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Preface

This is a standard graduate course in algebraic number theory. The on-
ly prerequisites listed for this course are elementary number theory and
abstract algebra. In this note we shall limit our attention essentially to
algebra number fields (a finite extension of the rational number field), al-
though overwhelming majority of the results also hold for for function fields
(fields of algebraic functions over a finite field). The main reference book
is H.P.F. Swinnerton-Dyer’s book a brief guide to algebraic number theory.
We will cover:

e Three fundamental theorems of ideal theory

Hilbert’s theory of Galois extension

Valuation theory and the arithmetic of local fields

Ramification theory

Adele, idele and harmonic analysis on adele groups

Dedekind zeta functions, Hecke L-funtions and Tate’s thesis

e Artin L-functions

I would like to thank all the students who enjoined the course. Some
theorems of this lecture notes were taken by students. The course webpage
is www.prime.sdu.edu.cn/ghgji/algebraicnumbertheory. htm.

Please feel free to put a copy. Use them at your own risk. Any com-
ments or corrections about this notes are always welcomed at guanghua-
Ji@gmail.com.

Guanghua Ji

School of Mathematics

Shandong University

Jinan, Shandong 250100
www.prime.sdu.edu.cn/ghji/guanghuaji.htm
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Chapter 1

Ideal Theory

1.1 The Ring of Integers

1.1.1 Basic concepts

A complex number « is called algebraic number if it is a root of some
polynomial with coefficients in Q. A complex number « is called algebraic
integer if it is a root of some monic polynomial with coefficients in Z. An
algebraic number field k is a finite algebraic extension of the rational number
Q. Let Q be the algebraic closure of Q, i.e., the set of all algebraic numbers.

Recall: Algebraic extensions Take a € Q. (1), Q(a) = Q[a]. (2), There exists
a unique polynomial p(xz) € Q[z] which is monic, irreducible and of smallest positive
degree such that p(«) = 0. Furthermore, if f(z) € Q[z] and f(a) = 0, then p(z)|f(z).
p(z) is called the minimal polynomial of «; the degree of p(z) is called the degree of «
and is denoted deg(a). (3), The roots of the minimal polynomial p(z) of « are called
conjugates of a. « has deg(p(z)) conjugates. Conjugates of a have the same minimal
polynomial.

For the detailed proofs, we refer the reader to [I] or [5].

Theorem 1.1. Let o € Q. Then the following statements are equivalent:
(1), v is an algebraic integer.
(2), The minimal polynomial of o over Q has coefficients in Z.
(3), Z[a] is a finitely generated Z-module.
(4), There ezists a nonzero finite generated Z-submodule M of C such
that aM C M.

Proof. (1) = (2) « is an algebraic integer, then there exists a monic
polynomial f(z) € Z[z], such that f(a) = 0. And let p(x) € Q|x] be the
minimal polynomial of «, so we have p(z)|f(x), using Gauss Lemma(also
by Exercise 1.3), p(z) € Z(z) as required.
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(2) = (3) Suppose that f(z) = 2™ + ;2™ P + -+ + ¢, € Z[x] is the
minimal polynomial of a. Then o™ = —c;a™ ! — coa™ 2 —--- —¢,,. Hence
for any integer N, we have o € Za™ ! @ ... @ Z. It gives that o is in
the Z-module generated by 1,q,...,a™ !, so Z[a] is a finite Z-module.

(3) = (4) Let M = Z|a], (4) holds obviously.

(4) = (1) Let xq,--- ,x, generate M over Z. So M C Zx, & --- & Zx,.
By assumption, for ¢ = 1,--- ,r, we have

r
ar; = E CijTj, Cij € Z,
j=1

that is,
Lo T T2
a . = (Cm‘) . <~ (CYI — C) . =0
Ty Ty Ly
where C' = (¢;;). Since not all of 1, . .., z, can vanish, then det(al/—C) = 0.

Take f(x) = det(zI — C). Then f(x) is a monic polynomial in Z[z] such
that f(a) = 0. Thus « is an algebraic integer. [J

Corollary 1.2. The set Z of all algebraic integers is a ring. In particular,
the ring of integers of a number field k is the ring o, = kNZ . And
QNo,=QNnZ="7.

Proof. Suppose «, 3 € Z, then Z[a] and Z[3] are finite generated abelian
groups. And let {1,q,---,a™} be a basis of Z[a] and {1,5,...,5"} be a
basis of Z[3]. Tt is clear that {a/37|0 <i < m,0 < j < n} spans

Zle, B] = { (e, D) f (x,y) € Z[z,y]},

and then Z[a, 8] is a finite generated Z-module, a & 3, a8 € Z[«, 3]. Hence
a £ B, af are algebraic integers, and the set Z of all algebraic integers is a
ring. O

1.1.2 Norm, trace and discriminant

Let K/k be a finite separable field extension of degree [K : k] = n, and let
7 be an embedding of k£ in C, that is, a monomorphism. Then 7 extends to
exactly n embeddings o of K of into C such that the restriction |, = 7.
In particular, taking 7 to be the identity mapping on k, there are exactly
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n distinct k-embeddings of K into C. For the detailed proofs, we refer the
reader to [I] or [5].

Let K/k be any field extension of degree [K : k| = n, and let x4, ..., x,
be a basis for K as a k-vetor space. For any a € K, then left multiplication
defines a k-linear transformation

b, x— ax.
There exists a;; in k such that the matrix A = (a;;)
b1,y .. ymy) = (axy, ..o axy,) = (2, ..., 2p) Al
The characteristic polynomial of /, is
fa(A) =det(\] — A) = A"+ ap A"+ -+ + ag € K[X].
Denote the norm and trace of o from K to k by

TrK/k( )—tr( o) = t( ) =

= —Qp-1

(—1)"a

Note that the trace and norm of « are independent of the choice of the basis
for K over k.

Obviously, we can obtain the following properties for their definitions:
for any a,b € k and o, 5 € K,

(1), Trep(ac + bB8) = aTryp(a) + bTrryr(B),
(2), Ng/r(aff) = Ngs(a)Ngsi(8),

(3), Ng/k(aa) = a"Ng (o),

(4), Ng/k(a) = a", and Trg/i(a) = na.

Therefore, Ng /i, : K — k and Trg ), : K* — E* are group homomorphisms.

Proposition 1.3. (1), Let p(A) = A™ + ¢ AN 1+ -+ + ¢ € k[X] be the
minimal polynomial of a € K with [k(a) : k] = m. Then fo(A) = p(A)m
Nisi(e) = (=1)"(co)™™ and Trgp(a) = — L.

(2), Let K/k be a finite separable field extension of degree [K : k| = n.
Let oy, ..., 0, be distinct k-embeddings of K. Then fo(\) = [[—,(A — o),
Nipi(a) = [Timy oi(a) and Trijr(e) = 320, oi(e).

(3), Suppose k C L C K be a tower of number fields and let a € K.
Then Npj(Ni/o(a)) = Ngji(a) and Trp( Triyn(a)) = Trip(a).



Proof. (1) Let f(\) be the characteristic polynomial of . Clearly, it follows
form the definition of characteristic polynomial that

FO) =N = Trgp(@)X"" + -+ (=1)"Ng (),

and
FN) = pWFEHOT = p(x)rm.

Therefore, if oy = a,as,...,a, be the roots of p(z) in a splitting field
counting multiplicity, then we have

m

Zai = —cy, ﬁai = (=1)"cp.
i=1

=1

Hence, we have
NK/k(Oé) = (—1)”cm,

and the trace is the negative of the coefficient of the z"~! in p(x)™/™, that

1S

m
n n

Tr o) = — o; = ——c.

o) =23 =~
To prove (2), we know that there are m distinct k-embeddings of K («)
into C, each of them takes o to a unique conjugate «;, and extends to
exactly ™ distinct k-embeddings of K into C, all of which also take « to a

unique conjugate «;. Thus

n m

[T = ([T = Miule,

i=1 =1

and
n

201(06) = % Zai = Trigp(a).

i=1

(3), Let oy,---, 0, be the distinct embeddings of k£ in to K, and let

T, -+, Tp be the distinct embeddings of K into L. Then L/k is Galois, and

each mapping o; and 7; extends to an automorphism of L. Therefore it
makes sense to allow the mapping to be composed. By (2),

m n

Nek(Nigyo(@) = [ o[ [ () = T[T oimi(@)-

i=1 j i=1j=1

Now each o0;7; is an embedding of % into L, and the number of the mappings
is mn = [k : K|[K : L] = [k : K]. Furthermore, the o, = 7; are distinct.
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For if o;7; = o037, hence on K, then o, = o0y (because 7; = 7, = 1 on
K). Thus ¢ = k, so that 7, = 7, on L. But then ¢ = k. Therefore, we
have Np,(Ng/r(a)) = Nggp(a). The trace is handled the same way, with
products replaced be sums. O

Let k£/Q is a number field and o € 0. Then Ny/q(a), Tryo(a) € Z.
Write N(a), Tr(a) for Nijg(ar), Tryjg(a).

Let K/k be a finite separable field extension of degree n. Let oy,...,0,
be distinct k-embeddings of K. For ay,...,a, € K, we can define the
discriminant of {ay,...,a,}

drcsi(ar, ..., a,) = (det(o;(a;)))* = det(Trg/x(aia;)).

Proposition 1.4. With the notation and assumptions above.
(1), Set dgi(1,a,...,a" ") as dgi(a). Then

dicsi(a) = [ [(0s(a) = 05(a))*. (1.1)

i>j
(2), Suppose that p; =Y cijaj,i=1,..,n, oy, € K and ¢;j € k. Then

dK/k:(ﬁly Ce ,6,,1) = (det(Cij))ZdK/k(Oél, . ,Oén). (12)

(3), Let ay, ..., ap be a base for K as k-vector space. Then the discrim-
inant dg g, ..., o) # 0.

(4), The bilinear form (x,y) = Trim(zy) is a nondegenerate on the
k-vector space K.

Recall: Bilinear forms A bilinear form B(z,y) over a finite-dimensional vector
space V over a field F' is said to be non-degenerate when if B(z,y) = 0 for all z € V|
then y = 0, and if B(z,y) = 0 for all y € V, then x = 0; otherwise degenerate forms. Let
e1,...,en be a basis of V. Write o = > a;e; and 8 = ) bse; with a;,b; € F. Then

B(a,B) = Z a;b;B(es, e )
]

and we associate to B(z,y) the matrix (B(e;,e;)). A bilinear form is degenerate if and
only if the matrix is singular, and accordingly degenerate forms are also called singular
forms. Likewise, a nondegenerate form is one for which the associated matrix is non-
singular, and accordingly nondegenerate forms are also referred to as non-singular forms.
These statements are independent of the chosen basis.

Proof. Let 0;(a)) = o, where i = 1,...,n. Then it is easy to see that
- 2 i 2
@) = (det (190 15) ) = (et (0 D))
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which is the Vandermonde matrix, and so

= [H(oi(@) = 05(a))* = (=1)" "2 [ [ (0u(a) = 0;(a)).

J<i i#]

51 11 C2 -+ Cip aq
/32 C1 Co2 -+ Cop (8%
671 Cn1 Cp2 - Cnn 679

Therefore,

bl ) = det (o) = det (5 (Y0 )

= det (Z CijO'iO[j>2 = (det(c;;) det(o;a;))?
= (det(cij))QdK/k(al, Cey Q)

as requires.

(3) and (4), We first show (4), that is, the bilinear form (x,y) = Trg /i (2y)
is a nondegenerate. Let 6 be a primitive element for K /k, that is, K = k[6)].
Then 1,0,...,0" ! is a basis with respect to which form (x,y) is given by
the matrix M = Trg (0" 167"1); j=1, . It is nondegenerate because, for
0; = 0,0, we have

det(M) = d(1,0,...,6"") =[] (6: — 6,)* # 0.

1<j

If ay,...,a, be an arbitrary basis of K/k, then bilinear form (z,y) with
respect to this basis is given by the matrix M = (Trg/(a;a;)). From the
above it follows that d(a; ..., a,) = det(M) # 0.

[

Let & = Q(v) be a number field with [k : Q] = n, and let f(z) € Q[z] be
the minimal polynomial of v over Q. Then there are r; real embeddings and
ro pair complex embeddings where r; + 2r, = n. We say that k is totally
real if 7y = n or totally imaginary if 1 = 0. The couple (r1,79) is called the

signature of k.

Recall: Finitely generated abelian groups A group G is finitely generated if
there exists g1,...,9n, € G such that every element of G can be expressed as a finite
product of positive or negative powers of the g;. An abelian group G is said to free if



there exist elements g1, ..., g, € G such that every element of G can be written uniquely
in the form x = kig; + -+ + kngn where k; € Z. The set consisting of {g1,...,gn} is
said to be a basis of G and n is called the rank of G. If GG is a finitely generated abelian
group, so is the subgroup H < G. Let G be a finitely generated abelian group. Then
there is an isomorphism

G2Z& - ZLP(Z/dZ)S - & (Z/dZ),
N————’

T

where d; > 1 and di|ds|---|ds. Furthermore, the integers r, s and d; are uniquely
determined by G. For the detailed proofs, we refer the reader to [1] or [5].

Theorem 1.5. Let k be a number field with [k : Q] = n. The ring of
integers 0y 1S a lattice in k, i.e., o spans k and oy is a free abelian group
of rank n.

Proof. Let ay,...,a, be a basis of k as a Q-vector space, then there exist
m; € 7Z such that m;a; € o, 7 = 1,...,n. Without loss of generality, let
a; € o and {a, ..., a,} is a basis of k as Q-vector space. Hence, oy spans k,
i.e., for any a € k, there are aq,...,a, € Z such that « = aja1+- - -+ a,q,.
By the above theorem, we also have dy g(ou, ..., an) € Z.

Among all bases of k£/Q that consist of integers, choose one, say {w, ..., wy},
for which |di/qg(ov, . .., o)| is minimal. We claim that {wy,...,wy,} is a set
of free Z-generated for o.

For any x € 05,2 = Z:L:l a;w;, and a; € Q, we claim that a; € Z. If not,
suppose a; € Z. For wi = {a}w; + asws + -+ + apw, = T — [a1]w; € o
where {a;} and [a] are the fractional part and the integer part of the real

number a; respectively, and {w],ws, ..., w,} is also a basis of oy, and
wh {a1} ay a3 -+ a, w1 Wy
Sl
Wh, 0 o o0 --- 1 Wh, Wn
Therefore,
|dijo(Wh,wa, .. wy)| = |(det(M))2dk/Q(w1, ey W)

= HaiPdijolwrs - wi)
< |dk/Q(w1, R ,wn)|,

which contradicts the fact that |dy/q(ws, ..., wy)| is minimal. Hence a; € Z,
and the theorem is completely proved. O
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We say that {wq,...,w,} in the above theorem is an integral basis or

minimal basis for k. Let {w,...,w,} be an integral basis for k. Define the
absolute discriminant of k as
dk = dk/Q(wl, ce ,wn) = det(ai(wj)))Q = det(Tr(wzwj)) (13)

Clearly, the discriminant of the number field k over Q is well-defined and
an integer. In other words, for two integral bases for k, we get the same
discriminant for k. We also have that d; # 0. This is a consequence of the
following fact: the symmetric bilinear form Tr(zy) is non-degenerate.

For the relative algebraic number fields K/k,

Examples 1.6. A quadratic field k is by definition an algebraic number field
of degree two. There exists a unique square free d € Z such that k = Q(v/d).
Let

{(1+v@VZ if d = 1{modd)
w= V. if d =2,3(mod4),

Then {1,w} is an integral basis of k. And the discriminant of k is

g — d, ifd=1(modd)
M7 4d, if d = 2,3(modd).

Proposition 1.7. (1), The sign of dj is (—1)".

(2), Stickelberger’s theorem: d, =0 or 1 mod 4.
Proof. (1), Clearly, the matrix (o;(w;)) has 75 pairs of complex conjugate
rows, so its determinant is "> times a real number; thus the sign of d is
(—1)™. In fact, we have det(o;(w;)) = (—1)" det(o;(w;)).

(2), Write n = [k : Q], let oy, as, ..., a,, be an integral basis for oy, and
let o4, ...,0, be the distinct embeddings of k. Now write

A=>. (lﬁ[wwuo)? B=3)_ (Haiaﬂw)

7 even \i=1 7 odd %

where 7 denotes a permutation of 1,...,n. We have

det(UiOéj) = Z(_l)ﬂ'(l,? ..... n) Haiaﬁ(i)
Ly i=1
_ A-B

and therefore dj, = (A — B)? = (A+ B)? —4AB. Since 0;(A+ B)= A+ B
and 0;(AB) = AB, we see that they are rational numbers by Galois theory.
Since A + B, AB are algebraic integers, hence A + B, AB € Z. Therefore,
di, = 0 or 1 mod 4. ]



1.1.3 Noetherian ring

A ring R is Noetherian if every ideal in R is finitely generated. Obviously,
any principal ideal domain is Noetherian.

Lemma 1.8. The following conditions on a ring R are equivalent:

(1), R is Noetherian.

(2) R satisfies the ascending chain condition, i.e., every ascending chain
of ideals Iy C Iy C --- C I, C --- stabilizes.

(3), Every nonempty set S of ideals in R has a mazimal element, i.e.,
there exists an ideal in S not properly contained in any other ideal in S.
Proof. (1)=(2): Set I = |J.2, I, is an oj-submodule of R. Hence it is
generated by a finite set oy, ay,...,q, of elements of I. If a; € I}, then
a1, 0, ... 0, C I, then I C I ; so the chain is constant from Iy, on.

(2)=(3): If (3) were false we could construct strictly increasing sequence
Iy C I, C --- of op-submodule of R. For suppose we have chosen [y, ..., I,,.
The og-submodule of R which contains I, forms a non-empty family, and
this family contains no maximal element; so we can choose an [,,;; which
strictly contains I,,. This contradicts (2).

(3)=(1): Suppose that R contains an oi-submodule N which is not
finitely generated. Let S be the set of all finitely generated oj-submodule of
N, then by (3) we have that S has a maximal element My, but we can find
¢ to be an element of N not in M,. Then M, is not maximal in S because S
contains a strictly larger og-submodule of N generated by M, and . This
forms a contradiction. O

Proposition 1.9. The ring of integers oy of a number field k is Noetherian.

Proof. For any ideal a of o;, we take a nonzero element o € a and the
minimal polynomial for a over Q is p(z) = 2™ + ayz™ ' + - - - + a,, € Z[z].
Then we have

= —0" —a @™ — o~ €an’Z
and a, # 0. Let wy,...,w, be an integral basis of oy; then we have
A1, - - - Gmwy, € a. By considering a basis of k, whose elements are in

a and whose discriminant has minimal absolute value, we conclude, as in
the proof of theorem, that a is a free Z-module of rank n. In particular, a
is finitely generated. This completes the proof of the theorem. ]



1.2 Ideals and Factorization

Let ox be the ring of integers of a number field k. Unfortunately we do not
in general have unique factorization. Z[v/—5], the ring of integers of the
number field Q[v/—5], is well-known that it is not a unique factorization

domain:
21=3-7=(1+2v-5)(1 —2v-h),

where the numbers 3,7, 14+2v/—5 and 1 —2+/—5 are all irreducible elements.
In the following discussion, we shall prove that every ideal of 05 can be writ-
ten uniquely as a product of prime ideals, where uniqueness is understood
to mean uniqueness up to the order of the facotrs. In fact, this is true in
any Dedekind domain. Thus, in an algebraic number field, the prime ideals
play the same role as the prime numbers do in rational number theory. For
simplicity, we shall assume that all ideals are nonzero from now on.

1.2.1 Dedekind domain

An integral domain R is integrally closed in its field of fractions if whenever
« is in the field of fractions of R and « satisfies a monic polynomial f(x) €
R|x], then o € R.

Proposition 1.10. o is integrally closed. Also, the ring Z of all algebraic
integers is integrally closed in Q.

Proof. Suppose that a € k, there exists
f(@)=a" 4+ 2™+ 4 ¢y € 0x2],

such that f(a) = 0. We only need to prove that a € o0;. Clearly, R =

Zlcy, ..., cp) is a subring of og. Then Zlcy, ..., c¢y] is finite generated by
{B1,...,B:}. Therefore, {Bia? |1 < i < t,0 < j < m — 1} span R[a] =
Zlcy, ... cm,al, ie. Zley, ..., cm,al is finitely generated. So o € 0g. This
completes the proof of the proposition. O

A Dedekind domain is an integral domain R with 1 such that (1), R is
Noetherian, (2), R is integrally closed, and (3), every nonzero prime ideal
is maximal.

Lemma 1.11. Any principal ideal domain is Dedekind.

Proof. Let o0 be a principal ideal domain, and therefore Noetherian. Suppose
that § in k is integral over o and write 5= a;/as with ay, oy in 0. We can
assume that (aq,ag) = (1); for if (a1, az) = () with v not a unit, we can
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divide oy and ay by . If g% 4+ ;8" + -+ + ¢, = 0 where the ¢, are in
o then o} + cjaf tay + -+ + c,af = 0. It follows that (ay) = (af, as) D
(a1, a2)™ = (1), so that ay is a unit and f is in 0. Now let («) be a non-zero
prime ideal of 0 and let (3) be a maximal ideal containing («). Thus « is in
(8) and hence equal to 8 for some v in 0. But («) is prime, so one of 3, v
must be in («). If §is in («) then () C («) so that («) is maximal; but if
v= ad then a= fad when 6= 1, and then (#)= 1 which is forbidden. O

Proposition 1.12. o, is a Dedekind domain.

Proof. Our first goal is to show that if a is a nonzero ideal in o, then a has
finite index in o, that is, ox/a is a finite quotient ring. Let wy, ws, ..., w, be
an integral basis of 0. Take m € aNZ*. Then (m) = Zmw,®- - -®Zmw,, C

a C og. Obviously,
or/a = (or/(m))/(a/(m)).

And,
or/(m) = (Zw @ ®Zw,)/(Zmw, & - D Zmw,)
> (Zwi/Zmuw) @ - D (Zw, ) Zmwy,)
= (Z/mZ)® --- ® (Z/mZ).
Thus,

lor/a] < log/(m)| = m".

We only need to show that every non-zero prime ideal is maximal. For any
prime ideal p of o, 0x/p is a domain. Hence o /p is a finite domain, and
then it’s field. So p is maximal. O

For some applications it is convenient to generalize o, the purpose being
to enable us to ignore certain bad primes. If p is prime ideal of o;, we say
that o in k is integral at p if & = «ay/ay where «; € o and ay ¢ p. More
generally, let R be a Dedekind domain and let S be any set of prime ideals
in R. Then Rg denotes the ring of elements o« = a;/ay where o; € R and
ag ¢ pforallp € S. It is easy to see that Rg is Dedekind domain with prime
ideals p’ = pRg for p € S. If S is a finite set, then Rg is a principal ideal
ring by Exercise (1.14). If S consists of one prime ideal p, then Rg = R, is
called the localization of R at p. A local ring is a ring which has a unique
maximal ideal.

Proposition 1.13. Let R be a Dedekind domain and let p be any prime
ideal in R. Then

(1), Ry is local ring with a unique mazimal ideal my, = pR,,.

(2), Any element of the complement R, \ m, of my in R, is a unit.

(3), my N R = p.

11



Example 1.14. The localization Z, of Z at (p) consists of all rational
numbers a/b, a,b € Z, with p 1.

1.2.2 Fractional ideal

A nonzero fractional ideal a of k is a finitely generated og-submodule (i.e.,
opa C a) of k. If ay,...,, spans a as an og-submodule and «; = a;/b;
with a;,b; € oy, then ca C o, where ¢ = [[;%,b;. Conversely, if there
exists ¢ € k* such that ca C og, then ca is finitely generated as an ideal
of 0. If ca is generated as an ideal by {f,..., B}, then a is generated
by {¢1B1,...,c7 B}, as an op-submodule. Thus, a is finitely generated as
an oi-module. This yields an equivalent definition of fractional ideal. An
o,-submodule a of £ is called a fractional ideal if there exists ¢ € £* such
that ca C o4.

To avoid ambiguity, an ideal in 05 sometimes has to be called an integral
ideal. For any ¢ € k*, (¢) = coy, is called principal fractional ideal . The
inverse of a fractional ideal a, denoted a™!, is the Z-module

a ' ={rck|zac o}

Take d € a\ {0}, then da=! C aa™! C o). Therefore a™! is also a fractional
ideal of k. A fractional ideal a is said to be invertible if there exists a
fractional ideal b such that ab = o.

Let J; be the set of all nonzero fractional ideals of 0,. All the obvious
rules extend from ideals to fractional ideals. For any a,b € Ji, denote

a+b={a+bla€abecb}

ab = {Zaibimi cabcbne N}.

i=1
It is easy to show that the sum and product of two fractional ideals are
again fractional ideals. If a4+ b = oj, then we say that a and b are relatively
prime and write (a,b) = 1. Obviously, we have aNb = ab as (a,b) = 1.

Theorem 1.15. The set Ji of nonzero fractional ideals of oy is an abelian
group under ideal multiplication. Jy is called the ideal group of k with the
identity oy.

Proof. 1t suffices to show that every fractional ideal a is invertible. Before
proving theorem we prove firstly some lemmas. Note that we assume that
all ideals are nonzero.

e If a is an integral ideal then pips - --p,, C a for some prime ideals p;.

12



Let S be the set of all proper ideals of 05 that do not contain a product
of prime ideals. We need to show that S is empty. If not, then since oy is
Noetherian, S has a maximal element, say a. Then, a is not a prime ideal
of oy, since a € S, so there exists a,b € o, with ab € a, a ¢ a, b ¢ a. Then,
(a,a) 2 a, (a,b) 2 a. Therefore, (a,a) ¢ S, (a,b) ¢ S by the maximality of
a.

It follows that there exists prime ideals pi,...,p,, q1,. .., s, such that
(a,a) Dpr---p, and (a,b) D qq---qs. But ab € a, we have

a= (a7ab) ) (a’a)(u7b) = plﬂ"'aprqlw"vq&

which contradicts a € S. Thus, S must actually be empty, which means if
a is an integral ideal then pips - - - p,, C a for some prime ideals p;.

e For every prime ideal p of 0;, we have 0, C p~ L.

Since 1 € p~1, we have p C p~'p C 0x C p~! by definition. Take « € p.
From the previous lemma, («) contains a product of prime ideals. Let r be
the least integer such that («) contains a product of r prime ideals, and say
(&) D py -+ Py, with the p; nonzero prime ideals. Since p D («) D p1--- P,
there exists some integer ¢ such that p D p; (ab Cp = a C p, or b C p).
We can assume that ¢ = 1, so p D p;. But p; is a nonzero prime ideal of o,
and so is maximal. Hence, p = p;. Thus, po---p, € (), since r was chosen
to be minimal. Choose an element 8 € py---p, \ (). Then Ba™! ¢ o, and

Ba~'p C (p2---po)(a 'p1) Ca l(a) = op.

Hence, Sa~! € p~1. The proof of the lemma is completed.
e Every prime ideal p is invertible. In fact, we have pp~! = p~'p = o,.

Since p C pp~! C o, C p~! and p is maximal, then we have either
pp~! = 0y, or pp~! = p. It remains to show that pp~! = o,.

Assume that pp~! = p, then vp C p for any v € p~!. Since p is a finitely
generated Z-module, v € o, by Theorem . Thus, p~* C o0 which is a
contradiction to o, C p~!. Therefore, every prime ideal p is invertible and
we have pp™ = p~lp = o0;.

e Every integral ideal a is invertible.

If not, there would be a maximal non-invertible ideal a. Among the
ideals containing a, there is one which is maximal and therefore prime;
denote it by p. Thus a C p~'a C p~'p = 0;. If a = p~'a then an argument
like that for the previous displayed statement shows that p~! C oy, which
would imply o = pp~! C p. So a # p~'a. By maximality, p~'a has an
inverse b, and bp~! is an inverse for a.

e Every fractional ideal a is invertible.

13



Since every fractional ideal a, there exists 6 € k* such that da C 0.
Then the integral ideal b = da is invertible. We have

a(6b™) = (da)b™! = bbb~ = 0.
Hence, a is invertible and its inverse is a=*. O

Example 1.16. Consider the ideal p = 3Z of Z. We have that
1
bl ={o€QlapCZ}={acQ3nc}= 7

We have
pPCZCpicQ

We say b divides a, denoted by b|a, if there exists an integral ideal ¢
such that a = bc. b is called a factor of a and a is called a multiple of b.
We have the following equivalent assertions.

Corollary 1.17. For any a,b € J,, the following assertions a C b,ab™! C
0k, 0x C a~'b and bla are equivalent.

Proof. If a C b, then ab™! C bb™! = 0,. Reversely, if ab~! C o, then
ab™! C o, = bb~!, which means a C b. For the other statement, a C b if
and only if a™1b D o, the same argument shows that it is true as well. [

Theorem 1.18. Any fractional ideal a of k can be written uniquely in the
form

a= Hpord”(a), ordy(a) € Z,
P

where the product runs over all prime ideals of 0. All but a finite number
of the exponents are zeros, so that the product is actually well defined. In
particular, a is an integral ideal if and only if ord,(a) > 0 for all p.

Proof. Claim that a can be written in the desired form in at least one way.
It suffices to consider the case of a integral. For if a is arbitrary, let ¢ € oy
be such that ca is integral. Let co, =q1...qp, ca =py...p,. Then

1

a:plpgql_lq}: .

Let S be the set of ideals of 0, that cannot be written as a product of prime
ideals. Since o0 is Noetherian, we can choose a, maximal with respect to
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this property. Then a is not prime, so a C p for some maximal ideal p,
hence p is prime. Since p is invertible, we have

acC Cl]J_1 C 0k. (1.4)

Claim that a # ap™!. If ap~! = a, then p~! = o, by multiplying by a=*,
which is a contradiction. Thus, a C ap~!. Hence ap™! is a product of
primes by the maximality of a and if we multiply this product by p we get
a product for a. Note that the above argument also shows that an integral
ideal can be expressed as a product of nonnegative powers of prime ideals.

Without loss of generality, let us restrict ourselves to integral ideals. Let

a=p1...Pg=0q1-.-qn (1.5)

be two factorizations of a into prime factors. Then p; D a implies p;
contains some ¢;, say ¢;. But g; is prime and hence maximal, so that
p1 = q1. Multiplying both side of (1.5) by p;', we arrive at

P2 Py =10z2...qn-
The proof may now be completed by induction. O]

The integer ord,(a) is called the order of a in p, also denoted by ord,(a).
Denote d to be the greatest common divisor of a and b, if (1), d|a and ?|b;
and (2), if ¢Ja and ¢|b, then ¢[d. Denote d by ged(a, b). Similarly, define m
to be the least common multiple of a and b, if (1), a|m and b|m; and (2), if
aln and b|n, then m|n. Denote m by lem(a, b).

Corollary 1.19. For any ideals a, b € J,. and any prime ideal p of oy, we
have
(1), ordy(a™') = —ord,(a), ord,(ab) = ord,(a) + ord,(b);
(2), a+b=gecd(a,b), anb=Ilem(a,b); and
(3),
ordy(a + b) = min{ord,(a), ord,(b)}
ord,(a Nb) = max{ord,(a), ord,(b)}.
Proof. Tt is clear that ordy(a™') = —ord,(a) and ord,(ab) = ord,(a) +
ord,(b). Therefore, we have

bla & acbeab ! Coy
& ordy(ab™!) >0
< ordy(a) > ord,(b),

for all p.
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Since a C a+a,b C a+b, we see that a+b|a and a+b|b. If c|a, ¢|b, then
aCcand b C ¢, sothat, a+b C ¢, ie., cJa+b. Therefore a+b = ged(a, b).
Similarly, we have a N'b = lem(a, b). Since a + b (respectively, a N b) is
the smallest ideal containing both a and b (respectively, the largest ideal
contained in a and b), the formulas of follow. O

1.2.3 The Chinese Remainder Theorem

In this subsection we will prove the Chinese Remainder Theorem for the
ring of integers, deduce several useful consequences. In algebraic number
theory, we often have need of a notion of congruence that generalizes the
usual notion of congruence modulo an ideal. Let a be an integral ideal of oy,
and «, 8 € k. Two elements «, § are called congruent modulo a if « — 3 € a,
say, @ = B(moda).

Theorem 1.20. (The Chinese Remainder Theorem) Let a = [[7_, p5* be a
non-zero ideal of oy; then the natural map

g
o, — EPor/p;
i=1
1s onto and induces an isomorphism
g .
ok/a%’ @Ok/pf .
i=1

Proof. Since
g g
kerp = {z € oy|p(x) =0} = {z € o]z € ﬂpfi} - pri.
=1 =1

Thus only to prove ¢ is surjective. We only show a special case. Suppose a
ring R, and I, J are ideals in R, such that I + J = R. Choose x € [ and
y € J such that z+y = 1. Then x = 1 —y maps to (0,1) in R/I® R/J, and
y = 1l—zmapsto (1,0) in R/I®&R/J. Thus themap R/(INJ) = R/IGR/J

is surjective. By induction, we conclude ¢ is surjective. O]

Corollary 1.21. Let aq,...,a,, be nonzero integral ideals coprime in pairs

and let By, ..., Bm be elements of 0. Then there exists a € 0y, such that
a=pf;(moda;), =1,2,...,m. (1.6)
Proof. 1t’s trivial by the above theorem. O]

16



The following corollary means that ideals can be generated by two ele-
ments!

Corollary 1.22. Let a be a fractional ideal of or and a nonzero a € a.
Then there exists § € a such that

(o, B) = (o, B) = a0y, + Boj, = a.

Proof. Let us first assume that a is an integral ideal. Let pq,po,...,pm be
all the prime factors of (o) C a, so that a can be written as

m
a = pri, e; > 0.
i=1

Let us choose B; € pSi\pS*', by Corollary [1.21] there exists € a, such
that # = §; (mod p;'*'), i =1,2,...,m. Thus, 8 € p{"\pi'™", iLe., pi'[|(B),

so 3 € a. Since for every i,p; 1 (8)a”!, then we have ((8)a™!, (a)) =1, i.e.,
(B)a~! + (a) = 0x. To conclude, we have that

a=(8)+ (a)a C (o) + (B) C a.

If a is a fractional ideal, there exists by definition 0 # ¢ € o such that
a = cb with b an integral ideal. Thus «/c € b. By the first part there exists
p € b, such that b = (a/c, ). Thus a = («a, 5/c). O

Corollary 1.23. Let p be a nonzero prime ideal of 0. Then for anyn > 1
or/p = p"/p" (1.7)

as 0;-modules.

Proof. Take 8 € p™\p"!, i.e., p" || (B). We consider the map

@i oy —p"/p"t!
a+— af.

This will conclude the proof since we will prove that kerp = p and ¢ is
surjective.
Firstly, we have

ker p = {x € op|zB € p"*'} = {x € 0|7 € p} = p.

Secondly, given any v € p”, by Corollary we can find 0 € oy, such
that



since ((B)p~",p™) = 1. And we have 6 € p" N (L)p~" = (B). In other words,
3/ € of. Therefore

©(0/8) =4 mod p"t = 1.

Thus ¢ is surjective. O

1.2.4 Norm of ideals

Let a be an integral ideal of 0;,. We know that a is also a free abelian group
of rank [k : Q] = n. Suppose that {ay,...,a,},{f1,...,Bn} are respectively
integral basis of 05 and a. Then there exists a square matrix 7" = (¢;;) with
integral coefficients, such that

B 831
: =T f
B U
Denote the absolute norm of the integral ideal a by

N(a) = Ny(a) = Nyjg(a) = | det(T)].

Clearly, it is well-defined, independent of the choice of bases. By convention,
the norm of the zero ideal is taken to be zero.

Proposition 1.24. N(a) = |ox/a].

Proof. According to the abelian fundamental theorem, we can take an
integral basis {wi,...,w,} of oy, such that o, = Zwy & -+ & Zw,,a =
Zaywy & - - - B Zaywy,, a; € Z. Then,

1w aq w1
AnWm Qn Wn
Thus we obtain Ni(a) = |ajas---ay,| from the definition of the norm of

ideal. On the other hand,

op/a = (Zw @ - & Zwy)/(Zajw & -+ & Zapwy,)
Y (Zwi/Zayw) @ - B (Zw, | Lapwy,)
= (Z/amZ)® - B (Z]aZ).
Therefore, |ox/al = [[ |Z/aZ] = |ay - - - an| = Nig(a). O
i=1
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Theorem 1.25. Suppose that a, b are integral ideals of o, and a = pi* - - - pr
with p; are distinct prime ideals of 0. Then

(1), N(a) = N(p1)* --- N(p,)er.
(2), N(ab) = N(a)N(b).
(8), Let {51, ...,Bn} be an integral basis of a. Then

d(Bi, ..., Bn) = N(a)’dy. (1.8)
(4), Let a = (a) be a principal ideal of 0. Then N(a) = |N(a)|.
Proof. (1), (2), Let a, b be two coprime integral ideals. By CRT, we have
0r/ab = or/a @ oy/b,

thus N(ab) = N(a)N(b).
We are left to prove that N(p‘) = N(p)’, for i« > 1. Now one of the
isomorphism theorems for rings allows us to write that

N(p™") = lo/p" | = [(or/p") /(0" /p")].
By the above Corollary (1.23)), we have
N(p"™') = N(p")/N(p).

Thus N(p’) = N(p"!)N(p), and by induction on i, we conclude the proof
of (1) and (2).
(3), Form the formula (|1.2)), we have

d(B1, B, .., Ba) = (det 0:(B;))" = N(a)*dy.

(4), Let ag, ag, . .., a, be an integral basis of 05. Then aay, aqs, . .., axq,
is an integral basis of (a) = aog. An easy induction gives

d(acy, aqy, . .., aq,) = N(a)?dy.
On the other hand,
d(acy, acy, . .., ac,) = det(o;(aa;))?
= det(ai(a)ol- ij))z

= (H ai(a)) det(0i(a;))?

= N((l zdk.
Hence N(a) = |N(a)|. O
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We can extend the definition of norm to fractional ideals, in the following
way. Since any fractional ideal 2 of k can be written uniquely in the form
2A = a/b where a and b are ideals of o4, we can put

N(2) = N(a)/N(b).

Similarly, we have the same theorem ([1.25)) about the norm of fractional
ideals.
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1.3 Ideal Class Group and Units

We are now interested in understanding two aspects of the ring of integers
of algebraic number fields: what is the proportion of principal ideals among
all the fractional ideals, and what is the structure of their group of units.
We will introduce the notion of class number and prove it is finite. And we
will then prove Dirichlet’s unit theorem for the structure of the group of
units. Both results will be as consequences of Minkowski’s theorem.

1.3.1 Lattices and Minkowski’s theorem
A lattice A in R™ is a subgroup of the form

A:{ZaiailaiEZ}:Zal@---@Zan,
i=1

where «i,...,a, is a basis for R”. Hence A is a free abelian group(Z-
module) of rank n. A subgroup H of R" is discrete if each bounded subset
of R™ intersects H in a finite set.

Proposition 1.26. A subgroup A of R™ is discrete if it is a lattice; and
every discrete subgroup of R™ is a lattice of R™ for some 0 < m < n.

Proof. Let A = Zay ® - - - @ Za, be a lattice in R™. Then for any a € R",
we have o = Z’;:l r;a;, where r; € R. And let U be a bounded subset of
R", which means, there exists a positive number M such that for any a =
Yoo €U, || <Mforany i =1,...,n. If a € ANU, then |r;| < M
and r; € Z, which clearly have finitely many possibilities. Consequently;,
AN U is a finite set, hence that A is discrete.

Let H be a discrete subgroup of R” with a maximal R-linear independent
subset {aq,...,a,}. It is clear that we have 0 < m < n. We will show
that H is a lattice of R™. Denote D as the parallelepiped generated by
Q1, ..., Qy, that is,

D:D(al,...,am):{Zaiai|0§ai<1}.

=1

Clearly D C R" is bounded, and hence H ND is a finite set. For any = € H,
x can be denoted as z = )" | Aoy, where \; € R. Write, for any j € Z,

m

=1 i=1
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Then 2y € HND and © = 21 + Y., [Ni]ai, so H is a subgroup of R"
generated by a finite set (H N D) U {ay,...,qn}, which implies H is a
finitely generated abelian group.

Moreover, z; € H N'D for any j € Z but H N D is finite. Thus there
exist j,k € Z such that j # k but z; = z, which gives

(J—E)Ai=[jA] — [kNi] € Z,

so \; € Q, for any ¢ = 1,...,m. Then every generator of H is a Q-linear
combination of ay,...,q®,. Multiplying H with a common denominator
d (d # 0) of all the coefficients of the finite generators of H, we obtain
dH C Zay @ - -+ ® Za,y,. So dH is a subgroup of Zay @ - - - ® Za,,, and thus
m < rankH = rank(dH) < m. It follows that rankd H = m. Therefore,

dH =721 @ - © LB,
where ; € R" for any ¢ = 1,..., m. Then
H =751 /d) ® - - & L(Pm/d),
which yields H is a lattice of R™ spanned by {51/d, ..., 5,/d}. ]

Let A = Zay @ - -+ @ Zay, be a lattice of R™. Denote the fundamental
parallelepiped for A by

D:{ZGZ@1|O§6L1<1}

i=1

Let eq,...,e, be a canonical basis of R". Suppose a; = > -

j=1 Cij€; with
c¢;j € R. Denote the volume of A by

V(A) = V(R"/A) = | det(ci;)].

The subset S of R™ is said to be conver if whenever x,y € S then the line
connecting x and y lies entirely in S. And S is called symmetric about the
origin if whenever x € S then —z € S also.

Corollary 1.27. Let A be a lattice of R™. Then R™/A is compact.

Lemma 1.28. (Minkowski’s lattice point theorem) Let A be a lattice of R™,
and let S C R"™ be a conver compact subset which is symmetric with respect
to the origin. If

V(S) > 2" V(A),

then there exists 0 £ X € SN A.
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Proof. Firstly, assume that V(S) > 2"V (A), let us consider the map

1
p: 55— R/A

z—x+ A

If ¢ is injective, then V(35) < V(A), hence V(S) < 2"V(A), a contradic-
tion. Hence, there exist x1,x9 € %S and 1 # x9, such that p(z1) = p(z2),
and then ¢(z; — x9) = 0, and finally that z; — 25 € A. Since S is convex,
0% 2(z1 —a2) €5, then 0 # (21 — 22) € SNA.

If V(S) =2"V(A), then for all € > 0, there exists a piont A. such that
Ae € (1+€)SNA because V((1+¢€)S) > V(S) =2"V(A). If e < 1, then the
candidates for A, lie in the bounded discrete set 25 N A, so they belong to
a finite set. Hence there exists nonzero A = A\, € (1+¢)SNA for arbitrarily
small €. According to S is closed, we have A € SN A. ]

Let 04, ...,0,, be ry real embeddings and 0,, 11 = O 4rot1y -« s Opridry =
o, be ry pairs complex conjugate embeddings of k. We consider the following
maping, called canonical embedding of k,

c:k — R"”

Cx x
a — (o0, ..., 000, RO 10y ROy 10, SO 10 o SO ().

Lemma 1.29. Let a be any fractional ideal and o be the canonical embed-
ding of k. Then o(a) is a lattice in R", and

V(o(a)) =27"2/|dk|N(a).
Proof. Let ay,as,...,a, be an integral basis of a, that is,
a=2Zo; PP La,.
Then
o(a) =Zoa; @ -+ & Loy,

As shows in the part above, V(o (a)) is the absolute value of the determi-
nation of the matrix M

x 0

oy - o Roppoq -0 Koy Sop i o0 SOp 40
x 0

oy s 0py Rop a0 Rop g0 SO0 0 S0 4,00
Cx Cx

o1, o OpQy Rop 0y o ROy pran SO0 0 SO 4Oy
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By doing the column operators, we have
V(o(a)) = |det M|

= [(—2i)7"2| \/dk/@(omaz,"' )
=27"2\/|dy|N(a).

Since det M # 0, show that oaq,...,oq, are R-linearly independent. It
follows that o(a) is a lattice in R™. O

1.3.2 The class number

Let P, denote the subgroup of J; formed by the principal fractional ideals,
that is, ideals of the form (a) = aoy, for every o € k*. The ideal class
group of k, denoted by Cy, is

And we denoted by h; the cardinality C, called the class number of k.
Before the proof of the class number is finite, we firstly prove the following
lemma.

Lemma 1.30. (1), Let a be a nonzero fractional ideal of the number field
k with [k : Q] =n =ry + 2ry. There exists a nonzero a € a, such that

N(a)| < (f) VN (@), (1.9

7

(2) Every ideal calss of k contains an integral ideal a such that

N(a) < (f)m %\/@- (1.10)

™

Proof. (1) Let o be the canonical mapping of k, and let f : R" — R be the
function defined by

T1 T2
f(x17 s 7'TTL) = Z |xl’ + 22 \/x72~1+j + x%1+r2+j'
i=1 7=1

Write S; = {x = (z1,...,2,) € R" : f(x) <t}, for any ¢ > 0. It is easy to
check that S; is a convex compact subset of R™ which is symmetric about
the origin. And we have

m\"2 t"
V(St)://f‘-( )<tdx1d$n:2” (5) ﬁ
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By the lemma 1’ and taking t" = (2)2n!\/|d;|N(a), we have V(S,) =
2"V (o(a)). There exists 0 # a € a such that ca € S, that is, f(oa) < t.
Therefore,

N@I| = []lowe)] < (%Z\axan)

= (flea) s e

4\ n!
= (=) —+/|di|N(a).
(3) ZViain
This completes the first part of the lemma.
(2), Suppose a is any nonzero fractional ideal of 05. Our goal is to prove

there is an integral ideal ca with small norm. By the above, there exists a
nonzero o € a~! such that

Vi< (1) SV

The ideal («)a is an integral ideal, say b. Then
4\" n!
N(B) = IN@IN@ < (2 ) /T

which proves the second part of the lemma. O

My, = (2)" 2 /]dy] is called the Minkowski’s constant of the number
field k.

Theorem 1.31. The class number of k is finite.

Proof. We claim that there are only finitely many integral ideals a of o
with norm at most any give positive integer ¢. Indeed, if N(a) = m, that
is |ox/al = m, then m € a, see exercis. It follows that

al(m) = pi' - py’,

where p,; are different prime ideals of oj. the number of a which satisfies
N(a) = m is finite. And then there are only finite integral ideals satisfy
and every ideal class of k contains also an integral ideal satisfy .
Then the class number of k is finite. O

Corollary 1.32. Suppose that k # Q is an algebraic number field. Then

™\ "2 n"
|dy > <Z> > L (1.11)
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Gauss’ class number problem: The problem of finding an effective
algorithm to determine all imaginary quadratic fields with a given class
number h is known as the Gauss class number problem. Stark (1967) and
Baker (1966) gave independent proofs of the fact that only nine such num-
bers exist; both proofs were accepted.

1.3.3 Dirichlet’s units theorem

We say a nonzero a € oy is a unit if aff = 1 for some [ € o0,. Clearly, the
units of o5 form a group which in standard notation is just o} or Uy. w € k
is called the root of unity if W™ = 1 for some integer m. All the roots of
unity in k forms a group Wj.

Lemma 1.33. Wy is a finite cyclic group. If H be a finite subgroup of k™,
then H < W,,.

Proof. Let z be an element of H whose order n is the exponent of H, that
is, the least common multiple of the orders of all the elements of H. Then
y" = 1for every y € H, so H consists of roots of unity. Since the polynomial
X™ — 1 has at most n distinct roots, we have |H| < n. But 1,z,...,2""!
are distinct elements of H, because z has order n. Thus H is cyclic. O]

Lemma 1.34. (1), u € Uy <= N(u) = +£1.
(2), u e Wy <= lo;(u)| =1,i=1,...,n.

Proof. (1), If u is a unit, then u™! is also a unit, and N(u), N(u™!) are
integers. But N(u)N(u™t) = 1, it follows that N(u) = 1.
Conversely, if v € 0 and N(u) = %1, then u is a root of the equation
f(x)=2™ +ap2™ 4+ Far+1 e Z[X)
So, the u™! is a root of the equation

g(z) = 2™+ (2™ ' - Faporz + 1) € Z[X].

Thus u~! € o4, which implies u € U,
(2), If u € Wy, then there is m satisfies u™ = 1. And then |o;(u)|™ =

loi(u™)| = 1, it follows that |o;(u)| = 1, for every i = 1,...,n.

Conversely, if |o;(u)| = 1,i = 1,...,n, then o;(u) = e?™™/™i where
0 <n;/m; <1,n;,m; €Z, and (n;,m;) = 1. So (o;(u))™ = 1, specially the
embedding is identity, we have v = 1. Thus u € W}. O
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Theorem 1.35. (Dirichlet’s unit theorem)
U 2W, 7"

where v = 11 + 1o — 1. That is, there exist v units {€1,...,€.} such that
every unit u of o can be expressed uniquely as

u=weyt € (1.12)

()

where the w € Wy and n; € 7.

Proof. Let o : k — R™ x C™ ~ R" be the canonical embedding of k. The
logarithmic embedding of k is the mapping

AU, — R
a — (logloi(@)l,...,log|om1rm(@)])-

Since A(af) = A(a)+A(S5), A is a homomorphism from multiplicative group
Uy, to the additive group of R™ "2,
e The image of A lies in the hyperplane:

T+, —|—2$T1+1+"'2$r1+r2 = 0.

If a € Uy, then by the Lemma ([1.34]),

r1+ra

> Ailogloi(@)] =) log o) = log |N(a)] =0,
=1 =1

with \;, = 1,i =1,...;,rpand \; = 2,4 = ry +1,...,1r; + ry. Clearly, the
hyperplane has dimension r = r; 4+ ry — 1.
e The kernel of A\ consists of exactly all the roots of unity W;.

a€kerA & logloj(a)|=0,i=1,...,1r +ry
& o) =1i=1,...,n
< o E Wk
e The image of ) is a discrete subgroup of R "2,
That is, any bounded subset of R"*"2 contains only finitely many points

of A\(Ug). Thus A(Uy) is a lattice in R®, hence a free Z-module of rank s, for
some s < r; 4+ ry. Now by the first isomorphism theorem, we have that

with A\(x) corresponding to the coset zW.
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In order to do so, we prove that if C'is a bounded subset of R™*"2_ then
C"={zx € Uy | \(x) € C} is a finite set.

Since C'is bounded, all |o;(z)|, z € Uy, i = 1,...,n belong to some in-
terval say [a~!,a],a > 1. Thus the elementary polynomials in the o;(z) will
also belong to some interval of the same form. Now they are the coefficients
of the characteristic polynomial of x;, which has integer coefficients since
x € Ug. Thus there are only finitely many possible characteristic polynomi-
als of elements x € C’, hence only finitely many possible roots of minimal
polynomials of elements = € C’, which shows that z can belong to C’ for
only finitely many .

e The kernel of X is a finite group.

Now if we set C' = 0, C” is the kernel ker(\) of A restricted to Uy, and is
thus finite.

e U, is a finite generated abelian group, isomorphic to p(0x) XZ*, s < r1+7s.

If 2y p(0k), . .., zsp(0y) form a basis for Uy /uu(0;) and x € Uy, then zpu(oy)
is a finite product of powers of the x;G, so x is an element if p(oy) times
a finite product of powers of z;. Since the A(z;) are linearly independent,
so are the x; (provided that the notion of linear independence is translated
to a multiplicative setting: z1,...,x, are multiplicatively independent if
xy™ -2l = 1 implies that m; = 0 for all 4, from which it follows that
™t xls = ot - -2 implies m; = n; for all ¢). The result follows.

We now improve the estimate of s and show that s < r; + 17, — 1. so as
above, A\(Uy) is free Z-module of rank s < ry +ry — 1. O

We call {e1,...,€6.}in a fundamental system of units for the num-
ber field k. Let {€,...,¢.} be a fundamental system of generators of k
modulo roots of unity (this is, modulo the torsion subgroup). Let M be the
r x (r + 1) matrix

log |0y (€1)] log oy, (1) 2log oy, 11(er)| -+ 2loglorii(er)]
logloi(ez)] -+ logloy,(e2)| 2logor, 11(er) 2log |oy41(€2)|

loglow(er)| -+ logloy ()] 2loglora(e)] -+ 2logloni(e)]

and let M; be the r x r matrix

(Ailog |Ui(€j)|)rw

where \; = 1 if 0; is a real embedding and \; = 2 if 0; is a complex
embedding, obtained by deleting any jth-column. It can be checked that the
determinant of M, is independent up to sign of the choice of fundamental
system of generators of k and is also independent of the choice of j. The
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absolute value of the determinant of the matrix M; is called the regulator
of the number field k, say Ry. The regulator is one of the main ingredients
in the analytic class number formula for number fields.

1.3.4 Units in quadratic fields

Imaginary quadratic fields:

Let £ = Q(v/—d) be an imaginary quadratic field. There are no real em-
beddings, so r; = 0,7 =1 and r = ry + 1, — 1 = 0, the only units in o are
the roots of unity in k.

(i), as k = Q(v-1)

Up = Wi =1 (plp = 4=2), as k= Q(V=3)
(—1), otherwise.

Real quadratic fields:

Let k = Q(v/d) be a real quadratic field. Since the Q-automorphisms of k
are the identity and 7 : a+ 8vd — a— $V/d, there are two real embeddings
and no complex embeddings. Thus ry = 2,7 =0andr=7r; +r, — 1= 1.
The only roots of unity in R are +1. By Dirichlet’s unit theorem, the group
of units in the ring of algebraic integers is isomorphic to

Up =2 {£1} x u” = {+1} x Z.

If v a unit, then £u,+u~! are also units. The unique generator greater
than 1 is called the fundamental unit of k.
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1.4 Extensions of Fields

Let K/k be an extension of algebraic number fields with [K : k] = n, and
let p be a prime ideal of o;. Let pOy denote the ideal of D g generated by
p; it consists of all finite sums > ar with a € O, 7 € p. The ideal pOg
is not in general prime ideal. In this section, we will consider the following
general problem: Given any prime ideal p of 0y, determine the factorization
of pOx into prime ideals of Og.

1.4.1 Factoring of prime ideals in extensions

Recall: Finite Fields (1), Let E be a finite field of characteristic p. Then |E| = p™
for some positive integer n. Moreover, E is a splitting field for the separable polynomial
f(X)=X?P" — X over F,, so that any finite field with p™ elements is isomorphic to E.
(2), If E is a finite field of characteristic p, then E/F, is a Galois extension. The
Galois group is cyclic and is generated by the Frobenius automorphism o(z) = a2?,x € E.
(3), Let E//F be a finite extension of a finite field, with |E| = p™, |F| = p™. Then
E/F is a Galois extension. Moreover, m|n, and Gal(E/F') is cyclic and is generated by

the automorphism 7(x) = 2",z € E. Furthermore, F is the only subfield of E of size
m

P
(4), The multiplicative group of a finite field is cyclic. More generally, if G is a finite
subgroup of the multiplicative group of an arbitrary field, then G is cyclic.
(5), GF(p™) is a subfield of GF(p™) if and only if m is a divisor of n.
For more details, we refer the reader to [I] or [5].

Let K/k be a finite extension of algebraic number fields with [K : k| = n
and p be a prime ideal of 0;. Let pOg be written in a unique way as

pDK: il...gng’

where Py, ...,B, are distinct prime ideals of Ok and the e; are positive
integers. Then the B; are called the prime divisors of p in K by writing
PBlp. If Plp, then p is called the restriction of P to k, or that P lies over
p (P is above p) since P N o, = p. We then actually have the following
lemma.

Lemma 1.36. Let K/k be a finite extension of algebraic number fields and
P be a prime ideal of Ok. Then

(1), p =P Noy is a prime ideal of or; and p =P N o < Plp;

(2), If p =P N oy, then the residue class field ox/p is a subfield of the
finite field O /B. In particular, the finite field ox/p has characteristic p
where p s the restriction of p in Z.

Proof. (1), Clearly, 8 N o is an ideal of of. For any o, € o and aff €
B Nog, then a € P or § €P. Hence, « € P Noy or €PN og. It follows
that 3 N oy is prime.
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If p =P nNog then p C P. Hence pOx C P, and then P|pOk.
Conversely, assume that PB|p, hence contains pOx C PB. Then

pzpﬂokaDKﬂokC%ﬂok.

We have p = 3 N o, because every nonzero prime ideal is maximal in the
Dedekind domain oy.
(2), Let ¢ be the mapping

Q0 — DK/m
a — a+*P.

It’s easily check that ¢ is a homomorphism of rings, and ker ¢ = BNoy = p.
By the homomorphism, we may view oy/p as a subring of O /B, hence
Ok /B a finite dimensional vector space over the finite field oy /p. O

If we lift p to Ok and factor pOx as P - - - Py’, that is,

POk =Pi' - Py, (1.13)

the positive integer e(;/p) = e; is called the ramification index of B; over
p. The degree O /B; : 0r/p] = f(Bi/p) = fi of the finite fields extension
is called the residue class degree (inertial degree) of B; over p. The integer
g is called the degree of split(decomposition number) of p.

Theorem 1.37.

g

> eifi =[Ok /pOk : op/p] = [K : k]. (1.14)

=1

Proof. Taking norm form two sides (1.13)), we have

€i

NEox) =TTV = TTIow/%

=1

-
I

g g
> eifi > eifi
i=1 — N(p)ml .

fit = log /p

I
Em

|ox/P

i=1

-
I

On the other hand, denote the mapping ¢ by

¢Z 0 —— DK/]JDK
a — a+pOgk.
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It is easily seen that the mapping ¢ is a ring homomorphism and its kernel
is p. Then the ring V = Ok /pOk can be look as a vector space over the
finite field I, = o) /p. It follows that

N(pDK) = |DK/pDK‘ = |0k . pldimeV — N(p)dimﬂ?pv’

hence that Y7 | e;f; = dimg, V. Now, it sufficient to show that dimg, V' =
[Ok/pOk : 0/p] = n.

e We claim that dimp, V' < n.

Let xy,..., 2,41 be any elements of Og. Since [K : k] = n, there exist
ai,...,0,11 € k which are not all zeros such that

Ty + -+ Q1 Tpgr = 0.

Without loss of generality we can assume that aq,...,q,.1 € 0. Let a =
(i, ...,an41) be an ideal of og. There exists an integral ideal b such that
ab = (a) € (a)p where a € oy, by the exercise. It follows that there is § € b
such that Sa & (a)p. Therefore (3/a)a = b~! C ok, and then we obtain
(B/a)a; € o for 1 <i<n—+1.

On the other hand, we have (8/a)a € p. Then there exists j such that
(B/a)a; ¢ p. In other words, set v; = (8/a)ay, thenv; € o for 1 <i <n+1
but 7; ¢ p for some j. Hence 7; # 0 in the residue field oy /p. Multiplying
by B/a, we have

Y21+ A Vg1 Zpgr = 0.

Let
MNT1+ -+ Yup1Tps1 =0

be reductions mod pOf of the above equation. It follows that any n+1 ele-
ments Ty, ..., Ty of Ox/pOk are linearly dependent because 71, . .., Yn11
are not all zeros. Hence dimg, V' < n, which is our claim.

e We have dimg, V' = n when k = Q.

Let

pDK: ?"';‘ng'

By Theorem (|1.25)), we have

N(p9Ok) = [Nkjo(p)| = p"

Therefore, we get dimg, V = >"7 | e;f; = n.
e We have dimg, V' = n for any number field .
Let pNZ = pZ and

é ér
poR =Py Py,
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where & = e(p;/p) and f; = f(pi/p). Then S1_ &fi = [k : Q] = m and
p; = p for some 1 < j <r. Setting Ok /p; Ok : 0x/p;] = N, we have n; < n.
Since

PO = (por)Ox = (P1Or)™ -+ (p.OK),

we see that

Ox/pOk| = N@pOx) =[] Ne(piOx)"

i=1

m;€;

= [119x/pi0xl% =] lox/p:
=1 1=1

— ﬁpﬁiéifi — pZZ:1 ﬁiéifi.
=1

On the other hand, we have
Ok /pOK| = PlEQ — HIKEEQ] _ ymn

which follows that

T T
=1 =1

Thus n; = n for any ¢« = 1,2,...,r. In particular, we have n; = n which
completes the proof. O

Definition 1.38. Let k, K and p,*B; be as above.

(1), If e; = 1 for some i, then we say that P; unramifies over p. If e; > 1
for some i, then we say that B; ramifies over p and p ramifies over in K/k.
If e; =1 for all i then we say that p is unramified in K/k.

(2), Let p be the characteristic of the residue field oy /p. If e; > 1 and
p1e;, then we say that PB; is tamely ramified. If ple; then we say that B; is
wildly ramified.

(8), The prime ideal p is totally split in K if g = n; totally ramified if
e = n; undecomposed (interia) if f = n.

Lemma 1.39. Let k C L C K be a finite extension of number fields. Let
P be a prime ideal of Ok, P =P N O, and p =P Nog. Then

e(B/p) = e(B/Pr)e(Pr/p),
FCB/p) = f(B/BL)f(BL/p).

Proof. Clearly. [
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An efficient factorization of a rational prime in a number field

Theorem 1.40. (Dedekind-Kummer Theorem) Suppose that there is an
element « € k such that o, = Z[a]. Let f(x) be the minimal polynomial of
« over Z[a]. Let p be a rational prime and suppose

f(x) = filz)? - fo(z)™ (mod p),
where each f;(x) is irreducible in F,[X]. Then

€g

pow = it
where p; = (p, fi(a)) are prime ideals, with N(p;) = pie&/i.

Proof. We first note that

(p, f1(@) - (p, fy(@))® C po.

Thus it suffices to show that p; = (p, fi(«)) are prime ideals, with N(p;) =

p%,d; = deg f;.
Now, since f;(x) is irreducible over F,[X], then F,[X]/(fi(x)) is a field.
Also

ZIX]/(p) = Fp[X] = Z[X]/(p, fi(w)) = Fp[X]/(fi(2)),

and so Z[X]/(p, fi(x)) is a field.
Consider the map ¢ : Z[X] — Z[a]/(p, fi(a)), Clearly

(p, fi(x)) Cker(p) = {n(z) : n(a) € (p, fi@))}

If n(z) € ker(p), we can divide by f;(x) to get

n(z) = q(@) fi(x) + ri(x), deg(r;) < deg(f:)

We assume that r; is nonzero, for otherwise the result is trivial. Since
n(a) € (p, fi(a)), then r;(«) € (p, fi(a)), so ri(a) = pa(a)+ fi(a)b(«). Here
we have used the fact that o, = Z[a/.

Now define the polynomial h(z) = r;(z) —pa(z)— f;(x)b(x). Since h(a) =
0 and f is the minimal polynomial of «, then h(x) = g(z)f(z) for some
polynomial g(z) € Z[X]. We conclude that r;(z) = pa(x) + fi(z)b(x) for
some a(z),b(x) € Z[X]. Therefore r;(z) € (p, f;(x)).

Thus,

Zlol/(p, fi(e)) = ZIX]/(p, fi(x)) = Fp[X]/(fi(x))
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and is therefore a field. Hence,(p, f;(«)) is a maximal ideal and is therefore
prime.
Now, let h; be the ramification index of p;, so that

h h
pog = pit - pho,

and let d; = [ogx/p; : Z/pZ]. Clearly d; is the degree of the polynomial
fi(x). Since f(a) = 0, and since f(x) — fi(z)® --- fy(x)% € pZ[X]. Also,
P C poy + (fi(2)®) and so

h h
pil...ng Cpok:pll...pgg_

Therefore, e; > h; for all 7. But

> eid; =degf = [K: Q] =) hd;
Thus, e; = h; for all i. O

The above theorem gives a concrete method to compute the factorization
of a prime p in oy:
(1), Let f(x) be the minimal polynomial of o such that oy = Z[a].

(2), Compute the factorization of f(z) = f(x) mod p: f(x) = [[]_, fi(x)".
(3), Compute p; = (p, fi(a)).

Examples 1.41. 1, Let us consider k = Q(+/2) with ring of integers o), =
Z[\?’/§] We want to factorize 5oy. By the above theorem, we compute

? —2=(x+2)(2*-2r—1) mod 5.
We thus get that
505 = p1p2 = (5,24 V/2)(5, V4 — 2v/2 — 1).

2, As all know, there are two essentially different factorizations into
prime elements

21 =3-7=(142V=5)(1 —2v/-5)

in the ring o = Z[\/—5|. By the above theorem, we have the decompositions
of prime ideals

(3) = pip2 o (37\/—_5_1)(37\/___2>
(7) = paps 2 (7,V/=5 — 3)(7, V=5 — 4).
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This is implied by the decompositions:
2+ 5= (z—1)(x — 2)(mod3), z2° +5 = (x — 3)(z — 4)(mod7).
We also have
(142V=5) = pips, (1 —2V—=5) = papu.

Then the factorization (21) = pipapsps is unique decomposition as a product
of four prime ideals of oy.

1.4.2 Applications in special fields

Theorem 1.42. Let k = Q(\/d) be any quadratic field where d is a square-
free integer.
(1), If p|dy, then poy = p* and N(p) = p, i.e., p is totally ramified.
(2), Assume that p > 2 and p 1 dy.
(i), If (g) = 1, then we have pox = p1p2, P1 # P2 and
N(p1) = N(p2) =p, i.e., p is totally splits.
(i), If (%) = —1, then we have poy, = p, N(p) = p?, i.e., p is interia
(3), Assume that p =2 and p{ dy.
(i), If d = 1(mod8), then 2 is p is totally splits in k/Q.
(i1), If d = 5(mod8), then 2 is p is interia.

Corollary 1.43. A positive integer n is a sum of two squares if and only
if m is even where p™ || n for all primes p = 3(mod4).

1.4.3 Relative norms

Let £k C K be algebraic number fields. Let J, and Jx be the groups of
fractional ideals of k and K respectively. We can also generalize the relative
norm by multiplicativity as follows:

N K/k - J K — Jk
SB —> pf(gp/p) )
which is a group homomorphism. This definition may be extended to each

nonzero fractional ideal 2l € Jx. Note that this defines a relative norm for
ideals, which is itself an ideal.

Proposition 1.44. Let N, be the relative norm of number fields K/k
with n = [K : k.
(1), For every a € Jy, Ngp(aOg) = a”.
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(2), For k = Q and each nonzero fractional ideal A of K, we have
Ni (@) = N(A)Z,

where N(21) = |Og : 2| is the absolute norm.
(3), Let k C L C K be an extension of number fields. Then

NK/k = NL/k © NK/L-

Proof. (1), Due to the multiplicativity of the relative norm of an ideal, it
suffices to prove this for a prime ideal p € J;. Let

e e e
pOK = PP P,

where B, are distinct prime ideals of O and |Fy,| = f;. Then we have
g g
Nicp(pOx) = [ Niesu(B0) = [[ o = .
=1 i=1

(2), Let B be any prime ideal of O, and let PNZ = (p). Let [Ox /P :
Z./pZ) = f, that is, N = p/. By definition,

Nio(B) = (p2)) = p'Z = (NP)Z,

which proves the assertion form the multiplicativity of the relative norm.

(3), By the multiplicativity of the relative norm, it suffices to prove the
statement for a prime ideal B of K. Let PN Oy, = P and P N o = p.
Then Ng /1. () = p/F/P. On the other hand, we have

Nig/(B) = BLFPD) and Ny (i) = p/ /P,

Therefore, by the Lemma ((1.39)),

N (N/n(B)) = Ny (m{(m/‘ﬁm) — pfRL/R)B/BL)
= pf(‘ﬁ/P) — NK/k(;»B)-
O

Since Z is a principal ideal domain, every finitely generated torsion-
free Z-module has a finite Z-basis; in particular, any fractional ideal in a
number field has an integral basis. If K/k is a finite extension of number
fields where 0, is a Dedekind domain but not necessarily a principal ideal
domain, then the fractional ideals of K are finitely generated and torsion-
free as op-modules, but not necessarily free. That is, the integer ring O
may not exist a basis as an og-module.
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1.5 Global Hilbert Theory

Recall: (Galois Theory) If E/F is normal and separable, it is said to be a Galois
extension; we also say that E is Galois over F. If E/F is a finite Galois extension, then
there are exactly [E : F| F-automorphisms of E. If E/F is an arbitrary extension, the
Galois group of the extension, denoted by

Gal(E/F) = {o]| o is an automorphism of F and o|r = 1}
is the set of F-automorphisms of E.

e An important theorem of Emil Artin states that for a finite extension E/F, each
of the following statements is equivalent to the statement that E/F is Galois:

(1), E/F is a normal extension and a separable extension.

(2), E is a splitting field of a separable polynomial with coefficients in F.

(3), [E : F] = |Gal(E/F)|; that is, the degree of the field extension is equal to the
order of the automorphism group of E/F.

e Let E/F be a finite Galois extension with Galois group G = Gal(E/F'). Then the
fixed field of G is F. If H is a proper subgroup of G, then the fixed field of H
properly contains F'.

e Fundamental Theorem of Galois Theory: Let E/F be a finite Galois exten-
sion with Galois group G. If H is a subgroup of G, let F(H) be the fixed field of
H, and if K is an intermediate field, let G(K) be Gal(E/K), the fixing group of
K.

F is a bijective map from subgroups to intermediate fields, with inverse G. Both
maps are inclusion-reversing, that is, if Hy < Hy then F(H;) > F(Hy), and if
Kl S KQ, then Q(Kl) 2 Q(Kg)

Suppose that the intermediate field K corresponds to the subgroup H under the
Galois correspondence. Then

» E/K is always normal, hence Galois;
» K/F is normal if and only if H is a normal subgroup of G, and in this case,

» the Galois group of K/F' is isomorphic to the quotient group G/H. Moreover,
whether

or not K/F is normal,
» [K:F]=[G:H]and [E: K| =|H|.
e [f the intermediate field K corresponds to the subgroup H and o is any automor-

phism in G, then the field oK = {o(z)|x € K} corresponds to the conjugate
subgroup o Ho~!. For this reason, ¢ K is called a conjugate subfield of K.

For the proofs we refer the reader to [I] or [5].

Throughout this section, let K/k be a Galois extension of number fields
with the Galois group G = Gal(K/k) and [K : k] = n. In particular, the
Galois extensions K /k are called the abelian extension and cyclic extension
whose the Galois groups are abelian and cyclic respectively.
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1.5.1 Decomposition of prime ideals: efg =n

Let p be a prime ideal of 0 and P be a prime ideal above p in Og. We
firstly show that the Galois group G acts on the set of prime ideals lying
above p.

Lemma 1.45. Ifo € G, then 0Ok = Ok. If P is a prime ideal above p
in Ok and o € G, then so does o*3.

Proof. If a € Ok, then the conjugate oo for every element o € G has the
same minimal polynomial. Hence ca € Ok and 0Ox C Ox. But 07 'Og
is also contained in Ok, hence 0O = Ok.

If pOx =P - - Py, then apply o to get

o(pOr) = pOx = a(P1)" -+ a(By)“.

Thus ¢*; must be prime ideals, because o perserves all algebraic relation.
Since P; N O = p, it follows that o*P; N Ok = p, so 0P, is a prime factor
of p. O

The ideals o*B, for 0 € G, are called the conjugate prime ideals to ‘.

Recall: (The Orbit-Stabilizer Theorem) Suppose that a group G acts on a set
X. Let B(z) = {gz|g € G} be the orbit of z € X, and let G(z) = {g € G|gx = z}
be the stabilizer of 2. Then the size of the orbit is the index of the stabilizer, that is,
|B(z)| =[G : G(x)]. Thus if G is finite, then |B(z)| = |G|/|G(z)]; in particular, the orbit
size divides the order of the group.

For the proofs we refer the reader to [I]

Proposition 1.46. Let p be a prime ideal of o and

pDK: il...m;g'

Then (1), G acts transitively on the the set {B1,..., By}, that is, for any
i,7 there exists o € G such that B; = o*B;.
(2), For any i, {B1,...,B,} are all the prime ideals conjugate to B;.
(3), We have that ey = --- =e;=e, fi=---= f, = f, andn = efy.
(4), Let A be an ideal of the integral ring O . Then

NK/k(Ql)DK == H ol

ceG

Proof. (1), Only need to show that for any B;, there exists ¢ € G, such
that B; = o*P;. Suppose that, for any i # 1, P; ¢ {oB; : 0 € G}. By the
Chinese Remainder Theorem, there is o € Oy, such that

a €B; and o ¢ 0Py, for any o € G,
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which gives oo ¢ 1. Then

NK/k(Oé): HO’CVE‘BZ‘QOIQ:]JC;BM

oeG

this is a contradiction.

(2), It suffices to show that the conjugate prime ideal of B is one of
PBi,...,PB,. Let P be any conjugate prime ideal of B;. Then there exists
o € GG, such that P = o*P;. Since Py N o, = p, it follows that

PNox=0P1Noo=0c(P1Nog) =0op=p.

Hence B|p, and then P is one of prime factors Py, ..., P,.
(3,) Assume that ; = o*3; for any ¢ # 1 and some o. Then

1By =pOk =0 (pOk)
=o(P)" o (Bg)” = Pi'o(B2)™ - o (Py) ™,

Clearly, o(*B;) # B, for any j > 1, since otherwise o*3; = B; = o*P3; which
implies P, = P, a contradiction. We must have e; = e; for the unique
factorization of ideals of a Dedekind domain. Therefore, e; = --- =¢, =€,
say.

Similarly, we have, for any ¢ > 1,

fi = [Ok/PBi:on/p] = [O/0B1: ox/p]
= [0(Ok)/o(B1) : o(ox)/o(p)]
= [Ok/PB1:o0x/p] = fi.

Therefore, fi =--- = f, = f,say. Thenn=>7_e;fi =efyg.
(4), It is sufficient to show the conclusion for any prime ideal 8 of K.

Let p =P Noy and pOx = (PP - - - PBy)°. Since Ny (P;) = p/ for each

1, we can have

Ni/i(B) Ok = (P1Pa - - By).

On the other hand, since G acts transitively on the set {1, B2, ..., B,},
it follows that each B; occurs n/g = ef in the family {o*B|oc € G} by the
orbit-stabilizer theorem. Thus

Niju(PB)Ox = (BB - - By)! = H o'B.

oceG

This completes the proof. O
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In fact, this proposition implies that the following diagram commutes.

K~ a—(a) JK

LNK/;C lNK/k

X a—(a) Jk

In the case K/k is Galois, we shall denote the common values of the

e; = e(P/p), fi = f(B/p) by the e, f, respectively. If we write g, instead
of g, then we may reformulate (1.14), as n = e, fy,gp.

1.5.2 Decomposition and inertia groups

From now on, we fix our attention on one prime factor ¥ of p in Ok. Let
K : k] =n=efg, where e = e, = e('B/p) = e(K/k).

Definition 1.47. The stabilizer of P in G is called the decomposition(splitting)
group(Zerlegungs gruppe) of P given by

Dy ={o € G|oB =P}
Its fixed field
Kp={a€e K|oa=a,0 € D},
is called the decomposition(splitting) field of B.

By the orbit-stabilizer theorem, we have [G' : Dy] = |GB|, where G =
{oP| o0 € G} is the orbit of P under the action of G. Since there is only
one orbit, of size g, we see that

|D| = [GI/1G : Dyp] = |G|/|GB| = ef,
which is independent of choice of .

Proposition 1.48. Let the notations and assumptions be as above.

(1), e(B/Bp) = e, f(B/Bp) = [,9(B/PBp) = 1, that is, P is the only
prime ideal of K lying above Pp.

(2). e(Bp/p) = f(Bp/p) = 1. Moveover, if Dy G, then g(Pp/p) = g,
that is, p is completely split in Kp.

(8), The subfield Kp is the smallest subfield M between k and K such
that Py =P N Oy does not split, that is, g(P/Pa) = 1.
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Proof. (1) and (2), We first prove that K/Kp has the property g('B/PBp) =
1 where Pp = PNOp. By Galois theory, K/ Kp is Galois and Gal(K/Kp) =
D. Let

PBpOx = PP - Py
Then for any B;, there exists o € Gal(K/Kp) = D, such that ; = o3 =
. Hence g(/Pp) = 1.

Moreover,

e(B/PBo)f(B/Bp) = [K : Kp] = [Dy| = ef

and

e(PB/PBp) <e, f(B/PBp) < f

by the lemma (1.39)). Then we obtain e(/Pp) = e and f(P/Pp) = f. It
follows that e(Bp/p) = f(Pp/p) = 1. If Dy <G, then Kp/k is a Galois

extension. We thus get

9(Bp/p) =e(Bo/p)f(Bp/p)g(Pp/p) = [Kp : k] = g.

(3), Let us now prove the minimality of Kp. Assume that there exists an
intermediate field M such that g(/Bs) = 1. Then this unique ideal must
be B, since by definition P is above P,,. Then Gal(K /M) is a subgroup
of Dy, since its elements are fixing B. Thus M D Kp. O

For any 0 € Dy, then o induces an automorphism @ of Ok /P = Fy
which fixes oy /p =y,

EZDK/f,B — DK/m
a=a+P — oa=oca+P,

that is, we obtain the following lemma.

Lemma 1.49. The @ is an automorphism of Fy which fizes T, that is,
o € Gal(Fy/Fy).
Proof. e & is a mapping B B

It suffices to prove that @ = § = @(@) = 7(5). Clearly, the following
facts

a=pf & a+P=3+Pea—-pBcP
& ola=p)ecP=Poa—ofecP

& ca+P=0f+Pea(@=7a0).

e 7 is an automorphism of the finite field Fy
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It is easy to check that o(a + 3) = 7(a) £ &(B3) and 7(aB) = a(a)a(B).
And
kerc = {aeclFy:o(@ =0}

= {aeFy:oacP}

= {a@e€Fyp:aco P="7}

= {6}’

then @ is an automorphism.

o 7 fixes every element of I,

For any @ = a+p € F,, we have 5(a) = o(a) = o(a) +p =a. O
Denote a map by
m: Dy — Gal(Fy/F,)
o —— 0.

Let Iy be the kernel of the group homomorphism 7; Iy is called the inertia
group(Tréigheits gruppe) of B and its fixed field K7 is called the inertia field

of .

Proposition 1.50. (1), The group homomorphism 7 is surjective.
(2), Iy is a normal subgroup of Dy of order e, and

Dy /Iy = Gal(Fy /Fy)

is cyclic of order f,.
(3), Iy = {0 € Dy | oca = a(modP), for any o € O}.

Proof. (1), Let @ € Fy be an element such that Fyy = Fy(@). Lift @ to an
algebraic integer o € O, and let

fle)=]] (z—0a) € Opla]

UEDm

be the characteristic polynomial of o over Kp.
By Proposition (1.45), we see that f(x) reduces mod Bp to

@) = [ o —va) € Byl

O'EDr,p

because Op/Pp = F,. Since the characteristic polynomial of @ over F,, is
divided by the minimal polynomial of @ , all the conjugates of @ over I,
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have the form oa. Every Fy-automorphism of Fy is of the form & where
o € Dy. It follows that the group homomorphism 7 is surjective.

(2,) By Galois theory, we know that Gal(Fy/F,) is cyclic, generated
by the Frobenius automorphism defined by ogp : @ — a@™F, for @ € Fy.
It is clear that Iy is a normal subgroup of Dyg. And the order of Iy is
Dy /Gal(IFy /IFy) = €.

(3,) Obviously, we have

Igp = {O’ED(BZ

= {O’ € Dqg : s
= {0 €Dy : o(a) = a(modP), for any o € O }.

|
[a—
-

Q| Q

(@) =a, for any o € Fy}

Since the above theorem, we get the following exact sequence:
1 — Iy = Dy — Gal(Fg/F,) — 1.

Let Kp, K; be fixed fields of the subgroup Dy and Iy respectively. Let

sBD = (’B N DKDamI = EB N DKI and ]F‘ﬁD = DKD/;BDa]F‘ﬁI = DK[/‘BI'
Clearly, K/K;, K/Kp and K;/Kp are Galois extensions with Galois groups
Iy, Dy and Dy /Iy by Galois theory.

p G k Ok ]Fp

Theorem 1.51. (1), (i), e(B/Pr) = e, F(B/PBr) = 1, 9(B/P;) = 1, that
is, P is ramified completely in K.

(i), e(B1/PBp) = 1, f(B1/PBp) = f,9(Pr/PBp) = 1, that is, Pp is
unramified and inertia in K.

(2), For any o € G, we have Doy = 0Dyo ™!, Loy = olpo™ ' Kp_,, =
UKDm, and I([w13 = O—KI‘D'

Proof. (1,) We first have g(/Bp) = 1. For the Galois extension K/K;
with Galois groups Iy, the decomposition group and inertia group of ‘B
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lying above ; are both Iy. Thus f(B/B;) = 1, and then e(P/P;) = e.
On the other hand, we have

e(B/Bp) = e(PB/B1)e(P:/Pp) = e
fCB/Bp) = f(B/B1)f(B:1/Bp) = f.

Therefore, e(B;/PBp) = 1, f(B1/Pp) = f.
(2,) Since

TEDp & TR =P om0 (0P) =P & 070" € Doy

we get Dyq = o Dyo . It is similar to that Iqg = olpo™
On the other hand,
a€ Kp, & Ta=aqa, forallTe Dy
& o070 Y(oa) =oca forall 670! € Doy
& oo € KDUE13

Thus, K Doy = 0Kpy. By a similar argument, we have K Ly = 0Ky, O

1.5.3 The Frobenius automorphism

Let p be a prime ideal of o;, that is unramified in O, i.e., e, = 1, and let °B
be a prime ideal lying above p. By Proposition , then the inertia group
Iy is trivial. So Dy = Gal(Fg/F,). There is a unique element oy of Dy
that the correspondence to o,y is called the Frobenius automorphism and
is denoted by [%k] The Frobenius automorphism is uniquely determined
as an element of G by

oa = oNP mod P, (1.15)

for all @ € Dg. And it obviously has the property
K/k K/k
5]
Ry Ry
for every o € G; thus it is defined up to conjugacy by p.

It is natural to ask how all these objects behave under change of fields.
We have the following theorem:

Theorem 1.52. Let L be an intermediate field between k and K. Let p be
an unramified prime ideal of oy in O and B be prime divisor of p in K.
Let H = Gal(K/L) and B, =PNOL.

(1), e(B/PBr) =1 and [IZ—Y/;} — [%k
(2), If L/k is Galois, then e(Pr/p) =1 and [LqT/Lk} _ [K_/k]

]f(‘ﬁL/P)
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Proof. (1), By e(3/p) = e(/FB1)e(Fu/p) = 1, it gives e(B/Py) = 1. It is

also clear that
N(Br) = [Or/Br| = [ox/p[/FE/P) = N(p) e/,
Therefore, by (1.15]), for any o € O,

Kk F(BL/v)
[Tg] o = Oé(Np)me/p)mOdf,B
= aNmLmodiB,
K/k_ f(‘pr/p) _ |:K/L:|

and then we have [T

(2), Similarly, we have e(P/p) = 1. According to, for any o € O,

Kk
RY

it gives, for any o € Op,

} a = o™ (mod*P),

5

and thus [K—/k] ‘L = [L—/k} O

} a = o™?(modP;),

B

1.5.4 The Artin map

If p is ramified, we can also define the Frobenius automorphism, the Frobe-
nius conjugate class, by the set of all elements of G which satisfies .
This identifies the Frobenius automorphism as a left coset of Iy in Dg. In
particular, if G is abelian then the Frobenius automorphism depends only
on p; in this case it is called the Artin symbol and is denoted by

- ()

In this way, we obtain a correspondence between prime ideals of £ that
are unramified in K and elements of the abelian Galois group G. By mul-
tiplication we can now extend the Artin symbol for any fractional ideal a
of k£ which involves unramified prime ideal. Indeed, let J; be the fractional
ideal groups of k£ and let S be a finite set of primes of 05 including all the
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primes that ramify in K. Denote JJ by the subgroup of J; generated by all
the nonzero prime ideals outside S. An element a of J{ has the form

a= H p01"dp (a).

pgsS

Now we define the Artin map as the function

o: JP — Gal(K/k)

- ()m

pgs

The product is well defined because Gal(K/k) is abelian and only a finite
number of exponents ord,(a) are nonzero for any given fractional ideal a.
The Artin symbol plays a central role in class field theory. One of the
major goals is to determine the image and kernel of . We will see that ¢
is surjective.

And after the first year [as an undergraduate at Gottingen] | went home with
Hilbert's Zahlbericht under my arm, and during the summer vacation | worked
my way through it without any previous knowledge of elementary number
theory or Galois theory. These were the happiest months of my life, whose
shine, across years burdened with our common share of doubt and failure, still
comforts my soul.

H. Weyl (1885-1955), Bull. of AMS, 50(1944), 612-65.
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Exercises

You are encouraged to collaborate on solving the problems given as home-
work. However, the solutions should be written on your own and in your
own words. Please send me your homework to my email before the next
week’s class.

1, Let «, 8 be algebraic numbers such that 3 is conjugate to a. Show
that a and § have the same minimal polynomial.

2, Let a be an algebraic number and let p(z) be its minimal polynomial.
Show that p(x) has no repeated roots.

3, Let f(z) € Z[z] and g(x) € Q[x] be monic polynomials. If g(z)|f(x).
Show that g(x) € Z[z]. i.e., the minimal polynomial of any algebraic integer
has coefficients in Z.

4, Determine the ring of integers o), of the quadratic field k = Q[V/d],
where d is square-free integer. And compute the discriminant dy.

5, di/k(ar,- -+ ,an) #0 < ay,-- -, a, are k-linear independence.

6, (Dedekind)

(1), Show that f(z) = 2® + 2? — 2z + 8 is irreducible in Q|x].

(2), Find the discriminant of f(x).

(3), Let 0 be a root of f(z) and k = Q(6). Compute dyg(0).

(4), Show that 4/6, 2(6* + ) € o

(5), {1,0,4/0} is an integral basis of k and find the discriminant of

k=Q(0).
(6), For any « € o, {1,,a?} is not an integral basis.
(7), The prime 2 splits completely in k.

7,

8, Let a C o be an ideal. Let the generalized Euler function ¢(a) be
the number of prime residue classes modulo a, that is, the residue classes
@ € o0 /a such that ged(o, a) = 0g. Then

(1), for all & € oy, prime to awe have

a®® =1 (mod a).
(2), for any prime ideal p and for any « € o4
a®@ = a(mod p).

(3),



9, Compute the principal ideal (6) as the product of the prime ideals in
the ring of integers o,where k = Q(y/—5).

10, Show that every nonzero prime ideal in 0; contains exactly one
integer prime.

11, Let a be an integral ideal of o;. Then (1) Norm(a) € a. (2) If
Norm(a) is a prime number; then a is a prime ideal. Conversely, true or
false?

12, Find a prime ideal factorization of (2), (5) in Z[].

13, Suppose that a is an ideal of an integral domain R, then there exists
an ideal b such that ab is a principal ideal.

14, Let R be a Dedekind domain with finitely many prime ideals. Then
R is a principal ideal domain.

15, Let a =1+14,b =3+ 2i, and ¢ = 3 + 47 as elements of Z[i].

(1) Prove that the ideals a = (a),b = (b), and ¢ = (¢) are coprime in
pairs.

(2) Compute the number of the quotient ring Z[i]/(abc).

(3) Find a single element in Z[i] that is congruent to 1 modulo a, 2
modulo b, and 3 modulo c.

16, Compute the class group and the class number of the following
quadratic fields:

QV3), QV5), QHW-3), Q-5).

17, Show that Q(1/—23) has class number 3.

18, Compute the group Wj of roots of unity for quadratic fields k =
Q(v/d) where d is a square-free integer.

19, Find a unit in Q(3/6) and show that this field has class number
h=1.

20, Compute the fundamental unit of the real quadratic field Q(v/3).

21, There exist only finitely many number fields with bounded discrim-
inant.

22, Statement and show that the ration prime p decomposes in quadratic
fields Q(V/d).

23, Let K/k be an extension of algebraic number fields. Then, for
0#aeK,

NK/k<OéDK> = NK/k(()é>0k-

24, Let K be a finite Galois extension of Qwith Galois group G. For
each prime ideal °B of O, let Iy be the inertia group. Show that the groups

Iz generate G.
25, (1), Find the Galois group Gal(K/Q) where K = Q(v/—1,/5).
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(2), Find the decomposition fields, inertia fields, decomposition groups
and inertia groups of (2), (5) for K = Q(v/—1,/5) over Q.

26, Suppose that the extension K/Q is normal and has a Galois group
which is simple but not cyclic. Show that there is no rational prime p such
that (p) remains prime in K.

27, Let (" =1 and assume that

2 O

a==="—
m

is an algebraic integer. Show that either v = (™ for each 7 or o = 0.
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Chapter 2

Valuation Theory

There are two obvious ways of approaching algebraic number theory, one
by means of ideals and the other by means of valuations. Each has its
advantages, and it is desirable to be familiar with both. In this section we
represent the valuation theory approach.

2.1 Valuations and Completions

2.1.1 Basic concepts

Definition 2.1. For any field k, an absolute value(valuation) of k is a
mapping
|-|: &k — R
a — |af

which satisfies the following conditions, for any a, B € k,
(1), |a| >0 and |a] =0 < a = 0.
(2), |af| = lal|B].
(3), la+ BI° < |al* + |BJ%, for some a > 0

Clearly, we have |1x| = | — 1| = 1 and |a| = | — a|. Two valuations
|- |1 and | - |2 of k are called equivalent if |a|y = || form some fixed ¢ > 0
and for all @ € k. An equivalent class of valuations is called a place of k, or
prime divisor of k. A valuation of k induces a metric

d(a>ﬁ) = ’Oé - B|a

under which £ becomes a topological field, that is, k is Hausdorff topolog-
ical space in which the field operations, i.e., addition, multiplication and
inversion operations, are continuous.
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Lemma 2.2. Let |- |; and |- |3 be valuations on a field k. The following
statements are equivalent:

(1), the valuations | - |1 and |- |2 are equivalent;

(2), the valuations |- |1 and |- |2 induce the same topology;

(3), for any o € k, we have |a|; < 1 if and only if |afs < 1.

Proof. (1) = (2) : If we assume (1), we get that, for any « € k,
2 —aly <r e |z—al, <r/e

So that any open ball with respect to | - |; is also open ball with respect to
| - |2. This is enough to show that | - |; and | - |3 induce the same topology.

(2) = (3) : If | - |y and | - |2 induce the same topology, then any sequence
that converges with respect to one valuation must be also converges in the
other. For given any «a € k, we have that

lai <1< | 2 0< oy = 04 ol < 1.

This gives (3).

(3) = (1) : Since | - |; is not trivial, we can assume that there exists
0 # xo € k such that |zo|; < 1. Define ¢ > 0, such that |zg|y = |z0|{. For
any 0 # x € k, we can assume that |z|; < 1 (otherwise just replace x by
1/x). We now say |z|; = |zo|}. If 2 > X\, with m,n € N and n > 0, then

zg'| @l

= |z < L.

™y N b

Thus |z{'/2™]3 < 1, so
2l > [0l

Similarly, if 2+ < A, with m,n € N and n > 0, we get that
EPIS |«’Eo|72n/n-

Therefore, we get
|z]s = |zoly = [zol$ = |25,
for all x € k. ]
By the above lemma, every valuation is equivalent to a valuation for
which @ = 1 in the definition. For our purposes we can always replace a

given valuation by an equivalent one. Therefore, we will henceforth assume
that all valuations satisfied the usual triangle inequality

o+ 8] < |al +[8]. (2.1)

52



Note that not all valuations satisfy the usual triangle inequality (2.1). A
valuation on a field k is called archimedean if |m1l;| > 1 for some m € Z,
and nonarchimedean otherwise. For nonarchimedean valuations we can
radically improve the triangle inequality.

Examples 2.3. (1), (Trivial valuation) |0| = 0, |z| = 1 for any x # 0
s called the trivial valuation of k. Henceforth we shall assume that all
valuation are nontrivial. Any valuation over a finite field is trivial.

(2), (Infinite valuation) Let | - | be the usually absolute value over
the field k = Q, R or C. Then (k,|- |w) is an archimedean valuation.

(3), (p-adic valuation) Let k be a number field and p be any prime
tdeal of or. For any o € k,

(a) = p¥@a,  (a,p) =1.

Here (a,p) = 1 means a = b/c € Ji, where b,c C o, (be,p) = 1. Let ¢ > 1
be a fized real number. Then we define

(k,| - |p) is a nonarchimedean valuation of k. In particular, we can take
¢ = Np which s called the normalized p-adic valuation.

Lemma 2.4. Let | -| be a valuation which satisfies the triangle inequality
over any field k. The following statements are equivalent:

(1), the valuation | -| is nonarchimedean;

(2), the set {|nlg| : n € Z} is bounded.

(8), for any o, B € k,
o + B < max{|al, |8} (2.2)

Proof. (1) = (2) : If | - | is nonarchimedean, then we have |nlj| < 1 for any
n € N. Clearly, the set {|nly| : n € Z} is bounded.

(2) = (3) : Suppose that there exists M > 0, such that |nl;| < M, for
all n € Z. Then

(a+8)" = |>Ciamigl
=0

< M(n+ 1)(max{|al, |3]})"

Taking n-th root, we have

o+ B] < &/ M(n + 1) max{|al, | 5]}

We get the result by let n — oo.
(3) = (1) : For every n € Z, then |nly| = [1x + -+ 1| < [1x] = 1.
Thus | - | is a nonzrchimedean valuation. O
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A metric having the property (2.2 is called an ultrametric. In particular,
if |a| # |B], then we immediately obtain from an ultrametric

| + 8] = max{lal, [B[}. (2.3)
Let | - |, be a nonarchimedean valuation on any field k. Let

O() = {Oz ek : ‘Oz’v < 1},
poy={a ek :|af, <1},
U(U) = {Oé ek : ‘Oz|v = 1}.

Proposition 2.5. Let |- |, be a nonarchimedean valuation on any field k.
0(y) 18 a local ring with mazimal ideal P,y and quotient field k. The U, is
the group of units of the domain o(,).

Proof. Since |-|, is a non-archimedean on k, 15, € o, and for any «, 8 € o0,
it follows that

o+ 8] < max{|al, |8} < 1 and |af| = |af[f] < 1,

so that o £ 3,08 € 0. It is easily seen that o(,) has no zero divisors.
Therefore o(, is a domain. For any nonzero element o € k, either o € o(y)
or a”! € 0(y), then k is the quotient field of o0(,).

We need to prove that p(,) is a maximal ideal of o0(,). It is easily seen
that p(,) is an ideal of 0(,). Let m be an ideal of o(,), which satisfies to

Py &S mC o).

For every a € m but not in p(,), we know |a] = 1 and |a~'| = 1, then
1 =aa™' €m. Som = o), that is, p(,) is a maximal ideal. Let a be any
proper ideal of o(,). In the similar way, we can get a C p(,). So 0, is a
local ring with maximal ideal p,).

Finally, for any a € Uy, then |a la| = 1, so « is a unit of o).
Obviously, U, is the group of units of the domain o). n

,1| —

The o(,) is called the valuation ring of p. The field 04, /b is called the
residue class field of | - |,.

2.1.2 Valuations on number fields
We find all valuations over an algebraic number field & as follows.

Proposition 2.6. If k be an algebraic number field, the archimedean valu-
ations on k are given by |a| = |oalS, where ¢ > 0 and o is any embedding
k— C.
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Proof. We will prove the following statements in turn.

e Forany n € Nand n > 1, then |n| > 1.

If not, then there exists some ny € N such that ng > 1 but |ng| < 1. For
any n, N € N with n > 1, write n® in the scale of ny:

N
n" =ag+ano+ -+ ang

where 0 < a; < ng fori =0,1,...,r and 0 <7 < Nlog, n. Let A be the
upper bound for |a| where 0 < a < ng, then

nlY < aol + laulnol + -+ + lay|Ino|"
< A(l+47r) < A(l1+ Nlog,, n);

taking N-th roots and letting N — oo would give |n| < 1 for all n > 1,
which is a contradiction with | - | being archimedean. Thus |n| > 1 for any
neN,n>1.

e For every m € Z there exists a fixed ¢ > 0, such that |m| = |m|<,.

For any my, my € N with my, my > 1, the same argument shows that

|m1|N S B (1 + NlOgm2 ml) |m1|N1°gmz m17

where B is the upper bound for |a| where 0 < a < my, taking N-th roots
and letting N — oo would give

!mﬂ < |m2‘logm1 mz)

i.e.,

[ 5577 < o .

Since m; and ms can be arbitrary, it follows that |m|ﬁ is a constant,
saying €. Then |m| = m° for m € N, m > 1. It follows immediately that
|m| = |m|S, for any m € Z. Furthermore, we also get that |m| = |m|<, for
any m € Q.

We return to the proof of the theorem. It is clearly enough to prove the
result when « is in 0. Now let & be a nonzero element of o;, and order the
o; so that

|0-1a/|oo Z |U2a|oo Z T Z |Una|oo-
This ordering depends only on «. Let ¢ have the value obtained above. For

any N > 1, write

(x — o) =2" + a12" ' + - +a, € Z[X],

—
&
I
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and
m
P, = H oY,
i=1

The a,, are symmetric functions of the o;a”" and the largest summand in

Ay 18 £P,; 80 |am|oe < M|Py|s where M depends only on n. Moreover,
if |0matoo > |Om+10t|oo then once N is large enough this summand is much
larger than any other in a,, by

’am|oo — ]_ —= ’ZISJ1<<]mSn szl O-JZOZN|OO - 1
< ‘Zm&i HZL Uj,-OZN
< P
[o.¢]
i O'jiOé
< Z H — 0, as N — oo,
i i1 7% oo
for some 1
which implies |am|o > 5|Pnloo- Also |am| = |an|S because the a,, € Z,
and hence
1 |G|
— < < M°
2¢  |Pnl ’

where the first inequality only holds if |0, > |0mi10|s0 and the second
inequality holds for any m.
As follows, we shall show that

opals > laf > |oual, for any p,

la] > |oyals, and o,als > |af
all do not hold. It follows immediately that || = |o«|S, for some embedding
o, which completes the proof.
We need only consider the case of

lonals > lal > founals,

for some p. For two cases |a| > |o1alS, or |a] < |o,aS,, the similar argu-
ment would give the same contradiction. From f(a”) = 0, we have that

auocN(”_“)‘ = }ozN" a0 T) g oM g ]
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Using the triangle inequality of the valuation, we obtain (set ag = 1),

ZGQN(NZ—FZCLO&N(TLZ

1=p+1
p—1 n—p
Z a;aN ) 4 Z Ay O
i=0 j=1

1 . _ .

Mz: |ai|’a|N(“_l) —I—nzlf ’au+j||0f|_NJ

—~ P = IR
p—1 Y

- ZMCUD\ ¢ la N0 Z Me|Puyjls
P | Pl | Pl N

p—1 Nlu—i n—u u+J
Q| T 0,0,
- M-
(St S

J=1

S () (1)

=0 \v=i+1 v=p+1

|a,u’ _ —N(n )

= / 1Pul
| Pulée

VAT

IN

Because |o,a| > |a] > |o,110]S, , we have

<1 and H lovals < 1.
(6%

Letting N — o0, we obtain the last term of the above inequality tends to the
zero which also implies |a,|/|P,|S, tends to zero. This contradicts the fact
that |a,|/|P.|S > 1/2°. The proof of the theorem is now completed. O

By the above proposition, there is a bijection between the archimedean
places and embeddings k£ into C up to conjugation. In our case there are
r1 + ro classes the archimedean places. The archimedean places p or v are
often called the infinite places or the infinite primes, say p|oo or v|oo. We
say that |- |, is a real place if it corresponds to a real embedding 0. And
||, is called a complex place if it corresponds to a pair of complex conjugate
embeddings 0 = 7.

Proposition 2.7. Let | -| be a nonarchimedean valuation of a number field

k. Then there exists a prime ideal p of 0x and a constant ¢ > 1 such that
|a| _ C—Ordp(a)7

for every nonzero element o € k.
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Proof. The proof will be divided into three steps.
e For any « € 0, we have |a| < 1.
Clearly, we have |n| < 1 for any n € Z. Any « # 0 in o satisfies an
equation
A" +a ™t 4a, =0

where a; € Z for all 7. By the inequality (2.2]), we obtain

‘Oé'm = |a/105m71—|—... +am|
< max{|aa™ |, ..., |an|}
< max{|a/™, ... 1}
However if |a] > 1, then |a|™ > max{|a|™!,...,1}. It is a contradiction,

so |a] <1 for all & in 0.

e Theset p={a € 0y : |a| < 1} is a prime ideal of oy.

If |a| = 1 for all a # 0 in o4, then our valuation would be trivial; so there
exists some 0 # « € oy with |a| < 1. Then using the inequality again,
p is a ideal of oy because «, 8 € p, v € 05 implies a + B, af,ay € p, and p
is prime because |ajas| < 1 implies |aq] < 1 or |ag| < 1.

e There exists ¢ > 1 such that |a| = ¢=*%(®) for any nonzero a € k.

We now choose m € p\p?, that is, ord,(7) = 1. For any nonzero « € k,
denote m = ord,(«), then

ord,(a/7™) = ord,(a) — ord,(7™) = 0.

And hence (p, (a/7™)) = 1, which means

(6% aq
(—) = —, where ai, as C og, (p,alag) =1.
T as

According to the Chinese remainder theorem, there exists a fy € 0, such

that
P =0 (mod as)
{ f2=1 (modp) ~
i.e. we can find [ in as and prime to p. Write 51 = Soar/7™, so that 5 € a;.
Neither 51 nor f3; is in p, so they both have valuation 1; thus |a| = |7|™.
Let ¢ = 1/|x| > 1, then |a| = ¢="%(®) for any nonzero a € k. O

Conversely, any p and ¢ determine a nonarchimedean valuation; and
changing ¢ only change the valuation within its places. Let p and q be two
distinct prime ideals of a number field k. Then the p-adic valuations | - |,
and | - |, are inequivalent, see exercise. Simply, for distinct prime numbers
p and ¢, we have |p|, < 1 but |¢q|, = 1, it follows that the p-adic valuations
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|- |, and | - |, are not equivalent. This place v can be identified with p and
will be called a finite place, or finite prime, say p < oo or v < oco. In short,
there is bijection between all places of k and r; 4+ 9 archimedean places and
all prime ideals of k.

2.1.3 Product formula

Let v or p be any place of an algebraic number field k£ including infinite
places. There exists a canonical choice of valuations which is called the
normalized valuations :

(1), v is a real place which corresponds to a real embedding o

oy = |oalk = |oalew;

(2), v is a complex place which corresponds to a pair of complex embed-
dings o = &:
lafy = |oale = |oalz;

(3), v is a finite place which corresponds to a prime ideal p of oy:
|y = faly = N(p) (@),

Theorem 2.8. For any nonzero a € k, we have |a|, = 1 for almost all
places v, i.e., for all but finitely many v and

[Tlal =1

v

where the product runs over all normalized valuations | - |, of k.

Proof. For all nonzero « € k, we have

(a) =pi" - pge, (2.4)

where e; = ordy, (o) € Z* and S = {py,...,p,} are distinct prime ideals of
k. Clearly, |a|, = 1 for any p ¢ S. We now compute N((«)) in two ways, one
which will make appear the finite places, and the other the infinite places.
Now take norms of the equation to obtain

N((a)) = Nps - Np,* = [ lol;" = ] laly

peSs v<00

And

N((a)) = [N(a)[e = H il = [ latfo-

v]oo
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Therefore,

H oo = H al, H lal, = 1.

’U‘OO V<00

2.1.4 Completions

Let ||, be any valuation over a field k. Then the valuation induces a metric

d<047ﬁ) = |Ot - ﬂ‘m

such that (k,| - |,) is a metric space. A sequence {«,} of elements of k is
called a Cauchy sequence if for any € > 0 there exists a positive integer N
such that for any n,m > N, we have |a,, — ay|, < €. The sequence {a,}
converges to an element « of k if for any € > 0 there exists a positive integer
N such that for any n > N, we have |a, — |, < €. A completion of the
field k& with respect to the valuation | - |, is a completion of k£ as a metric
space, that is, any Cauchy sequence is convergent in the completion of k.

More specifically, let # denote the set of all Cauchy sequences with
respect to | - |, and let & denote the set of all null Cauchy sequences, i.e.,
the set of all Cauchy sequences convergent to 0.

Lemma 2.9. & is a mazimal ideal of the ring Z%.

Proof. 1t is clear that & is closed under addition. Let z = (z,,) € £,y =
(yn) € Z. Then |y,|, is a bounded sequence, so that |z, y,|, — 0(n — 00).
Thus, zy € &. Thus & is an ideal of Z. Let x = (z,) € Z\ &. By
adding an element of & to z, we can find a sequence y = (y,) € Z — £,
such that y,, are nonzero for all n. Then y~' = (y,') € Z, for |yn|, > ¢ >0
for some ¢ since y ¢ 2. Then we deduce that y~! is a Cauchy sequence,
since

‘yrjl - y;ql‘v S 072‘% - ym‘v — 07

as m,n — oo. Then y~'y is contained in the ideal generated by x and 2.
Thus, (z, &) = %, and & is maximal. H

There is a natural injective map p from k to #Z/2? sending an element
to the constant Cauchy sequence. We now extend the valuation on £ to

| P by, still denote by | - |,
laf, = [(an)]o = 7}1_{120 |l
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for any a = ()32, € %#/2. This limit exists because ||, — \@]U‘OO <
|a— ], implies that {|a,|,} is a Cauchy sequence of real numbers. Obviously
this limit does not depend on the choice of the representative (c,) of a. We
have the following fundamental facts:

(1), The valuation |- |, of k is also a valuation on the field #]P;

(2), The field ]2 is complete with respect to the valuation | - |,;

(3), p(k) is dense in Z]P; furthermore,

(4), Z] 2 is unique up to a unique isomorphism fixing k.

The detailed proof is left as an exercise to the reader. Define k, to be
the completion of k with respect to the metric defined by | - |,. Then

ko= % P.

We shall denote the natural embedding of k into &, by p,. Whenever confu-
sion will not arise, we shall identify k with p,(k) and consider k as a subfield
of k,, that is, we shall identify « and («) for any a € k.

Proposition 2.10. The valuation |- | is nonarchimedean on k, if and only
if it is so on k. If | -| is nonarchimedean, then the set of values taken by |- |
on k and k, are the same.

Proof. The first part follows from Lemma which asserts that a valua-
tion is non-archimedean if and only if |n1;| < 1 for all integers n. Since the
valuation on k, extends the valuation on k, the first statement follows.

For the second, we only need to find 8 € k such that || = || for any
a € k,. Since k is dense in k,, there exists 8 € k such that

6 —af <lal.

According to the formula ([2.3), we have |f| = max{|«/|, |3—«|} = |a|, which
completes the second part of the theorem. O
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2.2 Local Fields

A global field k is an algebraic number field, or a finite extension of I, (¢),
i.e., the field of rational functions in one variable over the finite field. The
completions k, of a global field k£ at any place v are called local fields.
Obviously, if v is a real place, then k, = R; if v is a complex place, then
k, = C. In what follows, We will mainly consider local fields of an algebraic
number field at a finite place.

2.2.1 The structure of local fields: p-number fields

Let v, be a fixed finite place associated to a prime ideal p of o;, with the nor-
malized valuation. The completion k, of k with respect to a nonarchimedean
valuation v, is called p-adic number field. Set

op ={a€ky : |af, <1},
pp={a €k, : |af, <1},
U ={aeck, : |a,=1}
The o, is called the ring of p-adic integers. The field o, /p, is also called the

residue class field of p. The group U, is called the p-adic units group of the
domain oy.

Proposition 2.11. (1), Then o, is a local ring with mazimal ideal p, and
quotient field k,.

(2),
0p/Pp = 01/P = 00y /P(p)- (2.5)

Proof. (1), The proof is similar to Proposition (2.5)). Left as an exercise for
the reader.
(2) We could define a mapping

@ OPHOk/p,

as for any Cauchy sequence (a,) in o,, via

¢((an)) = an(modp),

where N € N such that when n,m > N, a, = a,,(modp). Obviously it is
surjective because constant sequences are all in o,. Its kernel is the set of
Cauchy sequences whose elements are eventually all in p, which is exactly
pp. This completes the first part of the proof. A slight change the the proof
actually shows that the second isomorphism, which proves the theorem. [
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Example 2.12. For the rational number field Q, we obtain

Z(p)/pz(p) = Zp /02y = L[ PZ.

Let 7 be in p but not in p? and @, be the image of 7 in k,. Then
ordy(7) = 1 and |y, = |7|, = (Np)~! and p, = @,0, = (ww,). The element
wy is called the uniformizer, or the prime element of p. Every nonzero
element o € k, can be written uniquely in the form

o= uw”

v mEZL, uel. (2.6)

The integer m is independent of the choice of w,. We may define ord, () =
m and ord,(0) = co. By the Proposition (2.10), we have the surjective map
ord,

ord, : ky, — ZU{oo}
a +— ordy(a).

The map ord, is said to be additive valuation satisfies

ordy(aB) = ordy () + ordy(B),
ordy(a 4+ ) > min{ord, (), ord,(5)},

and specifically, if ord,(«) # ord,(5),
ordy (o + ) = min{ord, (), ord,(5)}.
Then we have

op={a€k, :|a, <1} ={a €k, : ordy(a) > 0},
pp={ack,:|of, <1} ={aek, : ordy(a) > 0},
U={ack,:|a,=1}={a €k, : ordy(a) = 0}.

Since (2.6)), it is also straightforward to show that
Actually, we have the following disjoint unions

oo (o]
X __ m _ m _ m
by = U = 0y = (U =3 Up by = (U =50
m=0 m=1

mEZ

Proposition 2.13. (1), Every ideal of o, is of the form p;*(m > 1). More-
over, py* = (@™), so that o, is a principal ideal domain.
(2), 0, and p, are the closure of oy and p, respectively.

63



Proof. (1) For any ideal a of o, let
r = min{ord,(z) : 0 # x € a}.

Then there exist o € a such that ord,(a) = r. From @w"/a € Uy, we obtain
w” € a, and hence (") C a.

Furthermore, for any 5 € a, we conclude from ord,(8/@”) > 0 that
B/w" € oy, hence that § € (w"), and finally that a C (@”), which proves
a= (") = p,

(2) We may view o, as the set of equivalent classes of Cauchy sequences
() in k such that a,, € o for n sufficiently large. Clearly, we have that
0, C 0. For any a = (a,) € 0, and any 0 < € < 1, there exist a positive
integer N such that |, —ay,| < € for n,m > N. Take the constant sequence
B = (B) € o with 8 =) € 0, and M > N. Then

la — B, = lim |a, —ay| <e.
n—oo

It immediately follows that o, is the closure of 0;. We conclude similarly
that p, is the closure of p. O

Remarks 2.14. By the above the Proposition, for any o € oy, there exist
B € oy such that | — B, < 1, i.e., « — 3 € p,. Hence o, = 0, + p,. It is
clear that p = o, N p,. According to the second isomorphism theorem, we
have

0p/Pp = (0k + Pp)/Pp = 01/ (0 N Py) = 0k/p.
We gave another proof of the isomorphism of residue class fields.

Let o = {ro =0,r1,...,74-1} be a complete system of representatives
of the residue class field o0,/p, where ¢ = Np such that if r; # r; then
r; # r;(mod p) and for any a € oy, there exists an element r; € o/ such that
a = rj(modp). The set @w"./ is a system of representatives for p' /pg“.

Proposition 2.15. Every element o € o, can be written uniquely as

o= Z an@, = ag + a1w@, + a2w§ + o (2.7)

n=0
with a; € &. An element of o € ky, can be written as

o0

0= 0wy = a,@) + w4 (2.8)

n=r

form some r € Z. Moveover, if a, # 0, then ord,(a) =r.

64



Proof. Let o € 0,. Let ag € &/ be the representative if the class o + p,, in
0p/pp. We set oy = (o — ag)/w,. Clearly oy € o, since |a;| < 1, then we
could get a; € &7 such that a; = oq(modp,). Keep on this progress for &
times, we could get

k—1 k
a=ap+m;mWy + -+ ag1@, + T,

with ag,a1,...,a,-1 € &/ and oy, € 0,. From the progress we could know
that the representation is unique. This completes the first part of the proof.

If @ € ky, let 7 = ordy(a) € Z. Then [aw,"|, = 1, it follows that
aw, € Uy C 0,. So we have

(o ¢]
awp_r = E anwg :a0+a1wp+a2w3—l—---
n=0

with a;, € &/ and ay # 0. Then « € k, can be written as

(e}
a = g An—+ Ty = AoTT, + alw;H + -
n=r

]

Examples 2.16. (1), Let p be a fized prime number and Q, be the local
field with respect to the p-adic valuation. Then o/ = {0,1,...,p—1}. We
have the following p-adic expansions

-1 = > p-Dp"=@-D+@-Dp+@-1p"+--,
n=0

1 [ee]
n=0

(2), By the series (2.8), write & = (ar,ary1,...). For Qs, we have

-5 = (1,1,2,2,..)=(1,1,2,...)
1/5 = (2,0,1,2,1,0,1,2,1,...) = (2,0,1,2, 1, ...)
VT o= (1,1,1,0,2,..).

Recall: Topological Groups (1), A topological group is a group G which is also a
topological space with the property that the multiplication map and the inversion map
are continuous with respect to the topology.

(2), A topological space is locally compact if every point has a neighborhood which
is itself contained in a compact set. A locally compact group is a topological group
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which is locally compact as a topological space. By homogeneity, local compactness for
a topological group need only be checked at the identity. That is, a group G is locally
compact if and only if the identity element has a compact neighborhood. Every closed
subgroup of a locally compact group is locally compact. Locally compact groups are
important because they have a natural measure called the Haar measure. This allows
one to define integrals of functions on G.

(3), A topological space is said to be disconnected if it is the union of two disjoint
nonempty open sets. Otherwise, it is said to be connected. The maximal connected
subsets (ordered by inclusion) of a nonempty topological space are called the connected
components of the space. A Hausdorff topological space is totally disconnected if the
connected components are the one-point sets. Equivalently, each point has a basis for its
neighborhoods which consists of sets that are both open and closed.

(4), A profinite group is a Hausdorff, compact, and totally disconnected topological
group. Equivalently, one can define a profinite group to be a topological group that is
isomorphic to the inverse limit of an inverse system of discrete finite groups.

For the proofs we refer the reader to [12] or [I8].

Theorem 2.17. The p-adic integer ring o, is the mazimum compact open
subring of k with respect to the | - |, topology. In particular, k, is a locally
compact topological field.

Proof. Let {Uy : XA € A} be any open cover of 0,. We must show that there
is a finite subcover. We suppose not. Since

acql
there is an ay € & such that ag 4+ wo, is not covered by finitely many of
the Uy. Similarly, by
ag + wo, = U (ap + aw + w?0y),
acgl

there is an a; € & such that (ap+ ay@ + w?0y) is not finitely covered. And
so on, one has
a:a0+a1w+a2w2—|—~-- € 0p.

Then o € Uy, for some \y € A. Since U,, is open, there is a neighborhood
oz—i—wNop :a0+a1w—|—---—|—aN_1wN_1+wN0p

of a such that o + @™o, C U,,. This is a contradiction because we con-
structed « so that none of the sets a + w@"o,, for each n, are not covered by
any finite subset of the U,.

It R is an arbitrary compact open subring of k, we have

acR=>aRCR=|a,<1=aco,

whence R C o,. Therefre o, is the maximum compact open subring of k. [
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» Additive structure

We extend the fractional ideal of the number field k to the local field
ky. A subset a of ky is called a fractional ideal if there exists o € k,° such
that aa is an ideal of o,. By Proposition (2.13), aa = (@) = py(n > 0).

Suppose that a = w;”u(m € Z,u € U,), then

a=al(@}) = (@ ") =5 "

On the other hand, a = p;*(m € Z) is a fractional ideal of &y, because there
is @, ™ € k, such that w™™a = 0,. Therefore, all fractional ideals of &, are
{py : n € Z}. We also have a chain of additive subgroups:

kD--Dp,>Dp, ' Dpy=0,Dp, Dp; D---D{0}.

It is obvious that {p; : n > 1} is a fundamental system of neighborhoods
of the zero in k, with both open and closed sets py. In particular, k, is a
locally compact and totally disconnected topological field.

For any n,m € Z, we have an isomorphism as additive groups from py

to py' via @ — aw,"". For r € N,m € Z, there is a surjective mapping

¢: oy — P?/P;ﬂﬂ

a — awm,

which its kernel is py. Then o, /p; = pi*/py**". In particular,

PL”/P?“ =op/pp Zop/p =T,

» Multiplicative structure
For r > 1, write

0 = 14
= {a€kS :ordy(a—1) =7}
= {aekS i fa—1], < (Vp) T}
It is easily seen that Up(r) is a multiplicative subgroup of k,° and is called
the r-th higher unit group. In particular, UV = 1+p, is called the group of

principal units and any element of it is called a principal unit. The higher
unit groups provide a decreasing filtration of the unit group:

kDU, DU U 5o (1),
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We conclude similarly that {1 +p; : r > 1} is a fundamental system of
neighborhoods of 1 in £,°. In particular, £, is a locally compact and totally
disconnected topological field. Denote a mapping ¢ by

U — (0p/py)"
a —— amodp,.

It is a surjective homomorphism of groups, which its kernel is Up(l). Hence,
we actually have an exact sequence:

1= UM = U, = (0p/pp)" = 1.

Similarly, denote the mapping ¢ : Up(r) — 0,/p, via 1 + aw” — amod py,

which induces the isomorphism Up(r)/ Up(TH) = 0,/p,. Therefore, we have

U, - U] = [Uy - UM - 08D - U] = (Np) = (Np — 1),

2.2.2 Hensel’s lemma

Lemma 2.18. (First Hensel’s Lemma) Let f(z) € 0,[X] and let f(z) be
the reduction of f(z) modulo p its coefficients. Let f(x) = ¢y (x)pa(x) where
¢1, 92 € Fu[X] are coprime. Then there exist polynomials fi and fo in 0, X]
such that

f(x) = fi(z) fo(x), and [, = ¢1, fy = ¢a.

n)

Proof. We construct polynomials fln), > in 0,[X] for n =1,2,..., whose

reductions modp are ¢, o and which have the properties deg fl(n) = degoy,
degfy" < degf — degoy, and

p"|(f - f1n)f2(n)) and Pn’(fl(nﬂ) — fQ(n)) forv=1,2.

Then f, = lim f™ will exist and have the required properties.
For the f,gl), we lift ¢, to o, in any way. To construct the f,S”“) from

the f,En) , we proceed as follows. By hypothesis

F=fMEm 4 ™ for same h™ in 0,[X] with degh!™ < degf.

If we choose fi"™V = £ 4 7ngn with g7 in 0,[X], then the second condi-
tion on the fourth line will certainly be satisfied, and the first one will be
equivalent to

= F0040 4 76 (mod )
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therefore o o
h(n) = ¢19§n) + ¢29§n)-

Since ¢1, ¢ are coprime and F,[X] is a principal ideal domain, there are

polynomial 1, 15 in Fy[X] such that ¢11s + ¢otpy = h(™ and degyy; < degepy
and we can take gl(,n) be any lifts of ¢,,. O

Corollary 2.19. If a € Oy then « is integral over oy; in particular Tr g, /p, o
and Nry k0 are in op.

Proof. Suppose that B¢||p and choose IT in B so that B||II. Let By, Bo, ...,
B,, be a base for Oy as an (0/p)-vector space. The representation on priv-
ious pages implies that the I1"B, with 0 < i < e form a base for Oy as
an op-module. Hence Ky is algebraic over k,. In what follows, we use the
absolute value associated with B, which clearly induces an absolute value
on k associated with p. Let

f(X) = ™+ ™ ot e (c= 1)

be the minimal monic polynomial for o over k,. We assume that the ¢, are
not all in o, and obtain a contradiction. Let b in o, such that bc, are all in
0, but not all divisible by p. If bc,, is the only one of the be, not in p, then
bc,, would have strictly larger absolute value than any of the other terms in
f(a) = 0, contradicting the ultrametric law. In any other case, we use the
above lemma to lift the factorization bf(X) -1 to a non-trivial factorization
of bf(X) over oy, and f would not be minimal. O

The problem of finding good approximations to the roots may sometimes
be handled on the basis of our the following result.

Lemma 2.20. (Newton’s method) Let f(z) € 0,[X] be a monic polynomial
with formal derivative f'(x). Assume that there exists oo € o, such that
|f(@)ly < [f'(@)]3. Then there uniquely ezists 3 € o, such that f(8) =0
and

f ()l
| f/(@)]p

18— al, < < [f(a)lp- (2.9)

Theorem 2.21. Fuvery finite algebraic extension of k, lies in some Ky
where K is a finite algebraic extension of the number field k and B is a
prime ideal of K above p.
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2.2.3 Weak approximation theorem

In the language of valuations we can restate the Chinese remainder theorem
as follows. Let py,...,p,, be distinct prime ideals in 0, and a4, ..., a,, any
elements of 0;. Then for any € > 0 we can find a € oy, such that |a—al,, <€
for each 1.

In this subsection we shall observe the behavior of distinct places of a
field. For this purpose we shall first prove the following lemma.

Lemma 2.22. Let |- |1,...,| |m be distinct places of k. There ezists an
element o of k such that

laly > 1, jale < 1,... |al, < 1.

Proof. When m = 2, as |- |; and |- |, are distinct places of k, we could find
a, B € k such that |a|; > 1, |als < 1and |B]; <1, |Bla > 1. Let v = af™ .
Then we have |y|; > 1, |y|]2 < 1. The lemma is right.

Suppose that when m = t—1(¢ > 3) the lemma is right. Then for m =t,
we could find o, f € k such that

lali > 1,|al; <1,7=2,3,...,t—1,|8y > 1,|8]: < L.
If ||, <1, then set v = "3, with r large enough we could get
v > 1,9, <1,j=2,3,...,t

if |a|, > 1, then set v = o"/(1 + a”), with r large enough we could get
the same result. O

Theorem 2.23. Let |- |1,...,| |m be distinct places of k and oy, ..., oy
any elements of k. For any € > 0, we can find o in k such that

o — ;| < €
for each i.

Proof. Thus by the lemma we could find g, € k,1 < | < m such that
|ﬁl|l > 1 and |Bl‘j < l(l 7&]) Then let

. - ;3]
O‘_;Mrﬁ{’

we could have that

e |l B i
o —ayl; < + Z e

- \1+6’" 17&2 11+ B o
ali| B;
: wr— *Z ||||Bﬁ
’ J=1,5#i il
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Then when r — oo, we have |a — «;|; — 0 for each ¢. Thus for all € > 0,
with r large enough, we obtion

’Oé — Oéz'|i <€
for each 1. n

The week approximation theorem asserts that inequivalent valuations
are in fact almost totally independence. Let us now state two corollaries of
week approximation theorem.

Corollary 2.24. (Independence Theorem) Let | - |1,....,| - |m be distinct
places of k. Then for 1 < r <m there exists a € k such that
laly > 1, ... ol > 1 |ala < 1,0 o, < 1.
Corollary 2.25. Let |- |1,...,]| " |m be distinct places of k. If
it el =1,
for all a € k™, where r; are real constants, thenry =--- =r, = 0.
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2.3 Extensions of Valuations

Let k be a field with valuation |- | and let V' be a vector space over k. A
real valued functions || - || on V' is called a norm if

e ||v|| > 0 for all nonzero v € V' (positivity);
o ||[v+wl| < |lv|| + ||w| for all v,w € V (triangle inequality);
o |av|| = |a|||v| for all @ € k and v € V' (homogeneity).

Two norms || - ||; and || - ||z on the same space V are equivalent if there
exist positive real numbers ¢; and ¢y such that for all v € V|

all -l <l < el - s
This is clearly an equivalence relation.

Lemma 2.26. Suppose that k is complete with respect to | -| and that V' is
an n-dimensional normed vector space over k. Then any two norms on V
are equivalent. Let {vq,...,v,} be a basis of V' over k. In particular, V is
complete with respect to a norm and the vector space homomorphism

o: k" — V
(a1, .. ) — Zawi
i=1

1s a homeomorphism.

Proof. The proof of the lemma is similar to the case for £ = R. The details
are left to the reader. See any good Functional Analysis textbook. n

2.3.1 Extensions of valuations

Suppose K D k is a finite extension of fields, and that |- | and || - || are
valuations on k and K, respectively. We say that ||-|| extends |-| if ||a| = ||
for all a € k.

Theorem 2.27. Suppose that k is a field that is complete with respect to

the nonarchimedean valuation | - | and that K is a finite extension || - || of
k of degree n = [K : k|. Then there is precisely one extension of | - | to K,
namely
1
lodl] = [Nk ()| (2.10)
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Proof. Let us first prove that the existence of the extended valuation. Define
|- on K by

lall = [N (@)=

for a € K. Clearly, it satisfies the conditions (1) and (2) in the definition
of valuation. It remains to show that || + 8| < max(||e|,||3]]) for all
a, € K. By the exercise, it suffices to show that if &« € K is such that
| Nk k()] < 1, then

|Nik(l+a)] <1

Consider the irreducible polynomial
f(x) = 2™ + apr2™ 4 -+ ag
of a over k. By the Viete’s theorem and the proposition , we have
(=1)"(ao)™™ = Nigsi(a)
and then |ag| < 1. In other words, ag € 0y = {av € k : |a| < 1}. Since

f(=1) = (=1)" Nyye(1+ )
(=)™ + (=1 gy + -+ - + ao,

if we can show that all coefficients a; € 0y, then so does Ny(q)/k(1 + o) and
hence Ng/x(1 + @), implying that |Ng/x(1 4+ a)| < 1. Indeed, we have the
following lemma. See exercise.

Claim: Let the polynomial f(x) = apa™ + apn_12" '+ +ag € ky[X] be
wrreducible. Then

max{|a;], : 0 <i<n} =max{|aglp, |an|s}-

It remains to prove that the uniqueness of the extended valuation. View
K as an n-dimensional vector space over k. Any valuation || - | on K
extending | - | defines a norm on K satisfying ||azx| = |all|z|| for « € k
and z € K. By Lemma (2.26)), any two valuations on K extending | - | are
equivalent. It follows that the uniqueness of the extended valuation ||-||. [

Corollary 2.28. Let k be a complete field with a nonarchimedean valuation
|- | and K/k be a Galois extension with the Galois group G. Let || - || be a
valuation of K. Then, for any a € K and o € G, we have ||oa| = |||

Proof. 1t is clear that N(c«a) = N(«) for any o € K and o € G. Hence we
have ||oa|| = ||a] follows from Theorem ({2.27)). O
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From now on, we only consider the case of number fields. Let K/k be
an extension of algebraic number fields with [K : k] = n. Let p be a prime
ideal of 0, with the decomposition

POk =P - Py, (2.11)

for some prime ideals By, ..., B, in Ok. Let £k, and Ky, be the local fields
at the prime ideals p and 93;, respectively. Let w and v be the places of K
and k corresponding to B and p, so that w lies above v, say w|v. Let m and
IT be uniformizers at p and B, respectively. Let the nations

K, = K‘BagKag‘B7;’B‘BaFw = D‘B/;’B‘B = DK/;’B :F’BaU‘Ban

and
ko =k, 0k, 0p, Py, By = 0y /Py = 04/p = Iy, Uy,

be as above. For fixed P|p, set e(P/p) = e and f(P/p) = f.

Lemma 2.29. For any o € ky, we have
ordg(a) = eordy(a), and |aly = |oz|;f.

Proof. According to m € p \ p? and IT € B \ B2, thus 7o, = pa where a is
an ideal coprime to p. If we lift 7 in O, we get

Ok =paDyg = aDg H‘Be,
PBlp

where aO x is coprime to the *B. Now ordg(7) = e, thus we see immediately
that m = ull®, where v € Uy. For any a € k,, we have

vHords;p(a) —a= wﬂ.ordp(a) _ u,wl-[eordp(oz)7

where v € Uy and w € u,. Taking the valuation | - | to both sides of the
last equation, we complete the proof of the lemma. O

Proposition 2.30. With the nations above,

Ky kyl =ef. (2.12)
Proof. Let o/ be any set of representatives of the residue class field Og /Py
in Og. We know that for any o € Ky,

o= Zaiﬂi, where a; € &/ and m € Z

i=m

74



and II' = u;II'7%,u; € Uy where 1 < t < e — 1. Obviously we have
that a;u; € &/. Hence we have that o = Zf;& Y ms—oo s;mII'™ such that
sim € @/. Let S be a set of representatives of the residue field o,/p in o,
and let wy, ..., ws be elements in Og such that modulo P they form a basis
over o,/p. Then we choose & = {Zj.c:l sjw; : s; € S}. This shows that
w1 <5< f,0<i<e—1, generate Ky over k.

It remains to show that w;II",1 < j < f,0 < i < e — 1 are linearly
independent over k,. Suppose otherwise. Let Zl i a;jw;II" = 0 be a non-
trivial linear relation over k,, where 1 < j < f,0 <7 < e —1. We may
assume that all a;; are in Og and some a;; is a unit. Let ¢y be the smallest
index m such that a,,; is a unit for some j. Then a;; € p for i < 7y, and
all j so that ., ~ajw;IT" € P+l Consequently, D7, ajpw;Il" €
P+t which implies that 7, . ai,;w; € P, or equivalently, modulo P,
D 1<j<f GigiW; = 0 in O /P. That’s in contradict with the linear indepen-
dency of {w;} over o0,/p. Therefore w;II),1 < j < f,0<i<e—1, form a
basis of Ky over k. O

Corollary 2.31. With the nations above. Then

Dqg =@ 1<i<ys wiHjop,

0<j<e—1

that is, the set {w;IlV : 1 <4 < f,0 < j < e — 1} constitutes a basis of the
ring Oy over the ring o,,.

Proof. Since the set {w; IV : 1 <7 < f,0 < j < e— 1} constitutes a basis
of Ky over k,, it suffices to show that for given elements c¢;; € k,, if the sum
> ¢iw Il is contained in the ring Og, then all ¢;; are elements of the ring
0,. Firstly, we claim that

o Let @ = ayw; + -+ - + aywy with any a; € k,. Then

ordg(a) = min{ordg(a;) : 1 <i < f}.

Proof. Without loss of generality, we assume that not all a; are zero and
ordg(a;) = min{ordg(a;) : 1 <7 < f}. It gives that a;/a; € 0, and

a=a{w + -+ (ar/a;)ws} = a1 5.

By the choice of {w;}, we obtain 8 # 0, so ordy(8) = 0, and then ordg(a) =
ordg(ai8) = ordg(ar).
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We can now turn to prove the corollary. For 1 <:< f,0<j<e—1,

ch-jwil_[j €Dy = ordqg(z cijw'T7) > 0
= ordy(c;I17) >0

ordg(c;) > —J

ord,(c;;) >0

Cij € Op.

e

Corollary 2.32. There exists o € Og such that Op = oyla] and Ky =
ko(c). In particular, Oy is a free o,-module of rank ef .

Proof. Take a € Ok such that the residue class @ generates F,, i.e., F,, =
F,(@). Let f(z) be a polynomial in 0,[X] such that f(x) is an irreducible
polynomial with f(@) = 0. Then we have ordsy f () > 1, and ordsy f'(cr) = 0.
We may assume that ordy f(a) = 1. In fact, if ordg f(«) > 1, we may replace
a by 8 =a+1I. By

f(B) = fla+1I) = f(a) + IIf (@) mod P,

we get ordyg f(/5) = 1. We may therefore assume that f(a) is prime element
of Kg. Hence, by Corollary (2.31), the set {a'f(a) : 0 <i< f—1,0< 5 <
e — 1} constitutes an o,-base of Og, and therefore the set {1,«,...,a% 1}
constitutes an o,-base of Og. O]

Let K/k be an extension of any field of finite degree [K : k] = n. Let
w1, ...,w, be a basis of K over k. Then

n
Wi, = E AWk, with ik € k,
k=1

and this relation determines K up to isomorphism. Let A be a ring con-
taining k. The tensor product denote by

i=1

KA = {Zn:ciﬂ@wi) : CZ'GA}. (2.13)

Algebraically, it is a ring with the componentwise addition and with multi-
plication table given by (2.13]). Note that both A and K are imbedded in
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K®iA. If there is a topology on A, then we put on K®;A the topology
coming from the product topology on A™ via the isomorphism

A" — K®ipA

(Cry.eoyCn) — Zci(l ® w;).

i=1

One checks easily that both algebraic and topological structure on K®;,A
are independent of the choice of a basis {w,...,w,} of K over k. Clearly,
we have [K®pA : Al = [K : k].

Theorem 2.33. Let K = k(«) be an algebraic number field with [K : k] = n
and o € Ok, and let f(z) be the minimal polynomial of o over k. Let
fx) = I, fi(z) where the fi(x) are irreducible and distinct in k,[X].
Then h = g. After renumbering, deg f;(z) = e;f; and Ky, = ky[X]/(fi(x)).

There is a natural isomorphism
K @y ky = Ky, @--- @ Ky, (2.14)
both algebraically and topologically.

Proof. By assumption, we have an isomorphism K = k(a) = k[X]/(f(x)).
Hence

K @y by = (K[X]/(f(2))) @k by = k[ X]/(f ().
Because K/k is separable, the minimal polynomial f(x) has distinct roots.
Therefore f(z) factors in k,[X] into monic irreducible polynomials

f(@) = filz) - (@)

that are relatively prime in pairs. Algebraically, we have, by the Chinese
reminder theorem,

kplal/ ([ () = Hk’p[@"]/(fi(x))-

Here each k,[z]/(fi(x)) is a finite field extension of k, of degree degf;, say
K;. As kis dense in k,, K = K ®;k is dense in K ®yky, hence K is dense in
each K;. So |-|; restricts to K corresponds to a place 3; of K. By Theorem
(2.21), we have K; = Ky, for some prime ideal *B; lying above p. According
to

g g

[K @y ky o k] = [K : k] = Zeifi = Z[K‘Bi k),

i=1 i=1

the theorem follows. O
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Corollary 2.34. For any element o € K,

g
Trgpa = g Teri/kpa,
i=1

g
NK/kOé = H NKmi//pr‘

Proof. As shown in the above proof, we have Y 7 | [Ky, /k,| = n = [K : k],
hence Corollary holds for « € k. Next assume K = k(a). Let f( )
and f;(z) be as in the proof above; we have Ng/i(a) = (—1)" f( ) and
Ny, /iy (@) = (=D)FEwmI£,(0), and Trg/i(a) = —coefficient of 2"~! in f
and Tr, /x, () = —coefficient of gkl =Lin f(2). As f(2) = fa(z) - fy(z),
the global norm and trace of a are related to local norm and trace of « as
stated. Finally, for any element @ € K, suppose M = k(a) is an inter-
mediate field. Let Py,--- ,Ps be the prime ideals of M dividing p. Then
PBi, -+ ,BP, are the prime ideals of K dividing one of Py,---,P,. Fix an
prime ideal P; of M. We have

H NK‘ﬁj /kp (Oé) = H NMPi/kP © NK‘B]' /MPZ' (a)
B Pi Bj|Pi
M-
= Nyt () S st
1\]]\/[732./kp (Oé)[KM]
Therefore
HNij/kP (@) = H H NK‘ﬁj/kp (@) = HNMPZ'/’% (O‘)[K:M]
B Pilp B; P P;
= NM/k(Oé)[KM} = NK/k(a)
Similar proof shows Try(a) = 37| Trrey sk, (). O

2.3.2 Unramified and ramified extensions

In the subsection, let F/F be an extension of nonarchimedean local fields
of an algebraic number field k& with respect to prime ideals Blp. Let e =
e(P/p) and f = f(B/p) be the ramification index and the residue class
fields degree, respectively, which implies that [E : F] = n = ef. Let p be
the characteristic of the finite field F'. The extension E/F of local fields is
called unramified extension if e = 1 and totally ramified extension if f = 1.
The finite extension E/F is said to tamely ramified and wildly ramified if
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p 1 e and p|e, respectively. By the above definitions, we obtain an unramified
extension is tamely ramified and F/F is both totally and tamely ramified
if and only if pte = [E : F].

Let Op, Br, Up, F, mp denote respectively the p-adic integers ring, the
maximal prime ideal, the unit group, the residue class field and the uni-
formizer of F. For a finite extension E of F, then Op, P, Ug, E, 15 will
be above with respect to F.

Unramified Extensions:

Theorem 2.35. (1), Suppose that the extension E/F is unramified and
E = F(a) where o € Op. Then E = F(a) and f(z) = f(z) mod Pr is
the minimal polynomial of & over F where f(x) is the minimal polynomial
of a over F.

(2), Suppose f(z) € Op[X] is a monic polynomial such that f(x) is
irreducible and separable. If « is root of f(x) then E = F(«) is unramified.

Proof. (1) As we have that o € O, hence f(x) is monic and degf(a:) =degf(z),
f(a) = 0. Hence we have that

degf > [F(a):F]=[E:F]=[E:F],

degf _ [F(a): F] < [E: F]

IN

As degf (x) =degf(x), hence the inequality signs can be turned into equal
ones. Hence we have F = F(a) and f(z) is the minimal polynomial of &
over F.

(2) As f(x) is monic, we have that degf(z) =degf(z). We also have

that f(a) = 0. Hence we have that

deg]i = [F(a): F]=[F:F|
degf = [F(a): F]<|[E:F]<[E:F]
Hence we have [E : F| = [E : F], E = F(a) is unramified. O

Theorem 2.36. Let E/F be an extension of nonarchimedean local fields.
Then there is a unique local field K with F C K C F such that E/K is
totally ramified with [E : K] = e and K/F is unramified with [K : F] = f.

Proof. Let e = e(E/F), f = f(E/F). Then we can let x/ be the number
of elements in the residue of E. By Hensel’s lemma, the (k/ — 1)-th roots
of unity are in E. Let K = F(¢) where ( is a primitive (x/ — 1)-th root of
unity. Let g be the monic minimal polynomial of ¢ over F'. By the corollary
of Hensel’s lemma, g is over Op. Since g(z)|(z"" — z), one has that g is
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prime to ¢’ over the residue field of F'. Therefore ¢ is also irreducible over
the residue field of F' by Hensel’s lemma and [K : F| = deg(g) = f.

It is clear that any element in K can be written as ¥ where 2 € Op[(]
and b € Op. Furthermore there are a;; € O or a;; = 0 such that

n f—1
T = Z (Z ai](ﬂ) T

i=0 \j=0

It is clear that

f-1 f-1
Zaij{j =0 or ord, (Z a;¢) = O) ,

J=0 J=1

since {1,¢,---,¢/71} are linearly independent over the residue field of F'
Let i be the smallest integer such that a;,; # 0 for some 0 < j < (f —1).
Then
ord,(z) = ord, (7).
This implies that ord,(K*) = ord,(F*) and K/F is unramified.
Since the residue of K is the same as the residue field of E, E/K is
totally ramified. Let 7 be a uniformizer of £. Then

Ty = apmp with ag € OF,

and
ao = b + 007 + -+ 80 75 + ay g
where b(()o) € O and bgo), e ,b(eo,)l € Ok and a; € Op. Consider
a = b + oM + - b s 4 agmp
where bgl), e ,ijl € OV and ay € Op.
Let

¢ = Zb-j)wg7 €Ok forl1 <i<(e—1).
=0

Then ¢y € O and 7 satisfies the following Eisenstein polynomial over O g
h(z) = 2° — co1mpa® ' — -+ — C1TpT — o
One also has that O} C Ok[mg| by the above argument. Therefore

E = K(rg) and [E : K| = deg(h) = e.
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Now we show the uniqueness of K. Suppose there is another interme-
diate field K’ satisfying the conditions of this proposition. It is clear that
K' O K by our construction. Then K’/K is both unramified and totally
ramified. Therefore K = K’. ]

Theorem 2.37. Let L be a finite extension of the residue field F. Then
there exists a unique unramified extension L/F with the residue field L.
Such a field L is Galois over F, and the Galois group of L/ K is isomorphic
to the Galois groups of L/ F.

Proof. Let a be a generator of L/F with a minimal polynomial f(z) over
F. Choose a monic polynomial E(x) over F' such that

E(x)(mod p) = f(x)

and put L = F(b), where b is any root of E(x), taken as usual from a fixed
algebraic closure of (),, we obtain

[L: F] =degb over K <degE =degf =[L:F]<|[L,:F]<[L:F]

because the image of b in Ly, is a root of f(x), and so L is contained in L.
The resulting chain of inequalities shows that [Ly, : F] = [L : F]; thus L/F
is unramified and [L : F] = [Ly, : F]; hence L = Ly. Thus L/F satisfies our
first assertion. It remains to prove its uniqueness and normality. Let L; be
another field, unramified over K and with L, = L. By Hensel’s lemma the
polynomial E(x) has a root by in L; and we have

F(b) 2 F(b) =L,

but o
[F(by): F]=[L:F]=][Ly: FJ

thus Ly = F(b;) and L, is indeed isomorphic to L.
Now let’s turn to the normality. The extension L/F is normal and thus
L is a splitting field of some polynomial h(z) over L. Choose H(x) over F
so that
H(z) = h(z)(mod p).

By Hensel’s lemma H (z) splits into linear factors in L, and the preceding
argument shows that one of its roots generates L over K, i.e. that L is the
splitting field of H(x) over F' and so is normal.

If g is any element of the Galois group G of L/F and for any a in
S we donate by @ its image in L, then the formula g(z) = g(x) defines
an automorphism g of L/F. We shall prove that the mapping ¢ — g is
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bijective. Since the groups of L/F and L/F have the same number of
elements, it suffices to show that this mapping is surjective. Let a,b, f(x)
and F(z) have the same meaning as at the beginning of the prove and let
b= a. If s is an element of the Galois group G(L/F), then s(a) = a; is
again a root of f(x), and Hensel’s lemma implies the existence of b; in S
such that F(b;) = 0 and by = a;. Such an element is unique because f has
in L as many roots as I has in L, and so all roots of F' have distinct images
in L. Now if ¢ is an element of GG which takes b into b, then § = s; hence
the required surjectivity follows. O]

Ramified Extensions:

A monic polynomial
e(r) = 2™ + 1™+ -+ ag € 0p[X]

is said to be an Eisenstein polynomial if ordy(ap) = 1 and ord,(a;) > 1 for
1<i<m-—1,thatis,ap€p\p?and a; € p for 1 <7 <m — 1. It is clear
that an Eisenstein polynomial e(z) is irreducible.

Theorem 2.38. (1), If E = F(«) and the minimal polynomial E(z) of «
is an Eisenstein polynomial, then E/F is totally ramified and ordg(a)) = 1.

(2), If E is totally ramified over F and « is a uniformizer, then the
minimal polynomial of a over F is an Eisenstein polynomial and E = F(«).

Proof. (1) Let f(x) = 2™ + ayz™ ' + - -+ + a, be the minimum polynomial
of a over F. Then f is Eisenstein, that is, ordy,(a;) > 1 for 1 <i <n
and ord,, (a,) = 1. Hence, the Newton polygon of f(x) is the line joining
(n,ordy,) = (n,0) with (0,ord,,) = (0,1).
Thus, we have
ord(a) = 1/n,

where ord(-) is the extension of ordy, (-) on the algebraic closure of F' and
since

E(a) =0, a;, =0 mod pp,
a=0 modPg, e(E/F)ordy,(«) = ordy,(a) > 1.

This means that e = n, and that E/F is totally ramified. Furthermore,
ordg(a) = ordg, (a) = eord,, (o) = 1.

(2) Let f(x) = 2™ +az™ ' +- - be the minimum polynomial of o over
Op[X] and ord(-) be the extension of ord,, (-) on the algebraic closure of F'.
Since E/F is totally ramified, 1 = ordg, (o) = nord(a) with n = [E : F].
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Suppose that aq, -+, @, are m roots of f(z). Then ord(w;),1 < i < m are
all equal. Hence,

ordy,.(am) = ord(ay,) = ord(a;) + -+ - + ord(ay,)
m
mord(a) .
However, ord,, (am,) € Z. So m > n.

On the other hand, n = [E : F] > [F(«a) : F] = m, meaning that

n =mand E = F(«a). Since a; are polynomials of a4, - - - , o, and ord(e;) =
ord(a) > 0, ord,,(a;) = ord(a;) > 1 for 1 <i < m. From ord,,(an,) == =
1, we have f(z) is Einsenstein polynomial. O

2.3.3 Galois extensions: Local Hilbert theory

Let K/k be a Galois extension of number fields with the Galois group G =
Gal(K/k) and [K : k] = n. Let p be a fixed prime ideal of o, and 3 be prime
ideal above p in Of. Let w and v be the places of K and k corresponding
to P and p, so that w lies above v, say w|v.

By the global Hilber theory, the decomposition group of 9 is Dy with
the order ef. The elements of Dy acts as isometries of K in the norm |- |y.
Consequently o € Dy extends to an automorphism of Ky, and we can thin
in terms of an inclusion.

Theorem 2.39. There is a natural embedding Gal(Ky/ky) into G such that
Gal(Kyp/ky) = Dy and the extension of local fields Ky /k, is also Galois.

Proof. Let Ky = ky(o) where « is generator of the extension K/k. The
conjugates of o over k, from a subset of the set of conjugates of o over &,
and so they all lie in K' C Kyg. Denote the mapping ¢ by

¢ Gal(K,/k,) — G.

By Corollary, o € Gal(K,/k,) is an isometry with respect to the metric
induced by |- |p. In particular, 6Oy = Og and ocPy = Py. It follows
that 0B = B. Then Im(¢) C Dy. On the other hand, for any 7 € Dy,
denote the mapping by ca = o(a,,) = (Tay,), where the Cauchy sequence
(a,) € Kg. We have o € Gal(K,,/k,). Then Im(¢) = Dy.

It remains to prove that ¢ is injective. If ¢(o) is the identity map over
K, then o is also the identity map one the whole field Ky because K is
dense in Kg. This proves the theorem. O

In global Hilbert theory, we have the following exact sequence:

1 = Iy = Dy — Gal(Fg/F,) — 1.
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Similarly, we can define a local mapping
7 Gal(K,/k,) — Gal(F,/F,)
o — 0,
via o(amodPy) = o(a) modPy. It is clear that this mapping is a surjective
homomorphism. The kernel I, of the homomorphism is given by

I, = {o € Gal(K,/k,) : oo = amodPy for all o € Op}.

A slight change in the proof actually show that we have also the same exact

sequence:
1 — I, = Gal(Ky/k,) — Gal(F,/F,) — 1.

B {1} K ——Kgy
B Iy K; Ky, .
! f‘ f‘
Bp Dgy Kp ky F,
p G k

Let us define the sequence of subgroups of I,
Ry ={o €I, : oo =a(modPy"), for all « € Oy}

It’s clear that R; is subgroup of G, and is called the ith ramification group
of G at P and

Gal(Ky/ky) DIy, =RyDRI DRy D+ .

Corresponding to this decreasing sequence of subgroups, we have the in-
creasing sequence of subfields:

ky,C Ki C Ky C---CK,,.
Proposition 2.40. (1), Let I be an element of B with not in B>. Then
Ri = {O' € qu coll = H(mod‘BiH)},

and 1s a normal subgroup of Dy.

(2), Ry is the unique Sylow p-subgroup of Iy where p is the restrict of p
to Z. Ro/R; is cyclic and its order divides NP — 1.

(8), Ri/Riy1,i > 1 is an elementary p-group.
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Proof. (1), For a fixed IT € B \ P2, denote
R, = {0 € Iy |oll = H(modP)}.

According to Equation (2.6, any nonzero o € Oy can be written uniquely
as
o = ull* where u € Op \ Py = Usp.

If o € R}, then there exists a 3,5 € Og such that oIl = II + SII'*! and
ou = u + F'II. Thus

loa —aly = |alp-|oa/o— 1y

_ ‘O'U oIl ordpa 1’
- u II ke

= (L4 Fu (1 + BIF) — 1y

= max{|f'u 'y, |S1|yx}
<

So 0 € R;. And clearly 0 € R; = 0 € R]. Hence
R; = {0 € Iy |oll = H(modP)}.
For any 7 € Dy, 0 € R;, o € O,
|7 tora — alg = T Yora — Ta)|p = |o(Ta) — (ta)|p < pusGays

Then 7 'o7 € R;, which means R; is a normal subgroup of Dy.

(2), If o is an element of R; other than identity, then we can choose a
IT € P\ PB? so that oIl # II. Thus oll = IT + wIl™ mod P for some
m > 1 and u € Uyp. By iterating we obtain o"II = IT 4 rull™ mod P
Suppose that r is the order of o, then o"II = II, which means rull™ € g™+,
Thus o cannot have order prime to p where p is the rational prime underlying
B, and the same happens for any power of ¢ other than the identity. So
any element of R; has order a power of p.

Let 0 € Ry; then oIl is also a prime element and so oll = ull with u a
unit in Og. Then the map

wo: Ro — Up/(1+Byp)
o +— u mod (1+Pgy)

is a group homomorphism with kernel R;. So R; is normal in Ry, and
Ry /Ry is isomorphic to a subgroup of Up/(1 4+ Py) = F = (Og/PBy)™,
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a cyclic group of order NB — 1. And thus Ry/R; is cyclic and its order
divides NP3 — 1.

Since N'B is a power of p, |Ry/R;| is relatively prime to p. So R; is
a Sylow p-subgroup of Ry = Ip. What’s more, we know that all Sylow
p-subgroups of an arbitrary finite group are conjugate, and R; is normal in
Ry. So Ry is the unique Sylow p-subgroup.

(3), For i > 1, if 0 € R;, then oIl — IT € P, that is, oIl/TT — 1 € P,
Consider the mapping

. (@) y7r(i+1)
oll (i41)
o — o mod Uq3
where

() _ i
Uy = 1+Py
= {a € Ky : ordg(a —1) > i}
= {a€e Ky :|la—1lp < (NB) 1.

Then ¢; is a group homomorphism with kernel R;;. So R;/R;; is i-
somorphic to a subgroup of Uq(;) / U§+1). We have already known that
Uy JUSTY = O /Py via 1+ all' = amod Py, and Oy /Py is a addi-
tive group of order N'B, which is an elementary p-group, being a vector
space over Z/(p). So R;/R;y1 is an elementary p-group. O]

Corollary 2.41. The Galois group of any finite normal extension of a p-
adic field is solvable.

For a Galois extension, it is clear that Kg/k, is unramified if and only
if Ry = {1} and Ky/k, is tamely ramified if and only if Ry = {1}.
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2.4 Ramification Theory

Many number-theoretic objects give rise to an ideal which identifies the
bad primes for that object and measures how bad they are. Such an ideal
is important primarily because it has this this property.

2.4.1 The different

Let E/F be a finite separable extension of local fields or global fields with
the integral domain O D Op and [L : K| = n. Let M be a nonzero subset
of E. The complementary set M' of M is denoted by

M/ = {Oé ek T’I“E/F(OéM) C OF}

Our first major result will state that if M is a fractional ideal of E, then so
is M'.

Lemma 2.42. Ifwy,...,w, is a basis of £ over F and
M:Opw1+---+OFwn.

Then
M/ = OF(U/I —|——|—OF(U7/1,

where {wy, ..., w,,} is the dual basis relative to the trace, that is, Trp/r(wiw)) =
dij. In particular, if a is a fractional ideal of Og, then o' is also a fractional

ideal. Furthermore O C O.

Proof. Let o € M’ and write
a=aw]+ -+ azw,

with a; € F. Then Tr(aw;) = a;, whence a; € Op for all 7. This proves
MI C OFWi -I——i—OFw;I
Conversely,

Tr(Opw;M) = OpTr(w;M) C op.

So Opwy + -+ 4+ Opw,, C M'.

Since every a fractional ideal of F is squeezed between two Op-modules
of type Opw; + - -+ + Opw, for suitable bases {w;} of E over F, and since
Or is noetherian. We get that if a is a fractional ideal of Og, then a’ is also
a fractional ideal. O
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The integral ideal O’; ' of Op is called the different of E/F and is denoted
by DE/Fa i.e.,

@E}F = {Oé € E TT’E/F(OCOE> C OF}
We prove now the following transitivity properties of the different.

Proposition 2.43. For a tower of fields FF C E C K, one has
Dk/r = Dr/EDE/F.

Proof. 1t is easy to see that (Dg/pOk) ™" = @E}FOK, and therefore

Dr/r = Dg/EDE/F < :D;(}F = CQI_(}E@E}F

Now, for any a € K we have

a € @I}}F — Trig/r(aOk) C Op

Trg/r(Trik/(aOk)) C Op
Tri/e(aOk) C @E}F
Trg/p(a®p/rOk) C Op
Oé@E/F C @;(}E

1111

a C @;(1/ ECD;;} I
This completes the proof. n

Lemma 2.44. (Euler lemma) Let E = F(«) be a finite separable extension
of degree n. Let f(x) be the irreducible polynomial of o over F' and f'(x)
be its formal derivative. Write

(=)

r—

= bnfll’nil + 4 bll’ + b(].

Then the dual basis of {1,c,...,a" '} is

bO bn—l
frlla)” 7 fi(e)
Proof. For if aq, ..., a,, are the roots of f, then one has
Z f(z) —/ai =z, 0<r<n-—1,
— x — ay ['()
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as the difference of the two sides is a polynomial of degree < n — 1 with
roots ag, ..., ay, so is identically zero. We may write this equation in the

form
flx) o } _
z—a f(a) ’

Considering now the coefficient of each of the powers of x, we obtain

i b
rrere (o' 5t5) =0

and the lemma follows. O

T’T’E/F [

Corollary 2.45. If Og = Opla]. Then Dg/p = (f'(a)).
Proof. As Op = Opla] = Op + Opa + -+ - + Opa™™!, we get
Dpyr = Op = ()" (Orby + -+ + Opby1).
Considering the coefficient of each of the powers of x of f(x), we get
byi = a4 ap1 T i,

so that
OFbo + -+ Oan,1 = OF[Od] = OE

Then @E}F = f(a)'Op, and thus Dg/p = f'(2)Op = (f'(a)). O

2.4.2 The discriminant

For a finite extension k/Q, we have defined the absolute discriminant d,
of k. The definition of the discriminant of a general algebraic number field
K/k was given by Dedekind. Let [K : k] = n and let aq,...,a, be n
elements of O linearly independent over k. We write

di/e(oa, ..., o) = det(Trg/p(0gay));

then the relative discriminant d . of K/k is the ideal in k generated by
all the dg/p(a1,...,0,). Note that dg/; is an integral ideal of oy.

Lemma 2.46. (1), For a extension of k/Q, we have Ny o(Dyjq) = |dkl-
(2), dxjk = Nr/u(Dk k)
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Proof. (1), Let a1, ..., a, be an integral basis of k, that is,
or = Zoy + - + Ly,

Then
Dty = LB+ -+ ZB,.

where Tr(a;f3;) = 0;;. Assume that 3; = > | ¢;jas with ¢;; € Q. Then

(Tr(cuay))(ciy) = (iTT(%as)Csj>

= (Tr(ai i csja5)>

= (Tr(aifBy))
= ].

It implies that |dj| det(c;;) = 1. According the definition of norm of ideals,
we obtain

Nijo(@iia) = {Nija@ylg) ) = fdet(c)}™ = ldil
O

Let K/k be a extension of number fields with [K : k] = n. Let p be
a fixed prime ideal of 05 and B be prime ideal above p in Of. For any
extension of local fields Kg/k, with the degree ef, we also can define the
local discriminant for Ky/k,. Let

:D—l

rosy = Oy = {0 € Kyt Trigg i, (aDy) C o}

be the local different for the extension Ky/k,. Then Ky /ky 18 an integral
ideal of 0y, say ‘B;‘é where d is called the differential exponent. Let wy, ..., wey
be a basis of Ky over k, satisfying

We have
-1 —d
where {w(,...,w,;} is the dual basis relative to the trace. We define the

local discriminant by

de/kp = det(Ter/kp (wiwj)).

It is easy check that dg, /k, € 0, and the ideal (dg, k) of 0, is independent
the choice of the basis {wy,...,w,}.
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Lemma 2.47. With notations and assumptions as above. Then ord,(dgy k,) =
fd G,nd dK‘p/kp Op - NKq}/kp (gKfﬁ/kP)'

Proof. It S is a multiplicative subset of Ky, then clearly dg-1p/5-1z, =
S gy, and Dg-1p /515, = S Dy sk, Assume that Ky has an in-
tegral basis ai,...,a,. So we have d,/w, = (d(ag,...,a,)). Dedekind’s

Complementary module €,/ is generated by the dual basis o/l, e Q,

which satisfies T'r g, /kp(aia;-) = §;j. On the other hand, €k, /i, is a princi-
pal ideal () and admits the k,— basis Say, ..., Ba, of discriminant

d(Ba, ..., Bay,) = NK;p/kp(ﬁ)zd(ala ).

But (Nky /i, (8)) = Nicy i, (€ hy,) = NK,B/kp(Q};/kp) = Nk /k, Drcq/y)

and (d(av, ..., o)) = digk,- Onehas d(o, . . ., ap) = det((0505))?, d(ay,...,a)) =
det((a,a;))Q, and Tr(ozioz;) = 0;;. Then d(ay, ..., a,) - d(ay,...,a,) = 1.
Combining these yields

digsp, = (dlaa, .. a) ™) = (d(a), . ay,) = (d(Ban, .., Ba))

= Nicy k(D) ey ey
and hence Ngy x, (D xp/k,) = dicy k- O

2.4.3 Ramification theory

With notations and assumptions as above. We identify D, /r, with a power
of B, though strictly speaking it is a power of Py;.

Proposition 2.48. (1), The global different is the product of the local dif-
ferents, i.e.,

QK/k = HQK‘n/kp'
B

(2), The global relative discriminant is the product of the local discrim-
mants, 1.e.,

dK/k = H dK‘:p/kp'
B

Proof. Let x € @};/kp, we choose y € K, which’s very close to z at 3, very
close to 0 at all other prime divisors of p in K, and of value at most 1 at
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all other finite K-primes. Then by Corollary 2.35, for all k-primes p and
z€9 K

Tri/e(yz) = ZTer/kp (yz) € o,
Blp
= Tri/w(yz) € oy

Therefore

(RS Di}}k
=1 €0y
= Dk C Dry/ky

Conversely, we assume that x € @I_(l/k, and choose y € K, which’s very close

to x at B, very close to 0 at other prime divisors of p in K, and of valve at
most 1 at all other finite K-primes. Reasoning as above, we see that for all
z€90 K

TrK‘B/kP (yZ) € Op

= TI‘Kf_p/kp (iL‘Dqg) - Op
—1

=€ @Km/kp

= Dr/k 2 Dy /ky

This shows D is dense in D p,, that is, DOk, = Dkyyr,- Then
Dx/k = 11D g by
B

Theorem 2.49. Let e = e(P/p) and ordp(D ki) = m. Then P HD gy
In particular, we have

(1), B is ramified in K/k if and only if B|D ki

(2), B is tamely ramified in K/k if and only if m = e — 1.

(3), B is wildly ramified in K/k if and only if e < m < ordg(e) +e— 1.

Corollary 2.50. The prime ideal p of k is ramified in K/k if and only if
plds k-

Corollary 2.51. For any finite extension k/Q at least one prime p ramifies.

Proof. 1t follows immediately that |dy| > 1 for any number field & # Q by
Corollary (1.32) and the above theorem. O
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Exercises

1, The p-adic valuation is nonarchimedean.
2,Let |-| be any valuation over any field k and |- |« be the usual absolute
value over R. Then, for any «, 8 € k,

o] = [Blloc < la— 5.

3, A field of nonzero characteristic has only nonarchimedean valuations.

4, Let | - | be any valuation over any field k. Then the following state-
ments are equivalent:

(1), the valuation | - | is nonarchimedean;

(2), for any |a| < 1, we have |1 + o < 1;

(3), for any |a| <1, we have |1+ o] <1 .

5, Let 01,...,00,00,41 = Opj4ryt1s---+0r +r, = Opn be embeddings of
k. Let |-|1,...,||r4r, be archimedean valuations induce by o1, ..., 0 p,-
Then |- |1,...,|* |r+r, are pairwise inequivalent.

6, Let p and q be two distinct prime ideals of a number field k. Then
the p-adic valuations | - |, and | - |; are inequivalent.
7, Find a € Q, such that va(a—1/3) > 2, v3(a—1/2) > 3, and |a—1|w <

1/2.

8, If a sequence «, converges a nonzero element o withe respect to
any nonarchimedean valuation over a field k, then we have |a| = |a,| for
sufficiently large n.

9,

ordy : k — Z
a +— ordy(w).

Then it is surjective.

10,

11, A valuation |- | on a field k is discrete if there is a § > 0 such that
for any o € k

l-d<]a|<1l40=|a|=1

A non-archimedean valuation | - | on any field % is discrete if and only if
p={a €k : |a] <1} isa principal ideal.
12, Let |- |1,...,| " |m be distinct places of k. If
jafit - Jaly =1,
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for all o € k*, where r; are real constants, then r; =--- =r,, = 0.
13, (1), Let the polynomial f(z) = a,z™ 4+ a,_12™ '+ -+ ag € ky[X]
be irreducible. Then

max{|a;], : 0 <i<n}=max{|agly, |an|s}-

In particular, if f(z) = 2" + a12™ ' + -+ + a, € ky[X] is irreducible and
an € 0y, then all a; € 0, ie., f(z) € 0,[X].

(2), Let f(x) € F,[X] be the polynomial obtained from f(z) by reducing
the coeflicients of f(x) modulo p,. If f(z) € 0x[X] is monic and irreducible
over ky, then f(x) is a power of an irreducible polynomial in F,[X].

14, Show that for any prime p, there are p — 1 distinct (p — 1)-th roots
of unity in Z,.

157 Ok = nall prime ideals p Op-

15, Show that Fermat equation ™ +y" = 1 has infinitely many solutions
over Z, for any integer n > 1.

16, Write power series of the number 2/3 and —2/3 as 5-adic numbers.

17, Show that the equation 22 = 2 has a solution in Z;.

18, Show that the exponential series

1
1

19, (Krasner’s Lemma) Let F' be a local field and «, § be two elements
of the algebraic closure of F. Assume that « is separable over F() and

assume that for all isomorphisms o of F'(a), o # 1, we have

converges for ord,(z) > in Q, and diverges elsewhere.

| —a| <|oa—al.

Then F(a) C F(B).

20, Suppose that f(z) € Z[X], then f(x) = 0 has a solution in Z, iff
for any n > 1, the equation f(z) = 0( mod p™) has solutions in Z.

21, Let Ky D ky belocal fields. If x € Ky, then |z|y = \NKm/kpx|;/[Km:k"],
and ordy(N(z)) = £(B/p)ordss(z).

22, Show that z? — 82y* = £2 has solutions in every Z, but not in Z.
What conclusion can you draw about Q(+/82)?

23, Let k = Q(«) with « a root of f(z) = z* — 14.

(1), Show that the prime 11 has three extensions to prime py, pa, p3 of k
and ky, = kyp, = Qq; while [ky, : Qu1] = 2.

(2), The prime 13 has four extensions to primes of k.
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(3), Show the prime 5 has two extensions to primes pi,ps of k and
[km : @] = [kpz : @} =2.

24, Let E//F be a finite separable extension of local fields or global fields
with the integral domain Or D Op and [L : K] = n. Let I be a fractional
ideal of E/. Then

(1), Tr(I) C Op if and only if I C O%.

(2), I is an integral ideal if and only if I'"' € O}, "

(3), (") =1
(4), Tr(O%) = Or,
(5), I' = Oy I 1,

25, Prove that if [k, : Q)] = n and ®, = Dy, /g,, then k,/D, and
(Qp/Z,)" are topologically isomorphic.
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Chapter 3

Adele, Idele and Harmonic
Analysis

In this chapter, we saw how we could associate various locally compact
groups to an algebraic number field, and we saw how the topological prop-
erties of these groups translate into arithmetic properties of the field.

3.1 Adeles and Ideles

In discussing "local-to-global” problems it is often necessary to consider
several different v-adic fields simultaneously, where each v may be either a
finite or an infinite place. The natural language for this is that of adeles
and ideles.

Recall: Some fundamental facts on any topological group Let G be a topological group and
H be its subgroup, and let A be any subset of G.

(1), I G is compact if and only if G; is compact for every 3.

(2), [1 G is locally compact iff G; is locally compact for every i and G; is compact for almost all i.

(3), if H is open, then xH, Hx, H~1, AH and HA are open.

(4), every open subgroup H is also closed, and every closed subgroup with the finite index is open.

(5), the quotient map p: G — G/H is open.

(6), the subgroup H is open if and only if the quotient space G/H is discrete.

(7), if H <1 G, then G/H is a topological group.

(8), if G is compact and H is a closed subgroup, then H is compact.

(9), if G is compact, then the topological space G/H is compact.

(10), If H is compact and the quotient space G/H is compact, then G is compact.

For detailed proof, see [12].

3.1.1 Restricted direct products

Let {G, : v € A} be a family of locally compact topological groups where
A is a set of indices; let A, be a finite subset of A. For each v € A\ Ay, we
fix a compact open subgroup H, of G,. We say a condition holds for almost
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all elements of a set if it holds for all but finitely many elements. We define
the restricted direct product of the GG, with respect to the H, as follows

G= H/G” ={(zy) : z, € G, with z, € H, for almost all v}.

vEA

We give GG a topology by taking as a basis of open sets the sets [[ N, where
the open sets N, C G, for all v, and N, = H, for almost all v. It is clear
that the restricted topological product G of GG, is locally compact. For the
detailed proof, see [12].

Let S be any finite subset of A containing A, and consider the subgroup

G defined by
Gs=[]6. ][ &
veS vgS
Then G is an open subset of G and the topology induced on Gg as a subset
of X is the same as the product of a finite family of locally compact groups
with a compact group; hence G is locally compact in the product topology.

3.1.2 The adele ring

Let k£ be an algebraic number field and v be any place. Let k, be the
completion of k with respect to the normalized valuation at the place v.
For each nonarchimedean place v of k, let 0, denote the ring of integers of
k, and U, denote the unit group of k,. The adele ring Ay is the restricted
direct product of the k, with respect to the o,, that is

A, = {(av) € Hkv : ay € 0, for almost all v} .

The adele ring form a commutative ring under componentwise addition and
multiplication. For any a € k, there is a natural continuous ring inclusion
which is called the diagonal map

kK — f&k

a — ().
We see at once that the diagonal map is injective because each map k£ — k,
is an inclusion. It enables us to identify k with a subring of Ayx. The
image of the diagonal map is called the ring of principal adeles. Write
Sy ={v : v < oo} all finite places and S, = {v : v|oo} all infinite places
of k. Let S be a finite set of places of k containing S,,. The

[§£ ::]?I:kv:[]:ov

veS  véS
is called the S-adeles.
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Lemma 3.1. The field k is the discrete subring of Ay.

Proof. On account of the additive group structure of Ay it suffices to find
a neighborhood U of 0 in A; which contains no elements of £ other than 0.
Denote the set U by

U = [[N]] e

v]oo V<00

= {(aw) : |ayly < 1 for v|oco and «, € 0, for v < 0o},

is an open set containing 0; and it contains no other elements of k by the
Product Formula. O

Theorem 3.2. Ay /k is compact.

Proof. In order to prove this important result, we require the following
preliminary result, which will be useful in its own right.

o AP Nk =o0;and A +k = Ay

That A7> Nk = o, follows immediately from the fact that o € k lies in
oy, if and only if ord,(a) > 0 for all nonzero prime ideals p in o.

Let @« = (o) € Ay and T = {v < o0 : «, ¢ 0,}. Then T is finite
set of places of k. By the approximation theorem, there exists § € k such
that [ — aply < 1for v € T and |B], < 1 for v ¢ T U Sw. It follows
that |5 — | < max{|B|v, ||} < 1 for v & T US,. We conclude that
(B — a,) € 0, for v € S}, hence that 8 — (a,) € A7, and finally that
a €AY+ k.

Now we turn to prove the theorem. We first have

( H /{;v)/ok =~ R" /oy

’UGSOQ

is compact because oy is a lattice. Therefore, we get that
Ak = (AF +k)/k = A= /(A )

= A}>/o), = ( 1T kv)/ok I e

VESso ’UESf

= (R"/oy) H 0,

UESf

is compact. ]
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e Recall: Fundamental domain Given a topological space X and a group G acting
on it, the images of a single point under the group action form an orbit of the action. A
fundamental domain D is a subset of the space which contains exactly one point from
each of these orbits, i.e., for each x € X, there exists a € D and g € G such that gz = «
and the choice of « is unique.

Corollary 3.3. (Strong approximation theorem for adeles) The fundamen-
tal domain D for k\ Ay is given by

D =Dy [] o,

UESf

where
Do = {Zaiwi 0<a; < 1}
i=1
with {w; : 1 < i < n} being integral basis of k. In particular, the D =
0,1)[[Z, is called the fundamental domain for Q \ Ag. That is, we have
a disjoint union

Ag=J(a+D).
aeQ

Proof. This corollary is to say that every element av € Ay could be expressed
uniquely in the form § + v, where g € k,y € Af@, and where the infinite
component of ~ is of the form

n
Zaiwi,() <a; < 1.

=1

From the proof of theorem 3.2 we know that every « could be expressed
like that. Then we only need to prove the uniqueness.

If 51 +v1 = B2 + 72, then we know ; — By = 71 — 7. Hence we know
Y1—72 € k. As we know y; —, € Af“’, then we could have that v; —vs € 0y.
Hence we know 7; = 7, by the infinite component. Hence (5, = [s. O

3.1.3 The idele group

The idele group I is the restricted direct product of the k) with respect to
the U,, that is

I, = {(ocv) € I_IkvX : a, € U, for almost all v} )

It follows easily that the idele group I} is the group of invertible elements
of the adele ring Ay. But although I is a subset of A; we must not give it
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the subspace topology, for o — a~! would not continuous in that topology.

By the restricted direct product, a basis for the open sets in I is given by
[[ N, where each N, is open in k) and N, = U, for almost all v. For the
convenience, we set U, = {£1} if v is a real place and U, = S if v is a
complex place.

As with adele, there is diagonal map k* — I defined by a — ().
Thus we can identify k™ with a subset of I, and its image are called the
principal ideles. This map induces on k> the subspace topology; and we
can form I /K* and endow it with the quotient topology. The

I =1[* [0
ves vgS

is called the S-ideles where S D S, is a finite set of places of k. In
particular, the element o € ]If“ is called the unit ideles.

Lemma 3.4. The group k> is the discrete subgroup of .

Proof. Set U = {(av) : |z, —1|, < 1 for v|oco and |z, — 1], <1 for v < co}.
Then U is an open neighborhood of 1 and U N k* = {1}. O

The factor group Ay /k is called the adele class group, and similarly the
group I, /k* is called the idele class group.
If @ = (o) € I, define the content of the idele o by

af = H |ty o

v

It is clearly well-defined because «,, € U, for almost all v.

Lemma 3.5. The map ¢ : I, — R as above is continuous epimorphism
where RY is the multiplicative group of positive real numbers. There is an
exact sequence

1—>]I,1€—>Hki>Ri—>1,
where I}, =ker ¢ = {a €T, : |a] = 1}.

Proof. By the definition of the content map ¢, we easily see ¢ is a homo-
morphisms. Define the two subgroups

L= J[ &

’UGSoo

L, = {(w)€ H k) : a, € U, for almost all v € Sy}

’UESf
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considered as closed subgroup of I in the obvious way. Let ¢;(i = 1,2) be
the restriction of ¢ to I,. It suffices to show that ¢; is continuous, since
]Ik = Il X IQ, ¢ = ¢1¢2. But the map

ky — RY
a — oy

are continuous and surjective, so ¢; is continuous and surjective. The map
¢2 contains the open subgroup [[,.q, Uy in its kernel, and is therefore con-
tinuous. The surjectivity of ¢ follows from the surjectivity of ¢;.

On the other hand, by the definition of I}, we know ker(¢) = I}. So
there is an exact sequence

1—>]I,1€—>ka>Ri—>1.
OJ

Lemma 3.6. I} /k* is closed both as a subset of Iy and as a subset of Ay,
and the two induced topologies on it coincide.

Proof. To prove that I} is closed in Ay, it suffices to show that there exists
Aj—neighborhood W of a which does not meet I}, for any o = (c,,) € Ap—T}.
Since |a| # 1, there are two cases to consider.

First suppose that |a| > 1. Then there is a finite set S including all
infinite places and those finite prime p which either Normp < 2|a| or |y, >
1. We can choose ¢ so small that |w, — ay|, < € for v € S implies 1 <
[Ioes [wolo < 2|a]. Then define

W ={w=(w,) : |w, — |, < e forve S w, € o, for any others}.

This works because if w € W, then either |w,|, = 1 for all v € S, in which
case |w| > 1, i.e. w & I}, either |wy|,, < 1/2|alphal for some vy & S, in
which case

jwl = ([T lwolo) - fweo| -+ < 2ler] - 1/2]a]) - < 1,
veS
sow &1},
If instead || < 1. Then there is a finite set S including all infinite
places and those finite prime p with [ay|, > 1, such that ], g |aw|s < 1. We

can choose ¢ so small that |w, — a,|, < € for v € S implies [], ¢ [wy|v <

%(HUGS |ay|y + 1) < 1. Then define

W ={w=(w,) : |w, — |, < e forveS w, € o, for any others}.

102



Obviously, W does not meet Tj.

Thus T} is closed in Ag. It is closed in T, because the idelic topology on
Il is finer than he restriction of the adelic topology.

For the last assertion in the lemma it suffices to show that any I —open
subset of T} is Ay—open, the converse being trivial. Now let W = [[ W,
be any basic I,—open set; we need to find a Ap—open set W’ such that
W NI, = W NI. By writing W as a union of smaller basic open sets if
necessary, we can assume that each W, is bounded; since for all but finitely
many v we have W, = o/ and therefore |a,|, = 1 for all a, in W,,, there is
a constant C' such that |a| =[] |aw|, < C for all « in W. Now write

wW! =

v

{op if p is finite, W, = 0 and Normp > 2C 5.1

W, otherwise

Since the first of these happens for all but finitely many p, W’ = [[ W]
open in Ay; and W/ T = W (I} as in the first part of the proof. n

There is a natural homomorphism map of I, to the fractional ideals Jj,
of 0x. Indeed, given an idele o = () € I,

n:a= (o) — (a)= H porde(ee),
UESf

where p, is the prime ideal of 0 with respect to the finite place v. It is
easily seen that this map is onto and its kernel is

kern = {(a,) : ord,(a,) = 0 for all finte v} = I2>.
Thus we have an isomorphism
Iy /K12 =2 ./ Py, = C,

where Py is the principal fractional ideals group and C; is the ideal class
group. By the product formula we have that £ C I}. The following result
is of vital importance in class field theory.

Theorem 3.7. T}./k* is compact.

Proof. Let the map n be as above. Then it induces a homomorphism of
I./k* onto C; whose kernel consists of the idele classes IL, = H x [],_. U,
where

H= {(0@) e[Tx : [Tlewl = 1}.

v]oo v]oo
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Indeed, the map 7 restricts only the nonarchimedean coOrdinates and we
can adjust the archimedean coordinates to obtain |a| = 1. Then we have
the exact sequence

1— KTk = Tk — J/ P — 1.
Clearly, I, N k* = Uy, and thus

KXIL /= kX<H < T1 Uv)/kx

<0

~ (1 x [[w)/ (= I v.) 0k

V<00 V<00

- (H <[] Uv)/Uk

v<o0o

= (H/Uk> < [T v

v<oo

By Dirichlet unit theorem ([1.12)), we have the map
Ao H =R (0)h)e0 > (108 |0t])vfoo-

It follows that ker A = [], ., Uy is compact and A(Uy) is a lattice in A(H).

Therefore H/Uj, is compact, and then (H/Uk> x 1]
theorem immediately follows from the finiteness of the class group. m

U, is compact. The

v<o0

To prove the above Theorem we used the finiteness of the ideal class
group and Dirichlet’s unit theorem. Conversely, from an independent proof
of the above Theorem we can immediately these two results—which are the
key structural theorems of the elementary theory. For such a proof, see
Chapter II of [4].

Let {e1,...,€6._1} be fundamental system of units of the number field k

and denote by
r—1
P = {Zal/\(el) 0<a; < 1} .
i=1

We define
Ey={a=(ay) € H: Ma) € P and 0 < arga,, < 27/w},

where w is the order of the group of the roots of unity in £ and v, is a
fixed finite place of k. Let fy,..., S, be ideles such that n(3;),...,n(5n)
are representatives of the ideal classes of C.
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Corollary 3.8. (Strong approximation theorem for ideles) The fundamental
domain D for k* \ Ti is given by

h
L)::LJ/% Eb I]:lh
=1

UESf

That 1s,

I, = U aD
ackX

1s a disjoint union.

In particular, the D = (0,00) [[ Z) is the fundamental domain for Q* \
[g. That is, we have a disjoint union

Io= |J aD.

aeQXx
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3.2 Idele class group and ray class group

3.2.1 Idele class groups
3.2.2 Ray class group
3.2.3 Hecke characters
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3.3 Characters on local and global fields

Let G be a topological group. A quasi-character x of G is a continuous
homomorphism from G into C*. In particular, A quasi-character is called
(unitary) character if its image is in the circle group S = {z € C : |z| =
1}. We shall show that any quasi-character can be written uniquely as a
unitary character times a real power of the norm, so there is no big difference
between the two definitions.

3.3.1 Duality theory

Let G be a locally compact abelian group. The set G of all characters of G
forms a multiplicative group in an obvious way,

xixz2(9) = x1(9)x2(9), g € G,

called the character group or dual group of G. We can topologize G as
follows. Tt is said to compact-open topology. Fix a character o of G; then
a basis for the open neighbourhood U (g, €) of o in G is given by

Ur(x0,€) = {x € G : |x(9) — x0(9)| < ¢, for any g € K},

where ¢ > 0 is in R and K is any compact subset of G. We have the
following fundamental facts, for detailed proof see [12] or [18].

(1), The group G isa locally compact abelian group. If G is compact,
then G is discrete, and if G is discrete, then G is compact.

(2), (Pontryagin Duality Theorem) The map that associated to g € G
the character Xy : x +— x(9) of G is an tsomorphism of the topological

groups G' and G. R

(3), If H is closed subgroup of G and the annihilator H+ = {x € G :
X(H) = 1}, theni[iz’s closed in G and there are canonical isomorphisms
H>~G/H* and G/H =~ H*.

(4), Any character on a closed subgroup of G can be extended (non-
uniquely) to the whole of G.

(5), If G is compact, or if every element of G is of finite order, then
every quasi-character of G is a character.

(6), The dual group of the direct product Gy x Gy is isomorphism to
G X Gs.

The G is called the self-dual if there is a topological isomorphism from G
onto G. We shall show that k, and Ay are self-dual locally compact abelian
topological groups.
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3.3.2 Characters on local fields

Let k be a locally compact topological field. Then it is a group under ad-
dition, and at the same time the set of elements of k£ other than 0 forms
a group under multiplication. Henceforth we denoted by k™ is the addi-
tive group of k, and by k> its multiplication group. Let x be an additive
character of a local field £*, i.e., a continuous homomorphism such that

x(@+y) = x(x)x(y), for any z,y € k™,

Let ¢ be a multiplicative character of a local field k*, i.e., a continuous
homomorphism such that

U(zy) = (x)Y(y), for any z,y € k™.

A topological group G is said to have no small subgroup if there exists a
neighborhood U of the identity that contains no nontrivial subgroup of G;
otherwise G is said to have small subgroup. A basic example of a topological
group with no small subgroup is the general linear group over the complex
numbers. In particular, the circle S has no small subgroups. The subgroups
{1+p;*} are small subgroups of nonarchimedean local field k,°, that is, any
neighborhood of the identity in k,° contains some 1 + py.

The complex valued function f(g) on a topological group G is locally
constant if it is constant in some neighborhood of each point.

Lemma 3.9. Let G be a totally disconnected locally compact topological
group. Then any quasi-character x s locally constant.

Proof. Let {H,} be a basis of neighborhood of the identity consisting of
open and compact subgroups of G. Then x(H;) is compact subgroup of C*
and C* C S'. Denote the neighborhood A/ of 1 in S* by {z € ST : Rz >
1/2}. Then x '(N) is a neighborhood of the identity of G. Hence we have
H, C x YW for sufficiently large n. It follow that y(H;) is a subgroup
of St contained in A/ and must therefore be trivial because N contains no
nontrivial subgroups. [

Let k, be a local field and ), be a nontrivial additive character. Then
Xp is locally constant, i.e., there exists p;* such that x,(p;") = x,(0) = 1.
Let m be the smallest integer such that x,(p;") = 1. We call §, = p;* the
conductor of x,. Similarly, let ¥, be a nontrivial multiplicative character of
ky. Let m be the smallest integer such that (1 + py*) = 1. We also call
fp = py" the conductor of 1. If m = 0, then by define, § = o,,.
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& Additive characters

Lemma 3.10. Let k, be a nonarchimedean local field. Then every quasi-
character ., of kI is a character.

Proof. Let 0, be the ring of integers of k,. Then the restrict of x, to o,
must be a character because o, is compact. But every element of £ can
be written the form a/m with a € 0, and m € N, and since |x(a/m)|™ =
x(@)] =1 we get [x(a/m)| = 1. N

Theorem 3.11. Let k, be any local field. Let x be a fixed nontrivial additive
character of k. For each o € k' the map xo(z) = x(za) is an additive
character of k', and the map o — xo of k" into kF is a topological group

isomorphism. That is, the local field k, is self-dual.

Proof. The map = — X4 (z) is a continuous homomorphism of k" into S,
since the map x — x« for fixed a is a continuous homomorphism of & into
itself.

As is easily seen, ¢ : @ — X, is a injective group homomorphism of k"
into lgf :

The topology in lgf is defined by the neighborhood system of the unit
(i.e., trivial) character xo, which consists of the sets

Ule,B) ={x €kl :|X(x) — 1| < e for anyz € B},

where € > 0 is in R, and B is a compact subset of l;;? . It suffices to take for
B the sets of the form

Bm:{x€%:|x|§m}

with m € R;m > 0.

To establish the continuity of ¢ we must show that for every U(e, B,y,)
there exists a neighborhood U of 0 in E;\F with o(U) C U(e, B,,). Let § >0
with |x(8) — 1| < e for |5] < 6. Then

)
= Et —
U={aeck]  |a< m}

provides what we need to show.

The map @' of (k) onto k" is likewise continuous. For this we must
show that for every 6 > 0 there exist € > 0 and m > 0 with |[¢ ' (xa)| < 8
for xo € (k)N U(e, By).

Let 2o be an element of k with x(x¢) # 1. We set

_ Izl

= —1
e=Iz) 1],  m="
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For o € k}f with ¢(«) € U(e, B,,) we have xy € aB,, and thus |z > |a|m;
that is, |a| < .

We have proved that the topological groups k" and (k) are isomor-
phic. When kf is complete, then so is p(k}), and it is therefore closed in

kF). By Pontryagin duality theory, there exists a one to one relation be-
tween the closed subgroup of k" and EE Here there corresponds to ¢(k)
in kf the subgroup of z € kf with y,(z) = 1 for all @ € k,. Since x
is nontrivial, this holds only for z = 0. It follows that ¢(k;}) is equal to

—_—

k). O

For any local field k,, we may construct the standard character x, € E;\F
For simplicity, we set e(z) = €*™* for 2z € C.

e Case k, =R: For any a € R, set \,(«) = —a mod Z and x,(«a) =
e(—a) = e(~Ay(@)).

e Case k, = C: Forany z € C, set \,(2) = —232 mod Z and x,(z) =
e(—293z) = e(—Ap(2)).

e Case k, = Q,, p < oo: For any a € Q,, choose m € Z so that
p"a € Zy. Since Z is dense in Z,, there exists a € Z such that

Set A\,(a) = a/p™(mod Z) which is independent of the choice of m and a.
Clearly, A, is a nontrivial continuous homomorphism of Q; into R/Z in

both cases. Denote x, € @ by

It is clear that X, is trivial on Z,.

e Case k,/Q,, p < co: Denote y, € E;\F by xv = eo X, 0Ty, q,, ie.,

Xo(a) = e(Ap(Try, g, (@))).

By Theorem (3.11]), we immediately obtain that, for any fixed a € k,,
the map

l<:1,—>l;;\F
Oél%Xa

is an algebraic and topological isomorphism where xo(x) = e(\,(Try, /g, (za)))
is a nontrivial additive character of k.
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& Multiplicative characters

For any a € k), we have that o can be represented uniquely in the form

vjoo: a=wur, ueU,r >0
v<oo: a=um, ueU,relZ, (3.2)

where 7, is an uniformizing parameter at the place v; that is, we have

ky =2U, xRy or ky=U,xZ (3.3)

according as v is archimedean or not. By the fact é\l X é\g &~ sz, we
firstly shall consider the character on the unit group U,.

Let 1, be a multiplicative character of a local field k). The quasi-
character 1, is called the unramified at the place v if it is trivial on U,;
otherwise we called it ramified.

Lemma 3.12. The unramified quasi-characters 1, are the form 1, : a
la|2, where s is any complex number; s is determined by 1, if v is archimedean
and s is determined only mod 2mwi/log Np if v is p-adic.

Proof. 1t is clear that the quasi-character 1,(a) = |a|® are unramified.
Conversely, let y be an unramified quasi-character. Then 1,(«) depends
only on the value group I', = {|a|, : a € k) }. The value group I', = RY if
v is infinite and [, is the infinite cyclic group generated by Np,,.

By , we have ¢,(a) = |a]?, t € R, since every character of R is of
the form o — o, t € R, see exercises. If v is a finite place, then

s __ _sloglaly __ ,—ordy(a)slog N(py)
T=e =e .

|l
Hence s is determined up to addition of a multiple of 27i/log Np,,. O

Lemma 3.13. Let o € k) be written as the form . Every quasi-
character 1, of k,* has the form

Uy(@) = cp(u)|aly, (3.4)
where ¢, is a character of U, and s € C.

Proof. 1t is clear that every mapping of the form is a quasi-character.
Conversely, let 1, be an arbitrary quasi-character, and let ¢, be the restric-
tion of 9, on U,. Then ¢, is a character since U, is compact. Furthermore,
Yy(a)cy(a) ™ is an unramified quasi-character of kX. The result immedi-
ately follows the above lemma. O]
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Suppose that ¢, is a character of U, for any place v.

(1) v is a real place. We have U, = {£1}. There are just two classes
of characters on U,:

co(z)=1 or ¢,(z)=sign(zx).
It follows that we have, for x € R,

Yo(z) = |z or 1, =sign(z)|x|*, (3.5)

for some pure imaginary s,.
(2) v is a complex place. We have U, = S'. Tt is well know that

—_

ST = R/Z = 7, that is, any character of S! is the form ¢, : € s €™’ for
any m € Z. It follows that we have, for z € C,

0o =(5) bl (3.6)

2|

for some pure imaginary s, and for some integer n,.

(3), v is a finite place with respect to a prime ideal p. Let p;* be
the conductor of ¢,, i.e., ¢,(14p™) =1 and ¢, (1 +p™ 1) £ 1. U, /(1 + p™)
is the finite group with the order Np"~!(Np — 1) because U, is compact and
1+ py" is open. Thus ¢, is essentially a character of this finite group.

3.3.3 Characters on global fields

Now let us consider the dual groups of the adeles and ideles. Since both the
adels and ideles are constructed as restricted direct products, let us consider
the general problem of calculating the dual of a restricted direct product

/
G = H G,, with respect to the compact open subgroup H,.

Let x € G. The the restricted of x to G, is a character yx, of G, i.e., for
any «, € G,, denote x, by

Xo(aw) = x(al,),  where af, = (1,...,1,a,,1,...).

Proposition 3.14. (1), Let x € G and x, be as above. Then Xo(Hy) =1
for almost all v and for a = (a,) € G,

x(@) =[] xolew)-
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(2), Conversely, let x, € (/}’\v and x,(Hy,) =1 for almost all v. Then for
any o = (o) € G,

x(@) = ][ xola)

defines a character of G.

Proof. (1), Let U be a neighborhood of 1 in S! that contains no subgroups
of S! other than {1} and let N be a neighborhood of the identity in G such
that x(/N) C U and such that

N =]~ ]][H.

ves vgS

where S is a finite set of v and N, is a neighborhood of the identity of G,,.
Hence the restrict y, of x on G, satisfies x,(H,) =1 for v ¢ S.

For any given a = (a,) € G, let T be a finite set of v containing all v
for which (1) «, ¢ H,, (2), v € S, or (3) H, undefined. Then

= &) = v;lv"->1 17"'71; v) € Gv H,
a=(a)=(a )( a)e []a 11

o T veT veT vgT

and y,(H,) =1 for any v ¢ T. Tt follows that

x(a) = x((ew; L. DIx((L- - Law))

vé veT

= H Xolaw) = HXU(O‘v)-

veT

]

For each v, we define H: = {x, € é:; . Xo(H,) = 1}. Since H, is open
in G, we have G,/ H, is discrete, hence that H} = mv is compact. Also
since H, is compact in G, we have G,/H> = H, is discrete, hence that H-
is open. Thus for almost all v, the subgroups H} of (/2 are compact and

open in C/J: Thus we can define the restricted direct product of é:, with
respect to H}

H,é\y = {(Xv) € HC/}'; : X» € Hy for almost all v}.

Theorem 3.15. The map x — (x,) s canonically isomorphic of the topo-
logical group G into []'G,.
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Proof. From Prop 3.13, We can know that the mapping x — (x,) is an
algebraic isomorphism. Let us show that it is also a topological isomorphis-
m. Now y € G is close to the identity character < x(B) is contained in a
small neighborhood of 1, for B C G some large compact set. Without loss

of generality, assume that B is of the form [[ N, [[ P,, where N, C G,
veES vgS
compact, S is a finite set of v. Assume that S is so large that if x,(H,) # 1,

then v € S. Then x is close to the identity character < y(B) is close to 1
< Xo(Ny) is close to 1, for v € S; x,(H,) =1, for v ¢ S < x, close to the
identity character in é:,, forve S; x, € HE, forv ¢ S < x = (x,) is close
to the identity in []'G,. 0

As a particular case of Theorem (3.15)), let G = Ay, the adele ring of a
number field k. Then G, = k,, H, = 0, and

of = {x0€k : xu(0,) =1}

= {a€ky: xalo,) =1}

= {a €k, e(A(Trp, jg,(oy))) = 1}
o€y : Ap(Tr g, (000) € Z)
= {a €k, : Try, g, (a0,) C Zy}
= D

Since there is only a finite number of primes that ramify in the extension
k/Q, we have o> = D! = o, for almost all v. Thus

o (o (R

because k, is self-dual. The isomorphism between A, and A\k can be explic-
itly realized as follows. Define the continuous additive mapping

() = > Ap(Tin, jg, (aw)).

This sum is well defined since o, € 0, = 91;,1/@, for almost all v, so

Ap(Tre, jg, (o)) = 0 for almost all v. The character y, corresponding to
a = (a,) in Ay is given by, for any 5 = (f,) € Ay,

Xa(ﬁ) = HXv(avﬁv He Trku/@p O‘vﬁv»)
_ e(ZAp Trkv/Qp(avﬂv))) = ¢ (A(af)).
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Corollary 3.16. The character x, s trivial on k if and only if o is in k.

In particular, we have Ay/k = k, that is, given any non-trivial character
X on Ay/k, all characters on Ag/k are of the form x +— x(ax) for some
a € k.

Proof. Suppose first that «, 8 are both in k. We have

oo D Tk, jo(aB) =D A > Tk, s, (0f)
p v|p

v]oo

Let G = {a € Ay : xa(k) = 1}. Then G D k is a k-vector space; thus
G/k is a subspace of Ay /k. But the latter is compact, so G/k is trivial. [
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3.4 Harmonic Analysis on Adele groups

3.4.1 Haar measures and Haar integrals

Let G be a locally compact topological group, and denote by B the sigma
algebra generated by the closed compact subsets of G. A left Haar measure
on (G is a measure p on B which is:

(1), (E) = inf{u(U) : U D E,U open} for all sets E.

(2), p(E) =sup{u(K) : K C E,K compact} for all open sets E.

(3), W(gE) = p(E) for all sets E and g € G.

(4), p(K) < oo for all compact sets K.
(5), p(E) > 0 for all non-empty open sets E.

Let 1 be a left Haar measure of G and Li(G) be the linear space of
measurable complex valued functions on G with respect to du. In this
section we shall be mainly interested in locally compact abelian groups.
Left and right Haar measure are the same thing. The main result about
Haar measure is the following.

Theorem Let G be a locally compact topological group. There exists on
G a left Haar measure [ um’quely determined up to a constant. There is a
corresponding integral fG g)du(g) with the property

/fgogdu /f )dpu(g

Now let k, be a locally compact topological field. Associated with k,
there are two topological groups: k; with the addition law and k) with
the multiplication law. The corresponding Haar measure put and p* are
different.

Let a be any non-zero element of k, and S be any measurable set of k,.
Then the map z — ax is an automorphism of the additive group k, and
pt(aS) is also an additive Haar measure. Then we have

p () = mody () ()

by the uniqueness of Haar measure, where the constant mod,(«) does not
depend on the choice of S and ™. Clearly, we have

mod, (o) = mod,(a)mod, ().

Lemma 3.17. Let the notations and assumptions be as above. Then mod,(«) =

||, or symbolically d*ax = |a,dtz.
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Proof. 1t is clear that the result is true for v|oo. For nonarchimedean local
fields, we take S = 0, and ord,a = m with m > 0. The additive subgroup
ao, = pl* of 0, has index (Np,)™ and p(0,) is finite because o0, is open and
compact. Hence we get p(0,) = (Np,)™u(ao,); it follows that mod,(a) =
Np,™™ = |al,. O

& Additive Haar Measures: By the fundamental theorem of Haar
measures on locally compact abelian groups, we know that Haar measures
are unique up to scalars. It will be convenient for us to set:

e v is real. d*x is standard Lesbegue measure for R.

e v is complex. d'z is twice standard Lesbegue measure for C.

e v is finite. We choose the Haar measure on k; such that u(o,) =
|d,|7'/? = (ND,)~ /2 where d, is the discriminant of the extension k,/Q,
and ®, is the local different of the extension k,/Q,.

It is called the normalized additive measure on k.

& Multiplicative Haar Measures: Let pu' be any additive Haar
measure of k. Then the measure

dtz
XS:/_
e (S) Tl

is a multiplicative measure of £,°. Indeed, We have, for any measurable set
S of k) and any a € kS,

dtzx dtaz dtzx
1 (0S) = / ar_ - — 1*(S)
as |m|v S |O‘x|v S |x|v

by Lemma (3.17). We normalized the multiplicative measure on k. such
that

+x .
Npe T el if v < o0.

dtz : .
L if v|oo;
e =3 =
= Np, d

Lemma 3.18. For v < oo, we have (i*(U,) = [, d*z = \d,|71/2.

Proof.
dtz
>

m>0

- Z/ d%ﬁ:Z(va)—m/ d*u

m>0 m>0 v

= W (Uy).

p(oy) = /0d+:r=
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& Measures on Restricted Direct Products: We wish to create
a measure on the restricted direct product G' = []'G, with respect to the
compact open subgroups H,. Let u, be measures on the G, (represented
by dz, in an integral), with p(H,) = 1 for almost all v. Let S be a finite
set of v which includes all v for which H, is undefined and all v for which
w(H,) # 1. Let

GS:HGUXHHU:HGUXGS.

veS vgS ves

Then G° is compact and Gg is an open subgroup of G. Choose a Haar
measure dz¥ on G° so that u(G®) = 1. Given G the product measure

drg = [ [ dz, x da®.
veS

Since G is an open subgroup of GG, a Haar measure dx on G is now deter-
mined by the requirement that dx = dxg on Gg.

Let T'D S be a larger set of indices. Then Gg C G, and we have only
to check that the dzp constructed with T coincides on (Gg with the dxg
constructed with S. Now one sees form the decomposition

GS:HHv: H H, x GT

vgS veET\S

that dz® = [],cp g da, x da”. Therefore

dzg = Hd% x dz® = dev H dz, x dzt = Hd% x dz? = dap.

veS veS veT\S veT

Then this measure is independent of the set S, so that it defines a unique
Haar measure on G which we may denote symbolically by dz = [] dx,.

Proposition 3.19. For each v, let f, € L1(G,). Suppose that (1), f,(H,) =

1 for almost all v; (2), HfGU | fo(xy)|dz, < co. Set f(z) =[] fu(xy) for
any © = (x,) € G. Then

[ s =TI [ o),

Proof. Since dx is a Haar measure, fG f(z)dz can be computed as

sup{ / f(@)de}
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where B ranges over all compact subsets of G. But every compact subset
of B is contained in some G g for some finite subset S of v, Assume that S
is so large that f,(H,) =1 for v € S. Then

[ 1wl < [ 7@ < /G @l

= I1/ 1hope.

vES

I 1htwar, <o

IN

/G flajde = supf [ fa)da} =tip [ flaydo

Gs

= hmH fv xy)dz,

vES

= I1 [ Inir,

3.4.2 Fourier transforms

Let ¢ be a Haar measure of G and L;(G) be the linear space of measurable
complex valued functions on G with respect to du. The Fourier transform
of f is the function on G given by

/ F(9)x(g)dug.

There is an important result about the Fourier transform as follows.

Inversion Theorem There exists a unique Haar measure i on the dual
group G such that for every continuous and integrable function f on G,
whose Fourier transform f is also integrable, the following formula holds:

= /@ FOOx(9)diy = AA(—g)-

In the above theorem, the Haar measure i is said to be dual to p. In
particular, if G is self-dual, then one can choose the Haar measure so that
the inversion formula holds with the same measure on G and G; it is called
the self-dual Haar measure.
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Theorem 3.20. The normalized Haar measure d™x of k' is self-dual.

Proof. To prove the theorem, is to prove that on identifying £ with its dual
as a = Xo = e(xA,(Try)q,(c))), the Fourier inversion formula holds for
d"xo = dTo.It suffices to verify that the Fourier inversion formula holds for
a single f. Let us consider the three cases separately.

Case 1: k, = R, set f(z) = e"™". Then

f(x) — /e—ﬂy2+27rmyd+y — 6—71'332/ 6—7r(i$+y)2d+y
R —

[e.9]

2 > 2 2
— e‘“/ eV dty =™

—00

Hence we have that f(z) = f(z) and f(x) = f(z) = f(—=), the Fourier

inversion theorem holds.

Case 2: k, = C, set f(z) = e ™*l~ and 2 = x + iy. Then we have
d*z = 2dTxd"y and |z|o = 2% + y*. Therefore,

fOa+ixg) = 2 / ) / T TR R )

o0 v —00

[e'S) [%S) ) )
— 2/ / e~ +47r1:xgce—7ry —47ryxyd+xd+y
—00 J —00
)

— 2(/ e—ﬂ(ﬂv—2ixz)2d+x)(/ e—ﬂ(y+2i><y)2d+y>

— 9 4m(GHXY)

= 2f(2xz + 2ixy)

Therefore, f(z) = f(z) = f(—2), the Fourier inversion theorem holds.

Case 3: v < 00, let f be the characteristic function of 0. Then we have

= [ sm@are = [ @are

Ify e 1,0 =9yq,, then x,(z) = 1 for any x € oy, hence fly) = ND 3.
If y ¢ ©', then there exists zg € o), such that y,(zo) # 1, so that x,(z) is
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nontrivial. Therefore,

fly) = /Xy(ﬂf)der:/ Xy(@ + zo)d

Ok Ok

— o) [ s

Ok

= (1- xy(a0) / Yol(2)d ) = 0

ok
= [fly) =0
Hence we have f(y) = N®~2.(characteristic function of 1)
Therefore,

~

fla)=ND2 /glxx(y)cﬁy-

By the same method as we calculate f , we have that for x € oy,

fla) = N@—%/ d+y:Nco—%/ dty
-1 ﬂ.ordk(ﬁ_l)uk
= ND:Np o HE@IND I =1
Similarly, if © ¢ oy, f(z) = 0. Therefore, f(z) = f(—z), the Fourier
inversion theorem holds. O]

Corollary 3.21. Let d*x, be the normalized Haar measures (self-dual) of
kI for any places v of k. Then dz = [[d¥x, is a self-dual measure on Ay.

Proof. Let x» = (Xz,) € Ay and f(z) = (f,(x,)) where f,(z,) is continuous
for all v and is the characteristic function of H, for almost all v. For almost
all v, x,, € H. Thus for almost all v, f,(z,)(xy, Xs,) is the characteristic
function of H,. Moreover,

1:[/6'1, |fv(xv)<xv7Xa:v>|ood+$v S IZI/GU |fv(l‘v)|ood+l’v < 00.

Since almost all the factors of the product is 1 and f, € L'(G,). Therefore,
we have that

~

Fow) = [ f@e s

-/ (T et e
= 11 . fol@) (@, Xa,)d
= f[fv(Xxv)
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Hence we have that
f([E) - va(xv) - va(_l‘v) = f(—l'),
the Fourier inversion theorem holds. O

3.4.3 The Schwartz-Bruhat space

In this subsection, we shall introduce a class of functions: the Schwartz-
Bruhat functions on the additive groups G = k!, where k, is any local field
or G = A" where A is the adele ring of a global field.

Let f be a complex valued function on £]'. Then f is said to smooth
if f has derivatives of all order as v|oo, i.e., f € C*(k}) and f is locally
constant as v < oo. The function f on R is said to rapidly decreasing at
oo if

aﬁ1+~~+5n f
W(UE)
.. O0zp

is bounded for all a;, 8; € {0} UN. The function f is said to compactly
supported if the closure of the set suppf = {z : f(x) # 0} is compact.

[flla,s = sup |27 ... 23"
zeR™

Definition 3.22. (1), The complex valued function f(x) on G = kI is
called the Schwartz-Bruhat function if f is smooth and rapidly decreasing
as v|oo; if f is smooth and compactly supported if v < oco. Denote the
Schwartz-Bruhat functions space by S(G).

(2), A Schwartz-Bruhat funtion on Ay is a linear combination of func-
tions of the form

f=11f=rt<1] for fo€SR") and f, € S(k,)

<00

where f, is the characteristic function of o, for almost all v < cc.

Proposition 3.23. For any f € S(G), there is an open compact subgroup
K of G, such that f is right K-invariant.

Proof. Let S be the support of the functions f. It is compact. According
to locally constant, for all x € S, there exists an open compact subgroup
K, such that f(x) is constant on zK,. We have

S C U$Kx.

€S
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By the compactness of S, there are 2/, 2}, -+, x/ , such that
m
S C U T Ky,
i=1
Take K = mgzgnng. Since Kx;/K is finite, we have
n
i=1
Therefor there exist complex numbers ¢y, ¢, - - - , ¢, such that
n
flz) = Z ¢; char(z; K)
i=1

where char(g;K) is the characteristic function of the right coset ¢; K. It is
clear now that f(z) is right K-invariant. O

According to Prop(**), we can define

/Gf(g)dg = Z ci(K),

which is a finite sum.
The main result about the Fourier transform of a Schwartz-Bruhat func-
tion is as follows.

Theorem 3.24. The Fourier transform of a Schwartz-Bruhat function on a
locally compact abelian group is a Schwartz-Bruhat function on the Pontrya-
gin dual group. In particular, if f € S(G) for the self-dual groups G =k
or Ay, then f € S(G).

Proof. See [1]. O

3.4.4 Poisson summation formula

The Poisson summation formula is an equation that relates the Fourier se-
ries coefficients of the periodic summation of a function to values of the
function’s continuous Fourier transform. Consequently, the periodic sum-
mation of a function is completely defined by discrete samples of the original
function’s Fourier transform. And conversely, the periodic summation of a
function’s Fourier transform is completely defined by discrete samples of
the original function [22].
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Theorem 3.25. Let H be a discrete subgroup of a locally compact abelian
group G such that G/H is compact. Then

p(G/H) Y f(h)y =" f(h),
heH heH-L
provided that f is integrable on G, the series Y, . f(g+ h) is absolutely

convergent uniformly in g and Y ;. ]?(ﬁ) is absolutely convergent.

Proof. H* is discrete and G /H* is compact, by the Pontryagin Duality
Theorem. Define the function ¢(x) on G/H by ¢(x) = >,y f(x+h); then

[ o= /G f@)du by = [ @) du. ()

G/H

By the Fourier Inverse formula,
w(G/H) = Z h(z

up to a constant factor. To see that the constant is correct, set o(x) = 1;
the ¢(1) = u(G/H) and ¢(h) = 0 otherwise, the latter result coming from
writing zzo for x in the second equation (%) where h(xg) # 1. Also,

o(h)= [ ¢(x)h(z)du = Gf(g)f%(g)du,

G/H

the change in the order of summation and integration being justified by the
hypotheses on f. Hence

w(G/H) =Y h(x)f(h
heH~L
and writing x = 0,$(0) = >, f(h) gives the theorem. O
Corollary 3.26. Let f =[], f, € Then

u(Ae/k)lal Y flaw) = fla™ ).

€k z€k
Proof. Write g(§) = f(af), then
i) = [ ol du - / Fa€)x(En) di

e / FEX@En) du = o] (o),

where to go from the first line to the second we have written a~'¢ for &.
Now apply the Theorem 3.25 to g(§) with G = Ay and H = k, and use the
fact that H+ = k by the Corollary 3.16. O
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Corollary 3.27. The measure of Ay/k is 1 with respect to the self-dual
Haar measure dx on Ay,.

Proof. If we identify A, with A, the symmetry property of the Fourier

transform becomes
/f x(&n) dp < f( ):/f(n)x(é“n)du
A

where p is normalized by the condition (A / k) = 1. For we know from the
Fourier inversion formula that f(§) = A [, f A X(&n) du for some constant
A depending on p. Applying Theorem 3.25. to both f and f and remem-
bering that x(&n) = x(—£&n) we obtain A(u(Ay/k))? = 1. Therefore A =1
is equivalent to pu(Ax/k) =1 O
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Exercises

You are encouraged to collaborate on solving the problems given as home-
work. However, the solutions should be written on your own and in your
own words. Please send me your homework to my email before the next
week’s class.

1, Let p,, be the nth positive prime in Z, and let " = (aq()n)) € Ag with
oM = P, if v = p, and oM =1ifv # pp. The result is a sequence {a"}
of ideleds in Ip. Show that this sequence converges to the idele (1), in the
topology of the adeles but not converges in the topology of the ideles.

2, Let py, ..., p, be distinct places of a number field k and x4, ..., 2, €
k. Let € > 0 be given. Then there exists x € k such that |z — z;|,, < € for
1 <i<mand ordy(xz) >0 for any p & {p1,...,Pm}-

3, Show that ||, = 1 at each place v < oo of k if and only if « is a root
of unity in k.

4, Show that R/Z = 7, i.e., every character of R/Z is of form z — e(mx)
for some integer m.

5, Let x be a character on a compact group G and dz be a Haar measure

on GG. Then
(@), if x is trivial;
/Gx(x)dx N { 0, otherwise.

6,0, =k /D L.
7, Every additive quasicharacter x,, of RT is of form x, :  — xa(x) =
e(za) for some complex number «, i.e., the mapping

Rt — RF by o+ Ya

is an isomorphism of topological groups.

8, Every multiplicative character of the group R (the multiplicative
group of positive real numbers) is of form = — z° for some s € C.

(2) Every multiplicative character of the group R* (the multiplicative
group of nonzero real numbers) is of form x — sign®(x)|z|* for some s € C
and € =0, or 1.

9, The circle group S! has no small subgroups, i.e., there is a neighbor-
hood U of the identity 1 € S! such that the only subgroup of S! inside U
is the trivial group {1}.

10, Let G be a totally disconnected locally compact topological group.
Prove that the kernel of any continuous homomorphism of G — GL,,(C)
contains an open subgroup.
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11, If G is a compact topological abelian group, or if every element of
G is of finite order, then every quasicharacter of GG is a character.
12, Let n be a positive integer and let

Un) =R [[ () [] Z;
ptn

pln
where Uy(n) = {r € Z} : ¥ =1 mod n}. And let
V(n) =R} H Up(n) H Q.
pln ptn

Show that
Io/U(n)Q* = (Z/nZ)*.

13, We will call x : T,/k* — S' a character of finite order if there
exists a positive integer m such that x(xz)™ =1 for all € I. Then y has
finite order if and only if its restriction to R} is trivial.

14, (1) Let dz be an additive measure such that the measure Z, is 1.
Let d*x be a multiplicative measure such that the measure Z; is 1. Then

g P dT

p—1 |$|p‘

(2), Compute the integral

|| dx.
ZP

15, Let x,(a) = e(A\,()) be an additive character of Q, and dz be an
additive measure such that the measure 7Z, is 1.

(1), Compute k € Z
[ vl
wkZy,

/ Xp(x)de,
wkU,

where @ is an uniformizer of Z, and U, = Z, is the unit group of Z,.
16, Show that Theorem 3.23.

(2), Compute k € Z
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Chapter 4

Arithmetic L-functions

4.1 Tate’s thesis

In number theory, Tate’s thesis is the 1950 thesis of John Tate (1950) under
supervision of Emil Artin. In it he used a translation invariant integration
on the locally compact group of ideles to lift the zeta function of a number
field, twisted by a Hecke character, to a zeta integral and study its properties.
Using harmonic analysis, more precisely the summation formula, he proved
the functional equation and meromorphic continuation of the zeta integral
and the twisted zeta function. He also located the poles of the twisted zeta
function. His work can be viewed as an elegant and powerful reformulation
of a work of Erich Hecke on the proof of the functional equation of the
twisted zeta function (L-function). Hecke used a generalized theta series
associated to an algebraic number field and a lattice in its ring of integers.

Kenkicht Twasawa independently discovered during the war essentially
the same method (without an analog of the local theory in Tate’s thesis) and
announced it in his 1950 ICM paper and his letter to Dieudonne written
i 1952. Hence this theory is often called Iwasawa-Tate theory. lwasawa
in his letter to Dieudonne derived on several pages not only the meromor-
phic continuation and functional equation of the L-function, he also proved
finiteness of the class number and Dirichlet’s theorem on units as immediate
byproducts of the main computation.

A noncommutative generalisation: Iwasawa-Tate theory was extended
to a general linear group over an algebraic number field and automorphic
representations of its adelic group by Roger Godement and Herv Jacquet in
1972. This work is part of activities in the Langlands correspondence. [22)]

In hindsight, Tate’s work may be viewed as giving the theory of auto-
morphic representations and L-functions of the simplest connected reducible
group GL,(F'), where F' is the number field.
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4.1.1 Local theory
4.1.2 Global theory
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4.2 Dedekind zeta functions, Hecke charac-
ter and Hecke L-functions

4.2.1 Dedekind zeta functions
4.2.2 Hecke character
4.2.3 Hecke L-functions
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4.3 Applications of Hecke L-functions

4.3.1 Splitting of primes
4.3.2 Abelian L-functions
4.3.3 Tchebotarev’s density theorem

4.3.4 Class number formulas
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4.4 Artin L-functions
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Py, 63 algebraic number,
Ap, [110 algebraic number field,
Fy, approximation theorem
F,, strong, [I00] [L05]
F,,[74 weak,
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Artin symbol,

canonical embedding,

Cauchy sequence,
character
ramified,
standard,

unramified,
character group,

Chinese remainder theorem,
class group

adeld,

idele,
class number,
compact-open topology,
complementary set,
completion,
conductor, [108
congruent modulo a,
conjugate prime ideals,

content, [I01]

cyclic extension, [3§]

decomposition field,
decomposition group,
Dedekind domain,
Dedekind-Kummer theorem,
diagonal map,
different,
differential exponent,
Dirichlet’s unit theorem,
discrete subgroup,
discriminant,

absolute discriminant,

local,
relative discriminant,

equivalent valuation,
Euler lemma,

filtration, [67]
Fourier transform, [119

fractional ideal, [I2] [67]
Frobenius automorphism,

Frobenius conjugate class, [46]

global field,
greatest common divisor,
group

of p-adic units,

of principal units,

Hensel’s lemma,

ideal class group,
ideal group,
idele

unit idele, [101]
idele group, [LOQ
independence theorem,
inertia field,
inertia group, [43|
integral ar p,
integral basis,
integral ideal,
integrally closed,
inverse of a,
invertible,

lattice,

lattice point theorem,
least common multiple,
local field,

local ring,

localization,

locally constant,

measure
multiplicative,

self-dual,
normalized additve,

no small group, [108
Noetherian ring, [9)

norm, [3] [72]
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absolute norm, of p-adic integer,

relative norm, [36] roots of unity,

number field £ dual
-adic, 62 self-dual,

v smooth function, [122

order, split degree,
Stickelberger’s theorem,

place,

complex, topological field,

finite, totally imaginary, [6]

infinite, totally real, [0]

real, totally split,
prime divisor, trace, [3]

finite prime,
. mﬁmt.e prime, undecomposed,
prime divisors, ) .
: uniformizer,
prime element, unit, 2
pr%nc?pa} ?delgs, el 112 principal unit, [57]
principal fractional ideal, fundamental system of units,

ultramatric,

principal ideles, [101 fundamental unit,
product formula, unramified,
quadratic field, ) valuation,
quasi-character, p-adic,

normalized,
additive,
archimedean,
discrete,
nonarchimedean,
normalized p-adic,

trivial,
valuation ring,

ramification group,
ramification index,
ramified,

tamely,

tamely ramified,

totally,

totally ramified,

wildly,

wildly ramified,
regulator,
relatively prime of ideals,
residue class degree,
residue class field,
residue class field of p,
restricted direct product,
restriction of 3,

ring
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