (33)

= ı

∫

C−1

2

h(ρ) ρ tan(πρ) dρ. (34)

The final result is obtained by reflecting these paths at the origin, using the
fact that h is even. ⊓⊔

Remark 2. The poles of tan z and corresponding residues can be easily worked
out from (11),

π tan(πρ) = −π cot
[
π(ρ+ 1

2 )
]

(35)

= −1

2

∞∑

l=−∞

[
1

ρ− (l − 1
2 )

+
1

ρ+ (l + 1
2 )

]
(36)

= −1

2

∞∑

l=−∞

[
1

ρ+ (l + 1
2 )

+
1

ρ− (l + 1
2 )

]
(37)

(the sum has not been reordered, we have simply shifted the bracket)

= −
∞∑

l=0

[
1

ρ+ (l + 1
2 )

+
1

ρ− (l + 1
2 )

]
. (38)

Note that the extra factor ρ in the integral (28), as compared to Theorem 1,
yields the multiplicity of the eigenvalues of the sphere.

3 The hyperbolic plane

In this section we briefly summarize some basic features of hyperbolic geom-
etry; for a detailed discussion see Buser’s lecture notes [5].

The hyperbolic plane H
2 may be abstractly defined as the connected, sim-

ply connected two-dimensional Riemannian manifold with Gaussian curvature
−1. Let us introduce three convenient coordinate systems for H2: the Poincare
disk D = {z : |z| < 1}, the upper half plane H = {z : Im z > 0} and polar co-
ordinates (τ, φ) ∈ R≥0×[0, 2π). In these parametrizations, the line element ds,
volume element dµ and the Riemannian distance d(z, z′) between two points
z, z′ ∈ H2 are as follows.
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H2 ds2 dµ coshd(z, z′)

D
4(dx2 + dy2)

(1 − x2 − y2)2
4 dx dy

(1 − x2 − y2)2
1 +

2|z − z′|2
(1 − |z|)2(1 − |z′|)2

H
dx2 + dy2

y2

dx dy

y2
1 +

|z − z′|2
2 Im z Im z′

polar dτ2 + sinh2 τ dφ2 sinh τ dτ dφ cosh τ [for z = (τ, φ), z′ = (0, 0)]

The group of isometries of H2, denoted by Isom(H2), is the group of smooth
coordinate transformations which leave the Riemannian metric invariant. The
group of orientation preserving isometries is called Isom+(H2). We define the
length of an isometry g ∈ Isom(H2) by

ℓg = ℓ(g) = inf
z∈H2

d(gz, z). (39)

Those g ∈ Isom+(H2) for which ℓ > 0 are called hyperbolic. In the half plane
model, Isom+(H2) acts by fractional linear transformations,

g : H → H, z 7→ gz :=
az + b

cz + d
,

(
a b
c d

)
∈ SL(2,R) (40)

(we only consider orientation-preserving isometries here). We may therefore
identify g with a matrix in SL(2,R), where the matrices g and −g obviously
correspond to the same fractional linear transformation. Isom+(H2) may thus
be identified with the group PSL(2,R) = SL(2,R)/{±1}. In this representa-
tion,

2 cosh
(
ℓg/2

)
= max{| tr g|, 2}, (41)

since every matrix g ∈ SL(2,R) is conjugate to one of the following three,

(
1 b
0 1

)
,

(
a 0
0 a−1

)
,

(
cos(θ/2) sin(θ/2)
− sin(θ/2) cos(θ/2)

)
, (42)

with b ∈ R, a ∈ R>0, θ ∈ [0, 2π).
The Laplace-Beltrami operator (or Laplacian for short) ∆ of a smooth

Riemannian manifold with metric

ds2 =
∑

ij

gjkdx
jdxk (43)

is given by the formula

∆ =
∑

ij

1√
g

∂

∂xj

(√
g gjk

∂

∂xk

)
(44)

where gjk are the matrix coefficients of the the inverse of the matrix (gjk),
and g = | det(gjk)|. In the above coordinate systems for H2 the Laplacian
takes the following form.
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H2 ∆

D
(1 − x2 − y2)2

4

(
∂2

∂x2
+

∂2

∂y2

)

H y2

(
∂2

∂x2
+

∂2

∂y2

)

polar
1

sinh τ

∂

∂τ

(
sinh τ

∂

∂τ

)
+

1

sinh2 τ

∂2

∂φ2

One of the important properties of the Laplacian is that it commutes with
every isometry g ∈ Isom(H2). That is,

∆Tg = Tg∆ ∀g ∈ Isom(H2). (45)

where the left translation operator Tg acting on functions f on H2 is defined
by

[Tgf ](z) = f(g−1z) (46)

with g ∈ Isom(H2). Even though (45) is an intrinsic property of the Lapla-
cian and is directly related to the invariance of the Riemannian metric under
isometries, it is a useful exercise to verify (45) explicitly. To this end note that
every isometry may be represented as a product of fractional linear transfor-
mations of the form z 7→ az (a > 0), z 7→ z + b (b ∈ R), z 7→ −1/z, z 7→ −z.
It is therefore sufficient to check (45) only for these four transformations.

4 Green’s functions

The Green’s function G(z, w;λ) corresponding to the differential equation
(∆ + λ)f(z) = 0 is formally defined as the integral kernel of the resolvent
(∆+ λ)−1, i.e., by the equation

(∆+ λ)−1f(z) =

∫
G(z, w;λ) f(w) dµ(w) (47)

for a suitable class of test functions f . A more precise characterization is as
follows:

(G1) G( · , w;λ) ∈ C∞(H2 − {w}) for every fixed w;
(G2) (∆+ λ)G(z, w;λ) = δ(z, w) for every fixed w;
(G3) as a function of (z, w), G(z, w;λ) depends on the distance d(z, w) only;
(G4) G(z, w;λ) → 0 as d(z, w) → ∞.

Here δ(z, w) is the Dirac distribution at w with respect to the measure dµ. It
is defined by the properties that

(D1) δ(z, w)dµ(z) is a probability measure on H2;
(D2)

∫
H2 f(z) δ(z, w) dµ(z) = f(w) for all f ∈ C(H2).
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E.g., in the disk coordinates z = x+ ıy, w = u+ ıv ∈ D we then have

δ(z, w) =
(1 − x2 − y2)2

4
δ(x− u) δ(y − v) (48)

where δ(x) is the usual Dirac distribution with respect to Lebesgue measure
on R. In polar coordinates, where w is taken as the origin, τ = d(z, w), and

δ(z, w) =
δ(τ)

2π sinh τ
. (49)

Property (G2) therefore says that (∆+ λ)G(z, w;λ) = 0 for z 6= w, and
∫

d(z,w)<ǫ

(∆+ λ)G(z, w;λ)dµ(z) = 1 ∀ǫ > 0. (50)

In view of (G3), there is a function f ∈ C∞(R>0) such that f(τ) = G(z, w;λ).
Then

1 =

∫

d(z,w)<ǫ

(∆+ λ)G(z, w;λ)dµ(z) (51)

= 2π

∫ ǫ

0

(
d

dτ

(
sinh τ

d

dτ

)
+ λ sinh τ

)
f(τ) dτ (52)

= 2π sinh ǫf ′(ǫ) + 2πλ

∫ ǫ

0

sinh τ f(τ) dτ. (53)

Taylor expansion around ǫ = 0 yields f ′(ǫ) = 1/(2πǫ) +O(1) and thus f(ǫ) =
(1/2π) log ǫ +O(1) as ǫ→ 0. Equation (G2) is therefore equivalent to

{
(∆+ λ)G(z, w;λ) = 0, d(z, w) > 0,

G(z, w;λ) = (1/2π) log d(z, w) +O(1), d(z, w) → 0.
(54)

Proposition 1. If ρ ∈ C with Im ρ < 1/2, and λ = ρ2 + 1
4 , then

G(z, w;λ) = − 1

2π
Q− 1

2
+ıρ

(
cosh d(z, w)

)
(55)

satisfies (G1)-(G4), where Qν is the Legendre function of the second kind.

Proof. With f(τ) = G(z, w;λ), (54) becomes

[
1

sinh τ

d

dτ

(
sinh τ

d

dτ

)
+ λ

]
f(τ) = 0. (56)

Set r = cosh τ , f̃(cosh τ) = f(τ), and λ = −ν(ν + 1), to obtain Legendre’s
differential equation

[
(1 − r2)

d2

dr2
− 2r

d

dr
+ ν(ν + 1)

]
f̃(r) = 0, (57)
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whose solutions are the associated Legendre functions Pν(r) and Qν(r). Qν
has the integral representation

Q− 1

2
+ıρ(cosh τ) =

1√
2

∫ ∞

τ

e−ıρt

√
cosh t− cosh τ

dt (58)

which converges absolutely for Im ρ < 1/2 and τ > 0. From this it is evident
that Q− 1

2
+ıρ(cosh τ) → 0 as τ → ∞ (see also Lemma 1 below), so (G4) holds.

For t→ 0 (ρ fixed) it has the asymptotics required in (54), cf. the well known
relation

Q− 1

2
+ıρ(cosh τ) ∼ −

(
log(τ/2) + γ + ψ(1

2 + ıρ)
)

(59)

where γ is Euler’s constant and ψ the logarithmic derivative of Euler’s Γ
function. ⊓⊔

Lemma 1. Given any ǫ > 0 there is a constant Cǫ > 0 such that

|Q− 1

2
+ıρ(cosh τ)| ≤ Cǫ| log τ | eτ(Im ρ−

1
2+ǫ) (60)

uniformly for all τ > 0 and ρ ∈ C with Im ρ < 1
2 .

Proof. From the integral representation (58) we infer

|Q− 1

2
+ıρ(cosh τ)| ≤ 1√

2

∫ ∞

τ

et Im ρ

√
cosh t− cosh τ

dt (61)

≤ 1√
2

eτ(Im ρ−
1
2+ǫ)

∫ ∞

τ

et(
1
2−ǫ)

√
cosh t− cosh τ

dt (62)

since

et(Im ρ−
1
2+ǫ) ≤ eτ(Im ρ−

1
2+ǫ) (63)

for all t ≥ τ , if ǫ > 0 is chosen small enough. The remaining integral

∫ ∞

τ

et(
1
2−ǫ)

√
cosh t− cosh τ

dt (64)

has a log τ singularity at τ = 0 and is otherwise uniformly bounded for all
τ → ∞. ⊓⊔

Remark 3. This is only a crude upper bound, but sufficient for our purposes.

To highlight the ρ dependence, we shall use

Gρ(z, w) = − 1

2π
Q− 1

2
+ıρ

(
coshd(z, w)

)
(65)

instead of G(z, w;λ).
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Lemma 2. Suppose f : H2 → C with |f(z)| ≤ Aeαd(z,o), with constants
A,α > 0. Then the integral

∫

H2

Gρ(z, w)f(w) dµ(w) (66)

converges absolutely, uniformly in Re ρ, provided Im ρ < −(α + 1
2 ). The con-

vergence is also uniform in z in compact sets in H2.

Proof. Note that |f(w)| ≤ Aeαd(o,w) ≤ Aeαd(o,z)eαd(z,w). In polar coordinates
(take w as the origin) τ = d(z, w), and dµ = sinh τ dτ dφ. In view of Lemma
1, the integral (66) is bounded by

≪ǫ

∫ ∞

0

| log τ | e−(
1
2−Im ρ−ǫ−α)τ sinh τ dτ (67)

which converges under the hypothesis on Im ρ. ⊓⊔

5 Selberg’s point-pair invariants

Let H be a subgroup of Isom(H2). An H-point-pair invariant k : H2×H2 → C

is defined by the relations

(K1) k(gz, gw) = k(z, w) for all g ∈ H , z, w ∈ H2;
(K2) k(w, z) = k(z, w) for all z, w ∈ H2.

Here we will only consider point-pair invariants which are functions of the
distance between z, w, such as the Green’s function Gρ(z, w) studied in the
previous section. Hence H = Isom(H2) in this case. We sometimes use the
notation k(τ) = k(z, w) with τ = d(z, w). Let us consider

k(z, w) =
1

πı

∫ ∞

−∞

Gρ(z, w)ρ h(ρ) dρ (68)

where the test function h : C → C satisfies the following conditions.

(H1) h is analytic for | Im ρ| ≤ σ for some σ > 1/2;
(H2) h is even, i.e., h(−ρ) = h(ρ);
(H3) |h(ρ)| ≪ (1 + |Re ρ|)−2−δ for some fixed δ > 0, uniformly for all ρ in

the strip | Imρ| ≤ σ.

For technical reasons we will sometimes use the stronger hypothesis

(H3*) |h(ρ)| ≪N (1 + |Re ρ|)−N for any fixed N > 1, uniformly for all ρ in
the strip | Imρ| ≤ σ.
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The Fourier transform of h is

g(t) =
1

2π

∫

R

h(ρ) e−ıρtdρ. (69)

With the integral representation (58) one immediately finds

k(z, w) = − 1

π
√

2

∫ ∞

τ

g′(t)√
cosh t− cosh τ

dt, τ = d(z, w). (70)

The analyticity of h and (H3) imply that g and its first derivative (all deriva-
tives provided (H3*) holds) are exponentially decaying for |t| → ∞. To see
this, consider

g(ν)(t) =
1

2π

∫

R

(−ıρ)νh(ρ) e−ıρtdρ (71)

=
1

2π

∫

R−ıσ

(−ıρ)νh(ρ) e−ıρtdρ (72)

=
1

2π
e−σt

∫

R

[−ı(ρ− ıσ)]νh(ρ− ıσ) e−ıρtdρ. (73)

Since, due to (H3*),
∫

R

|(ρ− ıσ)νh(ρ− ıσ)| dρ <∞ (74)

we find
|g(ν)(t)| ≪ν e−σ|t|. (75)

The point-pair invariant k(z, w) gives rise to the linear operator L defined
by

[Lf ](z) :=

∫

H2

k(z, w)f(w)dµ(w). (76)

Proposition 2. Suppose f ∈ C2(H2) is a solution of (∆+ ρ2 + 1
4 )f = 0 with

| Im ρ| ≤ σ and |f(z)| ≤ Aeαd(z,o), with constants A > 0, 0 ≤ α < σ− 1
2 . Then,

for h satisfying (H1), (H2), (H3),

Lf = h(ρ)f. (77)

Proof. We have

[Lf ](z) =

∫

H2

k(z, w)f(w)dµ(w) (78)

=
1

πı

∫

H2

{∫ ∞

−∞

Gρ′(z, w)ρ′ h(ρ′) dρ′
}
f(w)dµ(w) (79)

=
1

πı

∫

H2

{∫ ∞−ıσ

−∞−ıσ

Gρ′ (z, w)ρ′ h(ρ′) dρ′
}
f(w)dµ(w) (80)
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where we have shifted the contour of integration by σ. Then

=
1

πı

∫ ∞−ıσ

−∞−ıσ

{∫

H2

Gρ′ (z, w)f(w)dµ(w)

}
ρ′ h(ρ′) dρ′ (81)

since the inner integral converges absolutely, uniformly in Re ρ, see Lemma 2.
We have
∫

H2

Gρ′(z, w)f(w)dµ(w) = (∆+ ρ′
2

+ 1
4 )−1f(z) = (ρ′

2 − ρ2)−1f(z) (82)

and thus

[Lf ](z) =
1

πı
f(z)

∫ ∞−ıσ

−∞−ıσ

ρ′h(ρ′)

ρ′2 − ρ2
dρ′. (83)

This integral converges absolutely, cf. (H3), and is easily calculated. We shift
the contour from −ıσ to +ıσ and collect residues, so that

1

2πı

∫ ∞−ıσ

−∞−ıσ

2ρ′h(ρ′)

ρ′2 − ρ2
dρ′ = h(ρ) + h(−ρ) +

1

2πı

∫ ∞+ıσ

−∞+ıσ

2ρ′h(ρ′)

ρ′2 − ρ2
dρ′. (84)

Since h is even, the integral on the right hand side equals the negative of the
left hand side, and thus

1

2πı

∫ ∞−ıσ

−∞−ıσ

2ρ′h(ρ′)

ρ′2 − ρ2
= h(ρ), (85)

which concludes the proof. ⊓⊔

It is useful to define the auxiliary functions Φ,Q : R≥0 → C by the relations

Φ
(
2
(

cosh τ − 1)
)

= k(τ) = k(z, w), τ = d(z, w), (86)

and
Q
(
2(cosh t− 1)

)
= g(t). (87)

Lemma 3. The following statements are equivalent.

(i) h satisfies (H1), (H2), (H3*).
(ii) Q ∈ C∞(R≥0) with

∣∣Q(ν)(η)
∣∣≪ν

(
1 + η

)−σ−ν ∀η ≥ 0. (88)

Proof. Clearly g ∈ C∞(R) if and only if Q ∈ C∞(R≥0) (this is obvious for
t 6= 0; the problem at t = 0 can be resolved by expanding in Taylor series).
In view of (75), the bound (88) is evident for ν = 0. The νth derivative of g
is of the form

g(ν)(t) =
ν∑

j=0

ajν ej|t|Q(j)(2(cosh t− 1)) (1 +O(e−|t|)) (89)
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with suitable coefficients ajν . Hence, by induction on ν,

eν|t|
∣∣Q(ν)(2(cosh t− 1))

∣∣≪ν

∣∣g(ν)(t)
∣∣+
∣∣
ν−1∑

j=0

ajν ej|t|Q(j)(2(cosh t− 1))
∣∣

(90)

≪ν

∣∣g(ν)(t)
∣∣+

ν−1∑

j=0

ej|t|e(−σ−j)|t| (91)

≪ν e−σ|t|. (92)

This proves (i) ⇒ (ii). Conversely, (88) implies via (89) the exponential decay
of g, which proves (H1). (H3*) follows from g ∈ C∞(R). ⊓⊔

The integral transform (70) reads in terms of the functions Q,Φ,

Φ(ξ) = − 1

π

∫ ∞

ξ

Q′(η)√
η − ξ

dη. (93)

Lemma 4. Consider the following conditions.

(i) Q ∈ C∞(R≥0) and
∣∣Q(ν)(η)

∣∣≪ν

(
1 + η

)−σ−ν
.

(ii) Φ ∈ C∞(R≥0) and
∣∣Φ(ν)(ξ)

∣∣≪ν

(
1 + ξ

)−σ−ν−1/2+ǫ
.

Then (i) implies (ii) for any fixed ǫ > 0, and (ii) implies (i) for any fixed
ǫ < 0.

Proof. The νth derivative of Φ is

Φ(ν)(ξ) = − 1

π

dν

dξν

∫ ∞

0

Q′(η + ξ)√
η

dη (94)

= − 1

π

∫ ∞

0

Q(ν+1)(η + ξ)√
η

dη (95)

= − 1

π

∫ ∞

ξ

Q(ν+1)(η)√
η − ξ

dη. (96)

Therefore (i) implies Φ ∈ C∞(R≥0). Furthermore, from (95),

∣∣Φ(ν)(ξ)
∣∣≪ν

∫ ∞

0

(
1 + η + ξ

)−σ−ν−1

√
η

dη (97)

≪ν

(
1 + ξ

)−σ−ν−1/2+ǫ
∫ ∞

0

(
1 + η

)−1/2−ǫ

√
η

dη, (98)

for ǫ > 0 small enough. The last integral converges for any ǫ > 0.
The implication (ii) ⇒ (i) follows analogously from the inversion formula
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Q(η) =

∫ ∞

η

Φ(ξ)√
ξ − η

dξ. (99)

To show that (99) is indeed consistent with (93), write (99) in the form

Q(η) =

∫ ∞

−∞

Φ(η + ξ2)dξ (100)

and thus

Q′(η) =

∫ ∞

−∞

Φ′(η + ξ2)dξ. (101)

The right hand side of (93) is

− 1

π

∫ ∞

ξ

Q′(η)√
η − ξ

dη = − 1

π

∫

R

Q′(ξ + η2)dη (102)

= − 1

π

∫

R

∫

R

Φ′(ξ + η2
1 + η2

2)dη1dη2, (103)

where we have used (101) in the last step. This equals of course

= −2

∫ ∞

0

Φ′(ξ + r2)rdr = −
∫ ∞

0

Φ′(ξ + r)dr = Φ(ξ) (104)

which yields the left hand side of (93). ⊓⊔

Proposition 3. The following statements are equivalent.

(i) h satisfies (H1), (H2), (H3*).
(ii) k(z, w) is in C∞(H2 × H2) with the bound on the νth derivative,

∣∣k(ν)(τ)
∣∣≪ν e−(σ+1/2−ǫ)τ ∀τ ≥ 0, (105)

for any fixed ǫ > 0.

Proof. In view of Lemmas 3 and 4, the statement (i) is equivalent to the condi-
tion for Φ, statement (ii) in Lemma 4. Since k(z, w) = k(τ) = Φ

(
2(cosh τ−1)

)
,

the proof is exactly the same as that of Lemma 3 with g(t) replaced by k(τ),
and Q

(
2(cosh t− 1)

)
by Φ

(
2(cosh τ − 1)

)
. ⊓⊔

6 The ghost of the sphere

Note that for z = w, the kernel k(z, w) has a finite value, unlike the logarithmic
divergence of the Green’s function Gρ(z, w). In fact,
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k(z, z) = − 1

π
√

2

∫ ∞

0

g′(t)√
cosh t− 1

dt (106)

= − 1

2π

∫ ∞

0

g′(t)

sinh(t/2)
dt (107)

=
1

4π2

∫ ∞

0

{∫ ∞

−∞

sin(ρt)

sinh(t/2)
h(ρ) ρ dρ

}
dt (108)

=
1

4π2

∫ ∞

−∞

{∫ ∞

0

sin(ρt)

sinh(t/2)
dt

}
h(ρ) ρ dρ (109)

where changing the order of integration is justified, since

∫ ∞

0

∣∣∣∣
sin(ρt)

sinh(t/2)

∣∣∣∣ dt ≤ |ρ|
∫ ∞

0

t

sinh(t/2)
dt≪ |ρ| (110)

and |h(ρ)| ≪ (1 + |ρ|)−4, assuming (H3*). We use the geometric series expan-
sion

1

sinh(t/2)
=

2e−t/2

1 − e−t
= 2

∞∑

l=0

exp
[
−
(
l + 1

2

)
t
]
, (111)

so for | Im ρ| < 1/2

∫ ∞

0

sin(ρt)

sinh(t/2)
dt = ı

∞∑

l=0

[
1

ıρ− (l + 1
2 )

+
1

ıρ+ (l + 1
2 )

]
(112)

= −πı tan(πıρ) = π tanh(πρ), (113)

compare (38). We conclude

k(z, z) =
1

4π

∫ ∞

−∞

h(ρ) tanh(πρ) ρ dρ. (114)

Let us conclude this section by noting that the logarithmic divergence of
the Green’s function is independent of ρ, see (54). It may therefore be removed
by using instead

Gρ(z, w) −Gρ∗(z, w) (115)

where ρ∗ 6= ρ is a fixed constant in C with | Imρ∗| < 1/2. We then have from
(58)

lim
w→z

[Gρ(z, w) −Gρ∗(z, w)] = − 1

2π
√

2

∫ ∞

τ

e−ıρt − e−ıρ∗t

√
cosh t− cosh τ

dt (116)

= − 1

4π

∫ ∞

0

e−ıρt − e−ıρ∗t

sinh(t/2)
dt (117)

= − 1

2πı

∞∑

l=0

[
1

ρ− ı(l + 1
2 )

− 1

ρ∗ − ı(l + 1
2 )

]
,

(118)
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where we have used the geometric series expansion (111) as above. The last
sum clearly converges since

1

ρ− ı(l + 1
2 )

− 1

ρ∗ − ı(l + 1
2 )

= O(l−2). (119)

Remark 4. In analogy with the trace formula for the sphere, we may view the
geometric series expansion,

tanh(πρ) =
∑

n∈Z

(−1)ne−2π|n|ρ, (120)

cf. (26), as a sum over closed orbits on the sphere, but now with imaginary
action. These orbits have an interpretation as tunneling (or ghost) orbits.

7 Hyperbolic surfaces

Let M be a smooth Riemann surface (finite or infinite) of constant negative
curvature which can be represented as the quotient Γ\H

2, where Γ is a strictly
hyperbolic Fuchsian group (i.e., all elements γ ∈ Γ − {1} have ℓγ > 0). The
space of square integrable functions on M may therefore be identified with
the space of measurable functions f : H2 → C satisfying the properties

Tγf = f ∀γ ∈ Γ (121)

and

‖f‖2 :=

∫

FΓ

|f |2dµ <∞ (122)

where Tγ is the translation operator defined in (46) and FΓ is any fundamental
domain of Γ in H2. We denote this space by  L2(Γ\H2). The inner product

〈f1, f2〉 =

∫

FΓ

f1f2dµ (123)

makes  L2(Γ\H
2) a Hilbert space. Similarly, we may identify C∞(Γ\H

2) with
the space of functions f ∈ C∞(H2) satisfying (121) (note that more care has
to be taken here when Γ contains elliptic elements). Since ∆ commutes with
Tγ , it maps C∞(Γ\H2) → C∞(Γ\H2).

To study the spectrum of the Laplacian on Γ\H2, let us consider the linear
operator L of functions on Γ\H2,

[Lf ](z) :=

∫

Γ\H2

kΓ (z, w)f(w)dµ(w) (124)

with kernel
kΓ (z, w) =

∑

γ∈Γ

k(γz, w) (125)

with the point-pair invariant k as defined in (68). The convergence of the sum
is guaranteed by the following lemma, cf. Proposition 4 below.
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Lemma 5. For every δ > 0, there is a Cδ > 0 such that

∑

γ∈Γ

e−(1+δ)d(γz,w) ≤ Cδ (126)

for all (z, w) ∈ H2 × H2.

Proof. Place a disk Dγ(r) = {z′ ∈ H : d(γz, z′) ≤ r} around every point
zγ = γz, and denote the area of Dγ(r) by Area(r). Then

e−(1+δ)d(zγ ,w) ≤ 1

Area(r)

∫

Dγ(r)

e−(1+δ)d̃(z′,w)dµ(z′) (127)

where
d̃(z′, w) = min

z∈Dγ(r)
d(z, w). (128)

Because of the triangle inequality

d̃(z′, w) ≥ min
z∈Dγ(r)

[d(z′, w) − d(z, z′)] ≥ d(z′, w) − 2r (129)

for z′ ∈ Dγ(r). Use this in (127) to obtain

∑

γ∈Γ

e−(1+δ)d(γz,w) ≤ e2r(1+δ)

Area(r)

∑

γ∈Γ

∫

Dγ(r)

e−(1+δ)d(z′,w)dµ(z′). (130)

If

r <
1

2
min

γ∈Γ−{1}
ℓγ (131)

the disks Dγ(r) do not overlap. (Note that minγ∈Γ−{1} ℓγ > 0 since Γ is
strictly hyperbolic and acts properly discontinuously on H2.) Therefore

∑

γ∈Γ

e−(1+δ)d(γz,w) ≤ e2r(1+δ)

Area(r)

∫

H2

e−(1+δ)d(z′,w)dµ(z′) (132)

=
2πe2r(1+δ)

Area(r)

∫ ∞

0

e−(1+δ)τ sinh τ dτ. (133)

This integral converges for any δ > 0. ⊓⊔

Proposition 4. If h satisfies (H1), (H2), (H3*), then the kernel kΓ (z, w) is
in C∞(Γ\H2 × Γ\H2), with kΓ (z, w) = kΓ (w, z).

Proof. Proposition 3 and Lemma 5 show that the sum over k(γz, w) converges
absolutely and uniformly (take δ = σ−1/2− ǫ > 0). The same holds for sums
over any derivative of k(γz, w). Hence kΓ (z, w) is in C∞(H2 × H2). To prove
invariance under Γ , note that
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kΓ (γz, w) =
∑

γ′∈Γ

k(γ′γz, w) =
∑

γ′∈Γ

k(γ′z, w) = kΓ (z, w). (134)

Thus kΓ (z, w) is a function on Γ\H2 with respect to the first argument.
Secondly

kΓ (z, w) =
∑

γ′∈Γ

k(γ′z, w) =
∑

γ′∈Γ

k(w, γ′z)

=
∑

γ′∈Γ

k(γ′
−1
w, γ′

−1
γ′z) =

∑

γ′∈Γ

k(γ′
−1
w, z) = kΓ (w, z), (135)

which proves symmetry. Both relations imply immediately kΓ (z, γw) =
kΓ (z, w). ⊓⊔

Proposition 5. Suppose f ∈ C2(Γ\H2) is a solution of (∆ + ρ2 + 1
4 )f = 0

with | Im ρ| ≤ σ and |f(z)| ≤ Aeαd(z,o), with constants A > 0, 0 ≤ α < σ − 1
2 .

Then, for h satisfying (H1), (H2), (H3),

Lf = h(ρ)f. (136)

Proof. Note that

∫

FΓ

kΓ (z, w)f(w)dµ(w) =

∫

H2

k(z, w)f(w)dµ(w) (137)

and recall Proposition 2. ⊓⊔

8 A trace formula for hyperbolic cylinders

The simplest non-trivial example of a hyperbolic surface is a hyperbolic cylin-
der. To construct one, fix some γ ∈ Isom+(H2) of length ℓ = ℓ(γ) > 0, and
set Γ = Z, where Z is the discrete subgroup generated by γ, i.e.,

Z = {γn : n ∈ Z}. (138)

We may represent Z\H2 in halfplane coordinates, which are chosen in such a
way that

γ =

(
eℓ/2 0

0 e−ℓ/2

)
. (139)

A fundamental domain for the action of γ on H, z 7→ eℓz, is given by

{z ∈ H : 1 ≤ y < eℓ}. (140)

It is therefore evident that Z\H2 has infinite volume. A more convenient set
of parameters for the cylinder are the coordinates (s, u) ∈ R2, with
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x = ues, y = es, (141)

where the volume element reads now

dµ = ds du. (142)

In these coordinates, the action of γ is (s, u) 7→ (s+ ℓ, u), and hence a funda-
mental domain is

FZ = {(s, u) ∈ R
2 : 0 ≤ s < ℓ}. (143)

Note that

coshd(γnz, z) = 1 +
|enℓz − z|2

2enℓy2
= 1 + 2 sinh2(nℓ/2)(1 + u2) (144)

and hence

kZ(z, z) = k(z, z) +

∞∑

n6=0

k(γnz, z) (145)

= k(z, z) + 2

∞∑

n=1

k(γnz, z) (146)

= k(z, z) + 2
∞∑

n=1

Φ
(
4 sinh2(nℓ/2)(1 + u2)

)
. (147)

From this we can easily work out a trace formula for the hyperbolic cylinder:

Proposition 6. If h satisfies (H1), (H2), (H3), then

∫

Z\H2

[
kZ(z, z) − k(z, z)

]
dµ =

∞∑

n=1

ℓ g(nℓ)

sinh(nℓ/2)
. (148)

Proof. We have

∫

R

∫ ℓ

0

Φ
(
4 sinh2(nℓ/2)(1 + u2)

)
ds du (149)

=
ℓ

2 sinh(nℓ/2)

∫

R

Φ
(
4 sinh2(nℓ/2) + ξ2

)
dξ (150)

and with (100),

=
ℓ

2 sinh(nℓ/2)
Q
(
4 sinh2(nℓ/2)

)
(151)

=
ℓ

2 sinh(nℓ/2)
Q
(
2(cosh(nℓ) − 1)

)
(152)

which yields the right hand side of (148), cf. (87). ⊓⊔
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Proposition 7. If h satisfies (H1), (H2), (H3), then

∫

Z\H2

[
kZ(z, z) − k(z, z)

]
dµ =

∫

R

h(ρ)nZ(ρ) dρ (153)

where

nZ(ρ) =
ℓ

π

∞∑

m=0

{
exp

[(
m+ 1

2 + ıρ
)
ℓ
]
− 1
}−1

(154)

is a meromorphic function in C with simple poles at the points

ρνm =
ν

2πℓ
+ ı
(
m+ 1

2

)
, ν ∈ Z, m = 0, 1, 2, . . . , (155)

and residues resρνm
nZ = 1/(πı).

Proof. The geometric series expansion of 1/ sinh (111) yields

∞∑

n=1

ℓ g(nℓ)

sinh(nℓ/2)
=
ℓ

π

∫

R

∞∑

m=0

∞∑

n=1

exp
[
−
(
m+ 1

2 + ıρ
)
nℓ
]
h(ρ) dρ (156)

and using again the geometric series, this time for the sum over n,

∞∑

n=1

exp
[
−
(
m+ 1

2 + ıρ
)
nℓ
]

=
{

1 − exp
[
−
(
m+ 1

2 + ıρ
)
ℓ
]}−1 − 1 (157)

=
{

exp
[(
m+ 1

2 + ıρ
)
ℓ
]
− 1
}−1

. (158)

This proves the formula for nZ(ρ). Near each pole ρνm we have

nZ(ρ) ∼ ℓ

π

{
exp

[(
m+ 1

2 + ıρ
)
ℓ
]
− 1
}−1

(159)

∼ 1

πı

1

ρ−
[
(2π/ℓ)ν + ı

(
m+ 1

2

)] (160)

and so resρνm
nZ = 1/(πı). ⊓⊔

The poles of nZ(ρ) are called the scattering poles of the hyperbolic cylinder.
A useful formula for nZ is

nZ(ρ) =
1

2π

∞∑

n=1

ℓ e−ıρnℓ

sinh(nℓ/2)
, Im ρ < 1/2, (161)

which follows immediately from the above proof. Furthermore, by shifting the
path of integration to −ı∞, we have the identity

∫

R

nZ(ρ′)

ρ2 − ρ′2
dρ′ =

πı

ρ
nZ(ρ), Im ρ < 0. (162)
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9 Back to general hyperbolic surfaces

Let us now show that the kernel kΓ (z, w) of a general hyperbolic surface
Γ\H2 (with Γ strictly hyperbolic) can be written as a superposition of kernels
corresponding to hyperbolic cylinders.

Define the conjugacy class of any element γ ∈ Γ as

{γ} := {γ̃ ∈ Γ : γ̃ = gγg−1 for some g ∈ Γ}. (163)

Clearly the length ℓγ is the same for all elements in one conjugacy class. The
centralizer of γ is

Zγ := {g ∈ Γ : gγ = γg}. (164)

Lemma 6. If γ ∈ Γ is hyperbolic, then the centralizer is the infinite cyclic
subgroup

Zγ = {γn∗ : n ∈ Z}, (165)

where γ∗ ∈ Γ is uniquely determined by γ via the relation γm∗ = γ for m ∈ N

as large as possible.

Proof. γ ∈ PSL(2,R) ≃ Isom+(H2) is conjugate to a diagonal matrix

(
eℓγ/2 0

0 e−ℓγ/2

)
(166)

with ℓγ > 0. The equation

(
eℓγ/2 0

0 e−ℓγ/2

)(
a b
c d

)
=

(
a b
c d

)(
eℓγ/2 0

0 e−ℓγ/2

)
(167)

has the only solution b = c = 0, a = d−1. Hence the centralizer is a diagonal
subgroup of (a conjugate of) Γ . Since Γ is discrete, the centralizer must be
discrete, which forces it to be cyclic. ⊓⊔

Remark 5. If γ is hyperbolic and Γ strictly hyperbolic, then {γ} 6= {γn} for
all n 6= 1. Furthermore, the centralizers of γ and γn coincide.

The sum in (125) can now be expressed as

∑

γ∈Γ

k(γz, w) = k(z, w) +
∑

γ∈H

∑

g∈Zγ\Γ

k(g−1γgz, w) (168)

= k(z, w) +
∑

γ∈H

∑

g∈Zγ\Γ

k(γgz, gw) (169)

where the respective first sums run over a set H of hyperbolic elements, which
contains one representative for each conjugacy class {γ}. We may replace this
sum by a sum over primitive elements. If we denote by H∗ ⊂ H the subset of
primitive elements, (169) equals
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= k(z, w) +
∑

γ∈H

∑

g∈Zγ\Γ

k(γgz, gw) (170)

= k(z, w) +
∑

γ∈H∗

∑

g∈Zγ\Γ

∞∑

n=1

k(γngz, gw) (171)

and hence, finally,

kΓ (z, w) − k(z, w) =
1

2

∑

γ∈H∗

∑

g∈Zγ\Γ

{
kZγ

(gz, gw) − k(gz, gw)
}

; (172)

recall that
kZγ

(z, w) =
∑

n∈Z

k(γnz, w). (173)

10 The spectrum of a compact surface

It is well known that for any compact Riemann manifold, −∆ has positive
discrete spectrum, i.e.,

0 = λ0 < λ1 ≤ λ2 ≤ . . .→ ∞, (174)

with corresponding eigenfunctions ϕ0 = const, ϕ1, ϕ2, . . . ∈ C∞(Γ\H2), which
satisfy

(∆+ λj)ϕj = 0 (175)

and form an orthonormal basis of  L2(Γ\H
2). Furthermore, since ∆ is real-

symmetric, the ϕj can be chosen to be real-valued. We furthermore define

ρj =
√
λj − 1

4 , −π/2 ≤ arg ρj < π/2. (176)

If f ∈ C2(Γ\H2), the expansion

f(z) =
∑

j

cjϕj(z), cj = 〈f, ϕj〉, (177)

converges absolutely, uniformly for all z ∈ H2. This follows from general spec-
tral theoretic arguments, compare [12, p. 3 and Chapter three].

Proposition 8. If h satisfies (H1), (H2), (H3), then

Lϕj = h(ρj)ϕj . (178)

Proof. Apply Proposition 5. Each eigenfunction ϕj is bounded so α = 0.
Furthermore, by the positivity of −∆, we have | Im ρ| ≤ 1/2 < σ. ⊓⊔
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Proposition 9. If h satisfies (H1), (H2), (H3*), then

kΓ (z, w) =

∞∑

j=0

h(ρj)ϕj(z)ϕj(w), (179)

which converges absolutely, uniformly in z, w ∈ H2.

Proof. The spectral expansion (177) of kΓ (z, w) as a function of z yields

kΓ (z, w) =

∞∑

j=0

cjϕj(z), (180)

with

cj =

∫

Γ\H2

kΓ (z, w)ϕj(z) dµ(z) = [Lϕj ](w) = h(ρj)ϕj(w) = h(ρj)ϕj(w).

(181)
The proof of uniform convergence follows from standard spectral theoretic
arguments [12, Prop. 3.4, p.12]. ⊓⊔

In the case z = w, Proposition 9 implies immediately the following theo-
rem.

Theorem 3 (Selberg’s pre-trace formula). If h satisfies (H1), (H2),
(H3*), then

∞∑

j=0

h(ρj) |ϕj(z)|2 =
1

4π

∫ ∞

−∞

h(ρ) tanh(πρ) ρ dρ+
∑

γ∈Γ−{1}

k(γz, z). (182)

which converges absolutely, uniformly in z ∈ H
2.

Proof. Use (114) for the γ = 1 term. ⊓⊔

Using (172), the pre-trace formula (182) becomes

∞∑

j=0

h(ρj) |ϕj(z)|2 =
1

4π

∫ ∞

−∞

h(ρ) tanh(πρ) ρ dρ (183)

+
1

2

∑

γ∈H∗

∑

g∈Zγ\Γ

{
kZγ

(gz, gz)− k(gz, gz)
}
. (184)

Theorem 4 (Selberg’s trace formula). If h satisfies (H1), (H2), (H3*),
then

∞∑

j=0

h(ρj) =
Area(M)

4π

∫ ∞

−∞

h(ρ) tanh(πρ) ρ dρ+
∑

γ∈H∗

∞∑

n=1

ℓγ g(nℓγ)

2 sinh(nℓγ/2)
,

(185)
which converges absolutely.
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(We will see in the next section (Corollary 1) that the condition (H3*)
may in fact be replaced by (H3).)

Proof. We integrate both sides of the pre-trace formula (182) over Γ\H2. By
the  L2 normalization of the eigenfunctions ϕj , the left hand side of (182)
yields the left hand side of (185). The first term on the right hand side is
trivial, and the second term follows from the observation that

∑

g∈Zγ\Γ

∫

Γ\H2

f(gz) dµ =

∫

Z\H2

f(z) dµ, (186)

which allows us to apply Proposition 6 to the inner sum in (184). ⊓⊔

Remark 6. The absolute convergence of the sum on the right hand side of
(185) only requires (H1), or

|g(t)| ≪ e−σ|t|, ∀t > 0. (187)

One way of seeing this is is that, since g is only evaluated on the discrete
subset (the length spectrum)

{ℓγ : γ ∈ Γ − {1}} ⊂ R>0, (188)

we may replace g by an even C∞(R) function g̃ (for which absolute convergence
is granted) so that g(ℓγ) = g̃(ℓγ) for all γ, and

|g̃(t)| ≪ e−σ|t|, ∀t > 0. (189)

Remark 7. We may interpret the sum over conjugacy classes in the spirit of
Propositions 6 and 7: provided h satisfies (H1), (H2), (H3*), we have

∞∑

j=0

h(ρj) =
Area(M)

4π

∫ ∞

−∞

h(ρ) tanh(πρ) ρ dρ+
1

2

∑

γ∈H∗

∫

R

h(ρ)nZγ
(ρ) dρ.

(190)
Alternatively, replace the first term on the right hand side in (185) by (108),
then

∞∑

j=0

h(ρj) = −Area(M)

2π

∫ ∞

0

g′(t)

sinh(t/2)
dt+

∑

γ∈H∗

∞∑

n=1

ℓγ g(nℓγ)

2 sinh(nℓγ/2)
. (191)

11 The heat kernel and Weyl’s law

As a first application of the trace formula, we now prove Weyl’s law for the
asymptotic number of eigenvalues λj below a given λ,

N(λ) = #{j : λj ≤ λ}, (192)

as λ→ ∞.
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Proposition 10 (Weyl’s law).

N(λ) ∼ Area(M)

4π
λ, λ→ ∞. (193)

Proof. For any β > 0, the test function

h(ρ) = e−βρ
2

(194)

is admissible in the trace formula. The Fourier transform is

g(t) =
e−t

2/(2β)

√
4πβ

, (195)

and so (185) reads in this special case (with λj = ρ2
j + 1

4 )

∞∑

j=0

e−βλj =
Area(M)

4π

∫ ∞

−∞

e−β(ρ2+
1
4 ) tanh(πρ) ρ dρ

+
e−β/4√

4πβ

∑

γ∈H∗

∞∑

n=1

ℓγ e−(nℓγ)2/(2β)

2 sinh(nℓγ/2)
. (196)

The sum on the right hand side clearly tends to zero in the limit β → 0. Since
tanh(πρ) = 1 +O(e−2π|ρ|) for all ρ ∈ R, we obtain

∞∑

j=0

e−βλj =
Area(M)

4πβ
+O(1), β → 0. (197)

The Proposition now follows from a classical Tauberian theorem [17]. ⊓⊔
The sum

∑∞
j=0 e−βλj represents of course the trace of the heat kernel eβ∆.

Corollary 1. The condition (H3*) in Theorem 4 and Remark 7 can be re-
placed by (H3).

Proof. Weyl’s law implies that, for any δ > 0

∞∑

j=0

(1 + λj)
−1−δ/2 <∞, i.e.,

∞∑

j=0

(1 + Re ρj)
−2−δ <∞. (198)

To prove this claim, note that

∞∑

j=0

(1 + λj)
−1−δ/2 =

∫ ∞

0

(1 + x)−1−δ/2dN(x) (199)

= (1 + x)−1−δ/2N(x)

∣∣∣∣
∞

x=0

(200)

+

(
1 +

δ

2

)∫ ∞

0

(1 + x)−2−δ/2N(x) dx (201)
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(use integration by parts) which is finite since N(x) grows linearly with x.

If h satisfies (H1), (H2), (H3), then the function hǫ(ρ) = h(ρ)e−ǫρ
2

clearly
satisfies (H1), (H2), (H3*) for any ǫ > 0, with the additional uniform bound

|hǫ(ρ)| ≪ (1 + |Re ρ|)−2−δ. (202)

where the implied constant is independent of ǫ. By repeating the calculation
that leads to (75), we obtain the following estimate for the Fourier transform
of hǫ,

|gǫ(t)| ≪ e−σ|t|, (203)

where the implied constant is again independent of ǫ. Theorem 4 yields

∞∑

j=0

hǫ(ρj) =
Area(M)

4π

∫ ∞

−∞

hǫ(ρ) tanh(πρ) ρ dρ+
∑

γ∈H∗

∞∑

n=1

ℓγ gǫ(nℓγ)

2 sinh(nℓγ/2)
.

(204)
Due to the above ǫ-uniform bounds, both sides of the trace formula converge
absolutely, uniformly for all ǫ > 0. We may therefore take the limit ǫ → 0
inside the sums and integral.

12 The density of closed geodesics

In the previous section we have used the trace formula to obtain Weyl’s law
on the distribution of eigenvalues λj . By using the appropriate test function,
one can similarly work out the asymptotic number of primitive closed geodesic
with lengths ℓγ ≤ L,

Π(L) = #{γ ∈ H∗ : ℓγ ≤ L}. (205)

In view of Remark 6 we know that, for any δ > 0,
∑

γ∈H∗

ℓγe−ℓγ(1+δ) <∞ (206)

which implies that, for any ǫ > 0,

Π(L) ≪ǫ eL(1+ǫ). (207)

There is in fact an a priori geometric argument (cf. [12]) which yields this
bounds with ǫ = 0, but the rough estimate (207) is sufficient for the following
argument.

Let us consider the density of closed geodesics in the interval [a+L, b+L]
where a and b are fixed and L→ ∞. To avoid technicalities, we will here only
use smoothed counting functions

∑

γ∈H∗

ψL(ℓγ) =

∫ ∞

0

ψL(t) dΠ(t) (208)
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where ψL(t) = ψ(t− L) and ψ ∈ C∞
0 (R). One may think of ψ as a smoothed

characteristic function of [a, b]. Stronger results for true counting functions
require a detailed analysis of Selberg’s zeta function, which will be introduced
in Section 14.

Let ρ0, . . . , ρM be those ρj with Im ρj < 0. The corresponding eigenvalues
λ0, . . . , λM are referred to as the small eigenvalues.

Proposition 11. Let ψ ∈ C∞
0 (R). Then, for L > 1,

∫ ∞

0

ψL(t) dΠ(t) =

∫ ∞

0

ψL(t) dΠ̃(t) +O

(
eL/2

L

)
, (209)

where

dΠ̃(t) =

M∑

j=0

e(
1
2+ıρj)t

t
dt. (210)

Proof. The plan is to apply the trace formula with

g(t) =
2 sinh(t/2)

t
[ψ(t− L) + ψ(−t− L)] (211)

which is even and, for L large enough, in C∞
0 (R). Hence its Fourier transform,

h(ρ) =

∫

R

1

t

(
e(

1
2+ıρ)t − e(−

1
2+ıρ)t) [ψ(t− L) + ψ(−t− L)] dt (212)

=

∫

R

1

t

(
e(

1
2+ıρ)t − e(−

1
2+ıρ)t + e(−

1
2−ıρ)t − e(

1
2−ıρ)t)ψ(t− L) dt, (213)

satisfies (H1), (H2), (H3). Let us begin with the integral
∫

R

1

t
e(

1
2+ıρ)tψ(t− L) dt = e(

1
2+ıρ)L

∫

R

1

t+ L
e(

1
2+ıρ)tψ(t) dt. (214)

Repeated integration by parts yields the upper bound
∣∣∣∣
∫

R

1

t+ L
e(

1
2+ıρ)tψ(t) dt

∣∣∣∣≪N
1

(1 + |ρ|)N
∫

suppψ

1

t+ L
et dt (215)

≪N
1

L(1 + |ρ|)N . (216)

So ∫

R

1

t
e(

1
2+ıρ)tψ(t− L) dt≪N

e(
1
2−Im ρ)L

L(1 + |ρ|)N . (217)

This bound is useful for Im ρ = 0. The other corresponding integrals can be
estimated in a similar way, to obtain the bounds (assume −1/2 ≤ Im ρ ≤ 0)

∫

R

1

t
e(−

1
2+ıρ)tψ(t− L) dt≪N

1

L(1 + |ρ|)N , (218)
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∫

R

1

t
e(−

1
2−ıρ)tψ(t− L) dt≪N

1

L(1 + |ρ|)N , (219)

and ∫

R

1

t
e(

1
2−ıρ)tψ(t− L) dt≪N

eL/2

L(1 + |ρ|)N . (220)

Therefore, using the above bound with N = 3, say, yields

M∑

j=0

h(ρj) =

∫ ∞

0

ψL(t) dΠ̃(t) +O

(
eL/2

L

)
(221)

and

∞∑

j=M+1

h(ρj) −
Area(M)

4π

∫ ∞

−∞

h(ρ) tanh(πρ) ρ dρ = ON

(
eL/2

L

)
. (222)

The sum of the above terms equals, by the trace formula, the expression

∑

γ∈H∗

∞∑

n=1

1

n
ψL(nℓγ). (223)

The a priori bound (207) tells us that terms with n ≥ 2 (corresponding to
repetitions of primitive closed geodesics) are of lower order. To be precise,

∑

γ∈H∗

∞∑

n=2

1

n
ψL(nℓγ) ≪ǫ

∑

2≤n≤(L+b)/ℓmin

1

n
e(L+b)(1+ǫ)/n ≪ǫ eL(1+ǫ)/2, (224)

where we assume that ψL is supported in [a+L, b+L], and ℓmin is the length
of the shortest primitive closed geodesic. Therefore

∑

γ∈H∗

ψL(ℓγ) =

∫ ∞

0

ψL(t) dΠ̃(t) +O
(

eL(1+ǫ)/2
)
. (225)

The leading order term as L→ ∞ is

∑

γ∈H∗

ψL(ℓγ) ∼
∫ ∞

0

ψL(t)
et

t
dt≪ eL+b

L+ b
(226)

which leads to the improved upper bound for the sum involving repetitions,

∑

γ∈H∗

∞∑

n=2

1

n
ψL(nℓγ) ≪

∑

2≤n≤(L+b)/ℓmin

e(L+b)/n

L+ b
≪ eL/2

L
, (227)

and hence leads to the desired improved error estimate in (225). ⊓⊔
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13 Trace of the resolvent

The trace of the resolvent R(λ) = (∆+ λ)−1 is formally

TrR(λ) =

∞∑

j=0

(λ− λj)
−1 =

∞∑

j=0

h(ρj), h(ρ′) = (ρ2 − ρ′
2
)−1, (228)

where ρ =
√
λ− 1

4 as usual. The test function h does not, however, respect

condition (H3). To overcome this difficulty, we define the regularized resolvent

R̃(λ) = (∆+ λ)−1 − (∆+ λ∗)−1 (229)

for some fixed λ∗. The corresponding test function is

h(ρ′) = (ρ2 − ρ′
2
)−1 − (ρ2

∗ − ρ′
2
)−1, (230)

which clearly satisfies (H3), since

h(ρ′) =
ρ2
∗ − ρ2

(ρ2 − ρ′2)(ρ2
∗ − ρ′2)

= O(ρ′
−4

). (231)

We have already encountered the kernel of the regularized resolvent,

k(z, w) = Gρ(z, w) −Gρ∗(z, w), (232)

in Section 6. The trace of the regularized resolvent is thus

Tr R̃(ρ) =

∞∑

j=0

[
(ρ2 − ρj

2)−1 − (ρ2
∗ − ρj

2)−1
]

(233)

which, for any fixed ρ∗ /∈ {±ρj}, is a meromorphic function in C with simple
poles at ρ = ±ρj . h is analytic in the strip | Im ρ′| ≤ σ provided σ < | Im ρ| <
| Im ρ∗| where σ > 1/2.

The trace formula (190) implies therefore (use formula (118) for the first
term on the right hand side, and (162) for the second)

Tr R̃(ρ) = −Area(M)

2πı

∞∑

l=0

[
1

ρ− ı(l + 1
2 )

− 1

ρ∗ − ı(l + 1
2 )

]

+
πı

2ρ

∑

γ∈H∗

nZγ
(ρ) + C(ρ∗). (234)

where
C(ρ∗) = − πı

2ρ∗

∑

γ∈H∗

nZγ
(ρ∗) (235)

converges absolutely, cf. Remark 6.
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Let us rewrite this formula as

1

2ρ

∑

γ∈H∗

nZγ
(ρ) =

1

πı

∞∑

j=0

[
1

ρ2 − ρj2
− 1

ρ2
∗ − ρj2

]

− Area(M)

2π2

∞∑

l=0

[
1

ρ− ı(l + 1
2 )

− 1

ρ∗ − ı(l + 1
2 )

]
− 1

πı
C(ρ∗). (236)

All quantities on the right hand side are meromorphic for all ρ ∈ C, for every
fixed ρ∗ ∈ C away from the singularities (this is guaranteed for | Im ρ∗| > 1/2).
Therefore (236) provides a meromorphic continuation of

nΓ (ρ) :=
∑

γ∈H∗

nZγ
(ρ) (237)

to the whole complex plane.

Proposition 12. The function nΓ (ρ) has a meromorphic continuation to the
whole complex plane, with

(i) simple poles at ρ = ±ρj with residue

res±ρj
nΓ =

{
2µj/(πı) if ρj = 0,

±µj/(πı) if ρj 6= 0,
(238)

where µj is the multiplicity of ρj.
(ii) simple poles at ρ = ı(l + 1

2 ) with residue

res
ı(l+

1
2 )
nΓ =

Area(M)

2π2ı
(2l + 1) (239)

(iii) the functional relation

nΓ (ρ) + nΓ (−ρ) = −Area(M)

π
ρ tanh(πρ). (240)

Proof. (i) and (ii) are clear. (iii) follows from the identity (112). ⊓⊔

14 Selberg’s zeta function

Selberg’s zeta function is defined by

Z(s) =
∏

γ∈H∗

∞∏

m=0

(
1 − e−ℓγ(s+m)

)
, (241)

which converges absolutely for Re s > 1; this will become clear below, cf. (244)
and (245). Each factor
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∞∏

m=0

(
1 − e−ℓγ(s+m)

)
(242)

converges for all s ∈ C, with zeros at

s = sνm = −m+ ı(2π/ℓγ)ν, ν ∈ Z, m = 0, 1, 2, . . . . (243)

Note that sνm = 1
2 +ıρνm where ρνm are the scattering poles for the hyperbolic

cylinder Zγ\H2. What is more,

d

ds
log

∞∏

m=0

(
1 − e−ℓγ(s+m)

)
= −ℓγ

∞∑

m=0

(
1 − eℓγ(s+m)

)−1

= πnZγ
(ρ), (244)

with s = 1
2 + ıρ, and thus

Z ′

Z
(s) = πnΓ (ρ), Re s > 1 (i.e., Im ρ < −1/2). (245)

Recall the the genus is related to the area of M by Area(M) = 4π(g− 1).

Theorem 5. The Selberg zeta function can be analytically continued to an
entire function Z(s) whose zeros are characterized as follows. (We divide the
set of zeros into two classes, trivial and non-trivial).

(i) The non-trivial zeros of Z(s) are located at s = 1 and s = 1
2 ± ıρj (j =

1, 2, 3, . . .) with multiplicity

{
2µj if ρj = 0

µj if ρj 6= 0.
(246)

The zero at s = 1 (corresponding to j = 0) has multiplicity 1.
(ii) The trivial zeros are located at at s = −l, l = 0, 1, 2, . . . and have multi-

plicity 2g − 1 for l = 0 and 2(g − 1)(2l + 1) for l > 0.

Furthermore Z(s) satisfies the functional equation

Z(s) = Z(1 − s) exp



4π(g − 1)

∫ s−
1
2

0

v tan(πv) dv



 . (247)

Proof. Equation (236) yields

1

2s− 1

Z ′

Z
(s) =

∞∑

j=0

[
1

(s− 1
2 )2 + ρj2

+
1

ρ2
∗ − ρj2

]

− 2(g − 1)
∞∑

l=0

[
1

s+ l
− 1

l + 1
2 + ıρ∗

]
+ C(ρ∗). (248)
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Note that

2s− 1

(s− 1
2 )2 + ρj2

=
1

s− (1
2 + ıρj)

+
1

s− (1
2 − ıρj)

, (249)

hence the corresponding residue is 1. Furthermore

−2(g − 1)
2s− 1

s+ l
(250)

has residue 2(g−1)(2l+1) at s = −l. Statements (i) and (ii) are now evident.
The functional relation follows from (240), which can be written as

Z ′

Z
(s) +

Z ′

Z
(1 − s) = 4π(g − 1)(s− 1

2 ) tan[π(s− 1
2 )]. (251)

Integrating this yields

logZ(s) − logZ(1 − s) = 4π(g − 1)

∫ s−1/2

0

v tan(πv) dv + c, (252)

that is

Z(s)/Z(1 − s) = exp

[
4π(g − 1)

∫ s−1/2

0

v tan(πv) dv + c

]
, (253)

The constant of integration c is determined by setting s = 1/2. Notice that
the exponential is independent of the path of integration. ⊓⊔

One important application of the zeta function is a precise asymptotics
for the number of primitive closed geodesics of length less than L, L → ∞;
we have [12]

Π(L) =

∫ L

1

dΠ̃(t) +O

(
e

3

4
L

√
L

)
. (254)

The error estimate is worse than in Proposition 11, since we have replaced the
smooth test functions by a characteristic function. The asymptotic relation
(254) is often referred to as Prime Geodesic Theorem, due to its similarity
with the Prime Number Theorem. The proof of (254) in fact follows the same
strategy as in the Prime Number Theorem, where the Selberg zeta function
plays the role of Riemann’s zeta function.

15 Suggestions for exercises and further reading

1. Poisson summation.
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a) The Poisson summation formula (1) reads in higher dimension d

∑

m∈Zd

f(m) =
∑

n∈Zd

f̂(n) (255)

with the Fourier transform

f̂(τ ) =

∫

Rd

f(ρ) e2πıτ ·ρdρ. (256)

Prove (255) for a suitable class of test functions f .
b) Show that (255) can be written in the form

∑

m∈L∗

f(m) = Vol(L\R
d)
∑

n∈L

f̂(n) (257)

where L is any lattice in Rd and L∗ its dual lattice.
c) Any flat torus can be represented as the quotient L\Rd, where the

Riemannian metric is the usual euclidean metric. Show that the nor-
malized eigenfunctions of the Laplacian are

ϕm(x) = Vol(L\R
d)−1/2e2πım·x (258)

for every m ∈ L∗ and work out the corresponding eigenvalues λj .
d) Use (257) to derive a trace formula for

∞∑

j=0

h(ρj)

where ρj =
√
λj (this formula is the famous Hardy-Voronoi formula,

cf. [11]).

2. Semiclassics.

a) Show that for ρ→ ∞

Gρ(z, w) = − 1

2π

√
π

2ρ sinh τ
e−ıρτ−ıπ/4 +O(ρ−1), (259)

for all fixed τ = d(z, w) > 0. Hint: divide the integral (58) into the
ranges [τ, 2τ) and [2τ,∞). The second range is easily controlled. For
the first range, use the Taylor expansion for cosh t at t = τ to expand
the denominator of the integrand. Relation (259) can also be obtained
from the connection of the Legendre function with the confluent hy-
pergeometric series F (a, b, c; z),

Qν(cosh τ) =
√
π
Γ (ν + 1)

Γ (ν + 3
2 )

e−(ν+1)τ

(1 − e−2τ )1/2
F

(
1

2
,

1

2
, ν +

3

2
;

1

1 − e2τ

)
.

(260)
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b) Show that (259) is consistent with [10, eq. (41)]. Hint: use the (s, u)-
coordinates defined in (141).

c) Compare the Gutzwiller trace formula [10], [7], with the Selberg trace
formula. (Analogues of the ghost of the sphere (Section 6) for more
general systems are discussed in [2].)

3. The Riemann-Weil explicit formula.

a) Compare the Selberg trace formula with the Riemann-Weil explicit
formula [11, eq. (6.7)], by identifying Riemann zeros with the square-

root
√
λj − 1

4 of eigenvalues λj of the Laplacian, and logs of prime

numbers with lengths of closed geodesics. See [3] for more on this.
b) What is the analogue of the ghost of the sphere?

4. Further reading. In this course we have discussed Selberg’s trace for-
mula in the simplest possible set-up, for the spectrum of the Laplacian
on a compact surface. The full theory, which is only outlined in Selberg’s
original paper [15], is developed in great detail in Hejhal’s lecture notes
[12], [13], where the following generalizations are discussed.

a) The discrete subgroup Γ may contain elliptic elements, which leads
to conical singularities on the surface, and reflections (i.e., orientation
reversing isometries). Technically more challenging is the treatment of
groups Γ which contain parabolic elements. In this case Γ\H2 is no
longer compact, and the spectrum has a continuous part, cf. [13].

b) Suppose the Laplacian acts on vector valued functions f : H2 → CN

which are not invariant under the action of Tγ , but satisfy

Tγf = χ(γ)f ∀γ ∈ Γ (261)

for some fixed unitary representation χ : Γ → U(N). The physical
interpretation of this set-up, in the case N = 1, is that Aharonov-
Bohm flux lines thread the holes of the surface.

c) The Laplacian may act on automorphic forms of weight α, which corre-
sponds, in physical terms, to the Hamiltonian for a constant magnetic
field B perpendicular to the surface. The strength of B is proportional
to α.

I also recommend Balazs and Voros’ Physics Reports article [1] and the
books by Buser [4], Iwaniec [14] and Terras [16], which give a beautiful
introduction to the theory. Readers interested in hyperbolic three-space
will enjoy the book by Elstrodt, Grunewald and Mennicke [8]. Gelfand,
Graev and Pyatetskii-Shapiro [9] take a representation-theoretic view on
Selberg’s trace formula.
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