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Preface

This is a standard graduate course in algebraic number theory. The on-
ly prerequisites listed for this course are elementary number theory and
abstract algebra. In this note we shall limit our attention essentially to
algebra number fields (a finite extension of the rational number field), al-
though overwhelming majority of the results also hold for for function fields
(fields of algebraic functions over a finite field). The main reference book
is H.P.F. Swinnerton-Dyer’s book a brief guide to algebraic number theory.
We will cover:

• Three fundamental theorems of ideal theory

• Hilbert’s theory of Galois extension

• Valuation theory and the arithmetic of local fields

• Ramification theory

• Adele, idele and harmonic analysis on adele groups

• Dedekind zeta functions, Hecke L-funtions and Tate’s thesis

• Artin L-functions

I would like to thank all the students who enjoined the course. Some
theorems of this lecture notes were taken by students. The course webpage
is www.prime.sdu.edu.cn/ghji/algebraicnumbertheory.htm.

Please feel free to put a copy. Use them at your own risk. Any com-
ments or corrections about this notes are always welcomed at guanghua-
ji@gmail.com.

Guanghua Ji
School of Mathematics
Shandong University
Jinan, Shandong 250100
www.prime.sdu.edu.cn/ghji/guanghuaji.htm
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Chapter 1

Ideal Theory

1.1 The Ring of Integers

1.1.1 Basic concepts

A complex number α is called algebraic number if it is a root of some
polynomial with coefficients in Q. A complex number α is called algebraic
integer if it is a root of some monic polynomial with coefficients in Z. An
algebraic number field k is a finite algebraic extension of the rational number
Q. Let Q be the algebraic closure of Q, i.e., the set of all algebraic numbers.

Recall: Algebraic extensions Take α ∈ Q. (1), Q(α) = Q[α]. (2), There exists
a unique polynomial p(x) ∈ Q[x] which is monic, irreducible and of smallest positive
degree such that p(α) = 0. Furthermore, if f(x) ∈ Q[x] and f(α) = 0, then p(x)|f(x).
p(x) is called the minimal polynomial of α; the degree of p(x) is called the degree of α
and is denoted deg(α). (3), The roots of the minimal polynomial p(x) of α are called
conjugates of α. α has deg(p(x)) conjugates. Conjugates of α have the same minimal
polynomial.

For the detailed proofs, we refer the reader to [1] or [5].

Theorem 1.1. Let α ∈ Q. Then the following statements are equivalent:
(1), α is an algebraic integer.
(2), The minimal polynomial of α over Q has coefficients in Z.
(3), Z[α] is a finitely generated Z-module.
(4), There exists a nonzero finite generated Z-submodule M of C such

that αM ⊂M.

Proof. (1) ⇒ (2) α is an algebraic integer, then there exists a monic
polynomial f(x) ∈ Z[x], such that f(α) = 0. And let p(x) ∈ Q[x] be the
minimal polynomial of α, so we have p(x)|f(x), using Gauss Lemma(also
by Exercise 1.3), p(x) ∈ Z(x) as required.
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(2) ⇒ (3) Suppose that f(x) = xm + c1x
m−1 + · · · + cm ∈ Z[x] is the

minimal polynomial of α. Then αm = −c1α
m−1− c2α

m−2− · · ·− cm. Hence
for any integer N, we have αN ∈ Zαm−1 ⊕ · · · ⊕ Z. It gives that αN is in
the Z-module generated by 1, α, . . . , αm−1, so Z[α] is a finite Z-module.

(3)⇒ (4) Let M = Z[α], (4) holds obviously.
(4)⇒ (1) Let x1, · · · , xr generate M over Z. So M ⊂ Zx1 ⊕ · · · ⊕ Zxr.

By assumption, for i = 1, · · · , r, we have

αxi =
r∑
j=1

cijxj, cij ∈ Z,

that is,

α


x1

x2
...
xr

 = (cij)


x1

x2
...
xr

⇐⇒ (αI − C)


x1

x2
...
xr

 = 0

where C = (cij). Since not all of x1, . . . , xr can vanish, then det(αI−C) = 0.
Take f(x) = det(xI − C). Then f(x) is a monic polynomial in Z[x] such
that f(α) = 0. Thus α is an algebraic integer. �

Corollary 1.2. The set Z of all algebraic integers is a ring. In particular,
the ring of integers of a number field k is the ring ok = k ∩ Z . And
Q ∩ ok = Q ∩ Z = Z.

Proof. Suppose α, β ∈ Z, then Z[α] and Z[β] are finite generated abelian
groups. And let {1, α, · · · , αm} be a basis of Z[α] and {1, β, . . . , βn} be a
basis of Z[β]. It is clear that {αiβj|0 ≤ i ≤ m, 0 ≤ j ≤ n} spans

Z[α, β] = {f(α, β)|f(x, y) ∈ Z[x, y]},

and then Z[α, β] is a finite generated Z-module, α±β, αβ ∈ Z[α, β]. Hence
α± β, αβ are algebraic integers, and the set Z of all algebraic integers is a
ring.

1.1.2 Norm, trace and discriminant

Let K/k be a finite separable field extension of degree [K : k] = n, and let
τ be an embedding of k in C, that is, a monomorphism. Then τ extends to
exactly n embeddings σ of K of into C such that the restriction σ|k = τ .
In particular, taking τ to be the identity mapping on k, there are exactly
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n distinct k-embeddings of K into C. For the detailed proofs, we refer the
reader to [1] or [5].

Let K/k be any field extension of degree [K : k] = n, and let x1, ..., xn
be a basis for K as a k-vetor space. For any α ∈ K, then left multiplication
defines a k-linear transformation

`α : x 7→ αx.

There exists aij in k such that the matrix A = (aij)

`α(x1, . . . , xn) = (αx1, . . . , αxn) = (x1, . . . , xn)A.

The characteristic polynomial of `α is

fα(λ) = det(λI − A) = λn + an−1λ
n−1 + · · ·+ a0 ∈ k[X].

Denote the norm and trace of α from K to k by

TrK/k(α) = tr(`α) = tr(A) = −an−1

NK/k(α) = det(`α) = det(A) = (−1)na0.

Note that the trace and norm of α are independent of the choice of the basis
for K over k.

Obviously, we can obtain the following properties for their definitions:
for any a, b ∈ k and α, β ∈ K,

(1),TrK/k(aα + bβ) = aTrK/k(α) + bTrK/k(β),

(2),NK/k(αβ) = NK/k(α)NK/k(β),

(3),NK/k(aα) = anNK/k(α),

(4),NK/k(a) = an, and TrK/k(a) = na.

Therefore, NK/k : K → k and TrK/k : K× → k× are group homomorphisms.

Proposition 1.3. (1), Let p(λ) = λm + cm−1λ
m−1 + · · ·+ c0 ∈ k[X] be the

minimal polynomial of α ∈ K with [k(α) : k] = m. Then fα(λ) = p(λ)
n
m ,

NK/k(α) = (−1)n(c0)n/m and TrK/k(α) = − n
m
cm−1.

(2), Let K/k be a finite separable field extension of degree [K : k] = n.
Let σ1, ..., σn be distinct k-embeddings of K. Then fα(λ) =

∏n
i=1(λ− σiα),

NK/k(α) =
∏n

i=1 σi(α) and TrK/k(α) =
∑n

i=1 σi(α).
(3), Suppose k ⊂ L ⊂ K be a tower of number fields and let α ∈ K.

Then NL/k(NK/L(α)) = NK/k(α) and TrL/k(TrK/L(α)) = TrK/k(α).

3



Proof. (1) Let f(λ) be the characteristic polynomial of α. Clearly, it follows
form the definition of characteristic polynomial that

f(λ) = λn − TrK/k(α)λn−1 + · · ·+ (−1)nNK/k(α),

and
f(λ) = p(λ)[K:k(α)] = p(λ)n/m.

Therefore, if α1 = α, α2, . . . , αm be the roots of p(x) in a splitting field
counting multiplicity, then we have

m∑
i=1

αi = −c1,
m∏
i=1

αi = (−1)ncm.

Hence, we have
NK/k(α) = (−1)ncm,

and the trace is the negative of the coefficient of the xn−1 in p(x)n/m, that
is

TrK/k(α) =
n

m

m∑
i=1

αi = − n
m
c1.

To prove (2), we know that there are m distinct k-embeddings of K(α)
into C, each of them takes α to a unique conjugate αi, and extends to
exactly n

m
distinct k-embeddings of K into C, all of which also take α to a

unique conjugate αi. Thus

n∏
i=1

σi(α) = (
m∏
i=1

αi)
n/m = NK/k(α),

and
n∑
i=1

σi(α) =
n

m

m∑
i=1

αi = TrK/k(α).

(3), Let σ1, · · · , σm be the distinct embeddings of k in to K, and let
τ1, · · · , τn be the distinct embeddings of K into L. Then L/k is Galois, and
each mapping σi and τj extends to an automorphism of L. Therefore it
makes sense to allow the mapping to be composed. By (2),

NL/k(NK/L(α)) =
m∏
i=1

σi(
n∏
j=1

τj(α)) =
m∏
i=1

n∏
j=1

σiτj(α).

Now each σiτj is an embedding of k into L, and the number of the mappings
is mn = [k : K][K : L] = [k : K]. Furthermore, the σi = τj are distinct.
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For if σjτj = σkτl, hence on K, then σi = σk (because τj = τk = 1 on
K). Thus i = k, so that τj = τl on L. But then i = k. Therefore, we
have NL/k(NK/L(α)) = NK/k(α). The trace is handled the same way, with
products replaced be sums.

Let k/Q is a number field and α ∈ ok. Then Nk/Q(α),Trk/Q(α) ∈ Z.
Write N(α),Tr(α) for Nk/Q(α),Trk/Q(α).

Let K/k be a finite separable field extension of degree n. Let σ1, . . . , σn
be distinct k-embeddings of K. For a1, . . . , an ∈ K, we can define the
discriminant of {a1, . . . , an}

dK/k(a1, . . . , an) = (det(σi(aj)))
2 = det(TrK/k(aiaj)).

Proposition 1.4. With the notation and assumptions above.
(1), Set dK/k(1, a, . . . , a

n−1) as dK/k(a). Then

dK/k(a) =
∏
i>j

(σi(a)− σj(a))2. (1.1)

(2), Suppose that βi =
∑
cijαj, i = 1, ..., n, αi, β ∈ K and cij ∈ k. Then

dK/k(β1, . . . , βn) = (det(cij))
2dK/k(α1, . . . , αn). (1.2)

(3), Let α1, . . . , αn be a base for K as k-vector space. Then the discrim-
inant dK/k(α1, . . . , αn) 6= 0.

(4), The bilinear form (x, y) = TrK/k(xy) is a nondegenerate on the
k-vector space K.

Recall: Bilinear forms A bilinear form B(x, y) over a finite-dimensional vector
space V over a field F is said to be non-degenerate when if B(x, y) = 0 for all x ∈ V ,
then y = 0, and if B(x, y) = 0 for all y ∈ V , then x = 0; otherwise degenerate forms. Let
e1, . . . , en be a basis of V . Write α =

∑
aiei and β =

∑
biei with ai, bi ∈ F . Then

B(α, β) =
∑
i,j

aibjB(ei, ej)

and we associate to B(x, y) the matrix (B(ei, ej)). A bilinear form is degenerate if and
only if the matrix is singular, and accordingly degenerate forms are also called singular
forms. Likewise, a nondegenerate form is one for which the associated matrix is non-
singular, and accordingly nondegenerate forms are also referred to as non-singular forms.
These statements are independent of the chosen basis.

Proof. Let σi(α) = αi, where i = 1, . . . , n. Then it is easy to see that

dK/k(a) =
(

det
(

(σiα
j−1) 1≤i≤n

1≤j≤n

))2

=
(

det
(

(αj−1
i ) 1≤i≤n

1≤j≤n

))2

.
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which is the Vandermonde matrix, and so

=
∏
j<i

(σi(a)− σj(a))2 = (−1)n(n−1)/2
∏
i 6=j

(σi(a)− σj(a)).

(2) Since βi =
∑
cijαj, i = 1, ..., n, we have

β1

β2
...
βn

 =


c11 c12 · · · c1n

c21 c22 · · · c2n
...

...
...

cn1 cn2 · · · cnn




α1

α2
...
αn

 .

Therefore,

dK/k(β1, . . . , βn) = det (σiβj)
2 = det

(
σi

(∑
cijαj

))2

= det
(∑

cijσiαj

)2

= (det(cij) det(σiαj))
2

= (det(cij))
2dK/k(α1, . . . , αn)

as requires.
(3) and (4), We first show (4), that is, the bilinear form (x, y) = TrK/k(xy)

is a nondegenerate. Let θ be a primitive element for K/k, that is, K = k[θ].
Then 1, θ, . . . , θn−1 is a basis with respect to which form (x, y) is given by
the matrix M = TrK/k(θ

i−1θj−1)i,j=1,...,n. It is nondegenerate because, for
θi = σiθ, we have

det(M) = d(1, θ, . . . , θn−1) =
∏
i<j

(θi − θj)2 6= 0.

If α1, . . . , αn be an arbitrary basis of K/k, then bilinear form (x, y) with
respect to this basis is given by the matrix M = (TrK/k(αiαj)). From the
above it follows that d(α1 . . . , αn) = det(M) 6= 0.

Let k = Q(γ) be a number field with [k : Q] = n, and let f(x) ∈ Q[x] be
the minimal polynomial of γ over Q. Then there are r1 real embeddings and
r2 pair complex embeddings where r1 + 2r2 = n. We say that k is totally
real if r1 = n or totally imaginary if r1 = 0. The couple (r1, r2) is called the
signature of k.

Recall: Finitely generated abelian groups A group G is finitely generated if
there exists g1, . . . , gn ∈ G such that every element of G can be expressed as a finite
product of positive or negative powers of the gi. An abelian group G is said to free if

6



there exist elements g1, . . . , gn ∈ G such that every element of G can be written uniquely
in the form x = k1g1 + · · · + kngn where ki ∈ Z. The set consisting of {g1, . . . , gn} is
said to be a basis of G and n is called the rank of G. If G is a finitely generated abelian
group, so is the subgroup H ≤ G. Let G be a finitely generated abelian group. Then
there is an isomorphism

G ∼= Z⊕ · · · ⊕ Z︸ ︷︷ ︸
r

⊕(Z/d1Z)⊕ · · · ⊕ (Z/dsZ),

where d1 > 1 and d1|d2| · · · |ds. Furthermore, the integers r, s and di are uniquely
determined by G. For the detailed proofs, we refer the reader to [1] or [5].

Theorem 1.5. Let k be a number field with [k : Q] = n. The ring of
integers ok is a lattice in k, i.e., ok spans k and ok is a free abelian group
of rank n.

Proof. Let α1, . . . , αn be a basis of k as a Q-vector space, then there exist
mi ∈ Z such that miαi ∈ ok, i = 1, . . . , n. Without loss of generality, let
αi ∈ ok and {α1, . . . , αn} is a basis of k as Q-vector space. Hence, ok spans k,
i.e., for any α ∈ k, there are a1, . . . , an ∈ Z such that α = a1α1 + · · ·+anαn.
By the above theorem, we also have dk/Q(α1, . . . , αn) ∈ Z.

Among all bases of k/Q that consist of integers, choose one, say {ω1, . . . , ωn},
for which |dk/Q(α1, . . . , αn)| is minimal. We claim that {ω1, . . . , ωn} is a set
of free Z-generated for ok.

For any x ∈ ok, x =
∑n

i=1 aiωi, and ai ∈ Q, we claim that ai ∈ Z. If not,
suppose a1 6∈ Z. For ω′1 = {a1}ω1 + a2ω2 + · · · + anωn = x − [a1]ω1 ∈ ok
where {a1} and [a1] are the fractional part and the integer part of the real
number a1 respectively, and {ω′1, ω2, . . . , ωn} is also a basis of ok, and

ω′1
ω2
...
ωn

 =


{a1} a2 a3 · · · an

0 1 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1




ω1

ω2
...
ωn

 = M


ω1

ω2
...
ωn

 .

Therefore,

|dk/Q(ω′1, ω2, . . . , ωn)| = |(det(M))2dk/Q(ω1, . . . , ωn)|
= |{a1}2dk/Q(ω1, . . . , ωn)|
< |dk/Q(ω1, . . . , ωn)|,

which contradicts the fact that |dk/Q(ω1, . . . , ωn)| is minimal. Hence a1 ∈ Z,
and the theorem is completely proved.
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We say that {ω1, . . . , ωn} in the above theorem is an integral basis or
minimal basis for k. Let {ω1, . . . , ωn} be an integral basis for k. Define the
absolute discriminant of k as

dk = dk/Q(ω1, . . . , ωn) = det(σi(ωj)))
2 = det(Tr(ωiωj)). (1.3)

Clearly, the discriminant of the number field k over Q is well-defined and
an integer. In other words, for two integral bases for k, we get the same
discriminant for k. We also have that dk 6= 0. This is a consequence of the
following fact: the symmetric bilinear form Tr(xy) is non-degenerate.

For the relative algebraic number fields K/k,

Examples 1.6. A quadratic field k is by definition an algebraic number field
of degree two. There exists a unique square free d ∈ Z such that k = Q(

√
d).

Let

ω =

{
(1 +

√
d)/2, if d ≡ 1(mod4)√

d, if d ≡ 2, 3(mod4),

Then {1, ω} is an integral basis of k. And the discriminant of k is

dk =

{
d, if d ≡ 1(mod4)
4d, if d ≡ 2, 3(mod4).

Proposition 1.7. (1), The sign of dk is (−1)r2.
(2), Stickelberger’s theorem: dk ≡ 0 or 1 mod 4.

Proof. (1), Clearly, the matrix (σi(ωj)) has r2 pairs of complex conjugate
rows, so its determinant is ir2 times a real number; thus the sign of dk is
(−1)r2 . In fact, we have det(σi(ωj)) = (−1)r2 det(σi(ωj)).

(2), Write n = [k : Q], let α1, α2, ..., αn be an integral basis for ok, and
let σ1, . . . , σn be the distinct embeddings of k. Now write

A =
∑
π even

(
n∏
i=1

σiαπ(i)

)
, B =

∑
π odd

(∏
i

σiαπ(i)

)
where π denotes a permutation of 1, ..., n. We have

det(σiαj) =
∑
π

(−1)π(1,2,...,n)

n∏
i=1

σiαπ(i)

= A−B,

and therefore dk = (A−B)2 = (A+B)2 − 4AB. Since σi(A+B) = A+B
and σi(AB) = AB, we see that they are rational numbers by Galois theory.
Since A + B,AB are algebraic integers, hence A + B,AB ∈ Z. Therefore,
dk ≡ 0 or 1 mod 4.
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1.1.3 Noetherian ring

A ring R is Noetherian if every ideal in R is finitely generated. Obviously,
any principal ideal domain is Noetherian.

Lemma 1.8. The following conditions on a ring R are equivalent:
(1), R is Noetherian.
(2) R satisfies the ascending chain condition, i.e., every ascending chain

of ideals I1 ⊂ I2 ⊂ · · · ⊂ In ⊂ · · · stabilizes.
(3), Every nonempty set S of ideals in R has a maximal element, i.e.,

there exists an ideal in S not properly contained in any other ideal in S.

Proof. (1)⇒(2): Set I =
⋃∞
n=1 In is an ok-submodule of R. Hence it is

generated by a finite set α1, α2, . . . , αn of elements of I. If αi ∈ Iki , then
α1, α2, . . . , αn ⊂ Ikn , then I ⊂ Ikn ; so the chain is constant from Ikn on.

(2)⇒(3): If (3) were false we could construct strictly increasing sequence
I1 ⊂ I2 ⊂ · · · of ok-submodule of R. For suppose we have chosen I1, ..., In.
The ok-submodule of R which contains In forms a non-empty family, and
this family contains no maximal element; so we can choose an In+1 which
strictly contains In. This contradicts (2).

(3)⇒(1): Suppose that R contains an ok-submodule N which is not
finitely generated. Let S be the set of all finitely generated ok-submodule of
N , then by (3) we have that S has a maximal element M0, but we can find
ξ to be an element of N not in M0. Then M0 is not maximal in S because S
contains a strictly larger ok-submodule of N generated by M0 and ξ. This
forms a contradiction.

Proposition 1.9. The ring of integers ok of a number field k is Noetherian.

Proof. For any ideal a of ok, we take a nonzero element α ∈ a and the
minimal polynomial for α over Q is p(x) = xm + a1x

m−1 + · · ·+ am ∈ Z[x].
Then we have

am = −αm − a1α
m−1 − · · · − am−1α ∈ a ∩ Z

and am 6= 0. Let ω1, . . . , ωn be an integral basis of ok; then we have
amω1, . . . , amωn ∈ a. By considering a basis of k, whose elements are in
a and whose discriminant has minimal absolute value, we conclude, as in
the proof of theorem, that a is a free Z-module of rank n. In particular, a
is finitely generated. This completes the proof of the theorem.

9



1.2 Ideals and Factorization

Let ok be the ring of integers of a number field k. Unfortunately we do not
in general have unique factorization. Z[

√
−5], the ring of integers of the

number field Q[
√
−5], is well-known that it is not a unique factorization

domain:
21 = 3 · 7 = (1 + 2

√
−5)(1− 2

√
−5),

where the numbers 3, 7, 1+2
√
−5 and 1−2

√
−5 are all irreducible elements.

In the following discussion, we shall prove that every ideal of ok can be writ-
ten uniquely as a product of prime ideals, where uniqueness is understood
to mean uniqueness up to the order of the facotrs. In fact, this is true in
any Dedekind domain. Thus, in an algebraic number field, the prime ideals
play the same role as the prime numbers do in rational number theory. For
simplicity, we shall assume that all ideals are nonzero from now on.

1.2.1 Dedekind domain

An integral domain R is integrally closed in its field of fractions if whenever
α is in the field of fractions of R and α satisfies a monic polynomial f(x) ∈
R[x], then α ∈ R.

Proposition 1.10. ok is integrally closed. Also, the ring Z of all algebraic
integers is integrally closed in Q.

Proof. Suppose that α ∈ k, there exists

f(x) = xm + c1x
m−1 + · · ·+ cm ∈ ok[x],

such that f(α) = 0. We only need to prove that α ∈ ok. Clearly, R =
Z[c1, . . . , cm] is a subring of ok. Then Z[c1, . . . , cm] is finite generated by
{β1, . . . , βt}. Therefore, {βiαj | 1 ≤ i ≤ t, 0 ≤ j ≤ m − 1} span R[α] =
Z[c1, . . . , cm, α], i.e. Z[c1, . . . , cm, α] is finitely generated. So α ∈ ok. This
completes the proof of the proposition.

A Dedekind domain is an integral domain R with 1 such that (1), R is
Noetherian, (2), R is integrally closed, and (3), every nonzero prime ideal
is maximal.

Lemma 1.11. Any principal ideal domain is Dedekind.

Proof. Let o be a principal ideal domain, and therefore Noetherian. Suppose
that β in k is integral over o and write β= α1/α2 with α1, α2 in o. We can
assume that (α1, α2) = (1); for if (α1, α2) = (γ) with γ not a unit, we can
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divide α1 and α2 by γ. If βn + c1β
n−1 + · · · + cn = 0 where the cν are in

o then αn1 + c1α
n−1
1 α2 + · · · + cnα

n
2 = 0. It follows that (α2) = (αn1 , α2) ⊃

(α1, α2)n = (1), so that α2 is a unit and β is in o. Now let (α) be a non-zero
prime ideal of o and let (β) be a maximal ideal containing (α). Thus α is in
(β) and hence equal to βγ for some γ in o. But (α) is prime, so one of β, γ
must be in (α). If β is in (α) then (β) ⊂ (α) so that (α) is maximal; but if
γ= αδ then α= βαδ when βδ= 1, and then (β)= 1 which is forbidden.

Proposition 1.12. ok is a Dedekind domain.

Proof. Our first goal is to show that if a is a nonzero ideal in ok, then a has
finite index in ok, that is, ok/a is a finite quotient ring. Let ω1, ω2, . . . , ωn be
an integral basis of ok. Take m ∈ a ∩ Z×. Then (m) = Zmω1⊕· · ·⊕Zmωn ⊂
a ⊂ ok. Obviously,

ok/a ∼= (ok/(m))/(a/(m)).

And,

ok/(m) = (Zω1 ⊕ · · · ⊕ Zωn)/(Zmω1 ⊕ · · · ⊕ Zmωn)
∼= (Zω1/Zmω1)⊕ · · · ⊕ (Zωn/Zmωn)
∼= (Z/mZ)⊕ · · · ⊕ (Z/mZ).

Thus,
|ok/a| ≤ |ok/(m)| = mn.

We only need to show that every non-zero prime ideal is maximal. For any
prime ideal p of ok, ok/p is a domain. Hence ok/p is a finite domain, and
then it’s field. So p is maximal.

For some applications it is convenient to generalize ok the purpose being
to enable us to ignore certain bad primes. If p is prime ideal of ok, we say
that α in k is integral at p if α = α1/α2 where αi ∈ ok and α2 /∈ p. More
generally, let R be a Dedekind domain and let S be any set of prime ideals
in R. Then RS denotes the ring of elements α = α1/α2 where αi ∈ R and
α2 /∈ p for all p ∈ S. It is easy to see that RS is Dedekind domain with prime
ideals p′ = pRS for p ∈ S. If S is a finite set, then RS is a principal ideal
ring by Exercise (1.14). If S consists of one prime ideal p, then RS = Rp is
called the localization of R at p. A local ring is a ring which has a unique
maximal ideal.

Proposition 1.13. Let R be a Dedekind domain and let p be any prime
ideal in R. Then

(1), Rp is local ring with a unique maximal ideal mp = pRp.
(2), Any element of the complement Rp \mp of mp in Rp is a unit.
(3), mp ∩R = p.

11



Example 1.14. The localization Z(p) of Z at (p) consists of all rational
numbers a/b, a, b ∈ Z, with p - b.

1.2.2 Fractional ideal

A nonzero fractional ideal a of k is a finitely generated ok-submodule (i.e.,
oka ⊂ a) of k. If α1, . . . , αm spans a as an ok-submodule and αi = ai/bi
with ai, bi ∈ ok, then ca ⊂ ok where c =

∏m
i=1 bi. Conversely, if there

exists c ∈ k× such that ca ⊂ ok, then ca is finitely generated as an ideal
of ok. If ca is generated as an ideal by {β1, ..., βm}, then a is generated
by {c−1β1, ..., c

−1βm}, as an ok-submodule. Thus, a is finitely generated as
an ok-module. This yields an equivalent definition of fractional ideal. An
ok-submodule a of k is called a fractional ideal if there exists c ∈ k× such
that ca ⊂ ok.

To avoid ambiguity, an ideal in ok sometimes has to be called an integral
ideal . For any c ∈ k×, (c) = cok is called principal fractional ideal . The
inverse of a fractional ideal a, denoted a−1, is the Z-module

a−1 = {x ∈ k |xa ⊂ ok}.

Take d ∈ a \ {0}, then da−1 ⊂ aa−1 ⊂ ok. Therefore a−1 is also a fractional
ideal of k. A fractional ideal a is said to be invertible if there exists a
fractional ideal b such that ab = ok.

Let Jk be the set of all nonzero fractional ideals of ok. All the obvious
rules extend from ideals to fractional ideals. For any a, b ∈ Jk, denote

a + b = {a+ b|a ∈ a, b ∈ b}

ab =

{
n∑
i=1

aibi|ai ∈ a, bi ∈ b, n ∈ N

}
.

It is easy to show that the sum and product of two fractional ideals are
again fractional ideals. If a+b = ok, then we say that a and b are relatively
prime and write (a, b) = 1. Obviously, we have a ∩ b = ab as (a, b) = 1.

Theorem 1.15. The set Jk of nonzero fractional ideals of ok is an abelian
group under ideal multiplication. Jk is called the ideal group of k with the
identity ok.

Proof. It suffices to show that every fractional ideal a is invertible. Before
proving theorem we prove firstly some lemmas. Note that we assume that
all ideals are nonzero.

• If a is an integral ideal then p1p2 · · · pm ⊂ a for some prime ideals pi.

12



Let S be the set of all proper ideals of ok that do not contain a product
of prime ideals. We need to show that S is empty. If not, then since ok is
Noetherian, S has a maximal element, say a. Then, a is not a prime ideal
of ok since a ∈ S, so there exists a, b ∈ ok, with ab ∈ a, a /∈ a, b /∈ a. Then,
(a, a) ) a, (a, b) ) a. Therefore, (a, a) /∈ S, (a, b) /∈ S by the maximality of
a.

It follows that there exists prime ideals p1, . . . , pr, q1, . . . , qs, such that
(a, a) ⊃ p1 · · · pr and (a, b) ⊃ q1 · · · qs. But ab ∈ a, we have

a = (a, ab) ⊃ (a, a)(a, b) = p1, . . . , prq1, . . . , qs,

which contradicts a ∈ S. Thus, S must actually be empty, which means if
a is an integral ideal then p1p2 · · · pm ⊂ a for some prime ideals pi.

• For every prime ideal p of ok, we have ok ( p−1.

Since 1 ∈ p−1, we have p ⊂ p−1p ⊂ ok ⊂ p−1 by definition. Take α ∈ p.
From the previous lemma, (α) contains a product of prime ideals. Let r be
the least integer such that (α) contains a product of r prime ideals, and say
(α) ⊃ p1 · · · pr, with the pi nonzero prime ideals. Since p ⊃ (α) ⊃ p1 · · · pr,
there exists some integer i such that p ⊃ pi (ab ⊂ p ⇒ a ⊂ p, or b ⊂ p).
We can assume that i = 1, so p ⊃ p1. But p1 is a nonzero prime ideal of ok,
and so is maximal. Hence, p = p1. Thus, p2 · · · pr * (α), since r was chosen
to be minimal. Choose an element β ∈ p2 · · · pr \ (α). Then βα−1 /∈ ok and

βα−1p ⊂ (p2 · · · pr)(α−1p1) ⊂ α−1(α) = ok.

Hence, βα−1 ∈ p−1. The proof of the lemma is completed.

• Every prime ideal p is invertible. In fact, we have pp−1 = p−1p = ok.

Since p ⊂ pp−1 ⊂ ok ⊂ p−1 and p is maximal, then we have either
pp−1 = ok, or pp−1 = p. It remains to show that pp−1 = ok.

Assume that pp−1 = p, then γp ⊂ p for any γ ∈ p−1. Since p is a finitely
generated Z-module, γ ∈ ok by Theorem (1.1). Thus, p−1 ⊂ ok which is a
contradiction to ok ( p−1. Therefore, every prime ideal p is invertible and
we have pp−1 = p−1p = ok.

• Every integral ideal a is invertible.

If not, there would be a maximal non-invertible ideal a. Among the
ideals containing a, there is one which is maximal and therefore prime;
denote it by p. Thus a ⊂ p−1a ⊂ p−1p = ok. If a = p−1a then an argument
like that for the previous displayed statement shows that p−1 ⊂ ok, which
would imply ok = pp−1 ⊂ p. So a 6= p−1a. By maximality, p−1a has an
inverse b, and bp−1 is an inverse for a.

• Every fractional ideal a is invertible.
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Since every fractional ideal a, there exists δ ∈ k× such that δa ⊂ ok.
Then the integral ideal b = δa is invertible. We have

a(δb−1) = (δa)b−1 = bb−1 = ok.

Hence, a is invertible and its inverse is a−1.

Example 1.16. Consider the ideal p = 3Z of Z. We have that

p−1 = {α ∈ Q |αp ⊂ Z} = {α ∈ Q | 3α ∈ Z} =
1

3
Z.

We have

p ( Z ( p−1 ( Q.

We say b divides a, denoted by b|a, if there exists an integral ideal c
such that a = bc. b is called a factor of a and a is called a multiple of b.
We have the following equivalent assertions.

Corollary 1.17. For any a, b ∈ Jk, the following assertions a ⊂ b, ab−1 ⊂
ok, ok ⊂ a−1b and b|a are equivalent.

Proof. If a ⊂ b, then ab−1 ⊂ bb−1 = ok. Reversely, if ab−1 ⊂ ok, then
ab−1 ⊂ ok = bb−1, which means a ⊂ b. For the other statement, a ⊂ b if
and only if a−1b ⊃ ok, the same argument shows that it is true as well.

Theorem 1.18. Any fractional ideal a of k can be written uniquely in the
form

a =
∏
p

pordp(a), ordp(a) ∈ Z,

where the product runs over all prime ideals of ok. All but a finite number
of the exponents are zeros, so that the product is actually well defined. In
particular, a is an integral ideal if and only if ordp(a) ≥ 0 for all p.

Proof. Claim that a can be written in the desired form in at least one way.
It suffices to consider the case of a integral. For if a is arbitrary, let c ∈ ok
be such that ca is integral. Let cok = q1 . . . qh, ca = p1 . . . pg. Then

a = p1 · · · pgq−1
1 · · · q−1

h .

Let S be the set of ideals of ok that cannot be written as a product of prime
ideals. Since ok is Noetherian, we can choose a, maximal with respect to
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this property. Then a is not prime, so a ( p for some maximal ideal p,
hence p is prime. Since p is invertible, we have

a ⊂ ap−1 ( ok. (1.4)

Claim that a 6= ap−1. If ap−1 = a, then p−1 = ok by multiplying by a−1,
which is a contradiction. Thus, a ( ap−1. Hence ap−1 is a product of
primes by the maximality of a and if we multiply this product by p we get
a product for a. Note that the above argument also shows that an integral
ideal can be expressed as a product of nonnegative powers of prime ideals.

Without loss of generality, let us restrict ourselves to integral ideals. Let

a = p1 . . . pg = q1 . . . qh (1.5)

be two factorizations of a into prime factors. Then p1 ⊃ a implies p1

contains some qi, say q1. But q1 is prime and hence maximal, so that
p1 = q1. Multiplying both side of (1.5) by p−1

1 , we arrive at

p2 . . . pg = q2 . . . qh.

The proof may now be completed by induction.

The integer ordp(a) is called the order of a in p, also denoted by ordp(a).
Denote d to be the greatest common divisor of a and b, if (1), d|a and d|b;
and (2), if c|a and c|b, then c|d. Denote d by gcd(a, b). Similarly, define m
to be the least common multiple of a and b, if (1), a|m and b|m; and (2), if
a|n and b|n, then m|n. Denote m by lcm(a, b).

Corollary 1.19. For any ideals a, b ∈ Jk and any prime ideal p of ok, we
have

(1), ordp(a
−1) = −ordp(a), ordp(ab) = ordp(a) + ordp(b);

(2), a + b = gcd(a, b), a ∩ b = lcm(a, b); and
(3),

ordp(a + b) = min{ordp(a), ordp(b)}
ordp(a ∩ b) = max{ordp(a), ordp(b)}.

Proof. It is clear that ordp(a
−1) = −ordp(a) and ordp(ab) = ordp(a) +

ordp(b). Therefore, we have

b | a ⇔ a ⊂ b⇔ ab−1 ⊂ ok

⇔ ordp(ab
−1) ≥ 0

⇔ ordp(a) ≥ ordp(b),

for all p.
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Since a ⊂ a+a, b ⊂ a+b, we see that a+b|a and a+b|b. If c|a, c|b, then
a ⊂ c and b ⊂ c, so that, a+b ⊂ c, i.e., c|a+b. Therefore a+b = gcd(a, b).
Similarly, we have a ∩ b = lcm(a, b). Since a + b (respectively, a ∩ b) is
the smallest ideal containing both a and b (respectively, the largest ideal
contained in a and b), the formulas of follow.

1.2.3 The Chinese Remainder Theorem

In this subsection we will prove the Chinese Remainder Theorem for the
ring of integers, deduce several useful consequences. In algebraic number
theory, we often have need of a notion of congruence that generalizes the
usual notion of congruence modulo an ideal. Let a be an integral ideal of ok
and α, β ∈ k. Two elements α, β are called congruent modulo a if α−β ∈ a,
say, α ≡ β(moda).

Theorem 1.20. (The Chinese Remainder Theorem) Let a =
∏g

i=1 p
ei
i be a

non-zero ideal of ok; then the natural map

ϕ : ok −→
g⊕
i=1

ok/p
ei

i

is onto and induces an isomorphism

ok/a ∼=
g⊕
i=1

ok/p
ei

i .

Proof. Since

kerϕ = {x ∈ ok|ϕ(x) = 0} = {x ∈ ok|x ∈
g⋂
i=1

peii } =

g∏
i=1

peii .

Thus only to prove ϕ is surjective. We only show a special case. Suppose a
ring R, and I, J are ideals in R, such that I + J = R. Choose x ∈ I and
y ∈ J such that x+y = 1. Then x = 1−y maps to (0, 1) in R/I⊕R/J , and
y = 1−x maps to (1, 0) in R/I⊕R/J . Thus the map R/(I∩J)→ R/I⊕R/J
is surjective. By induction, we conclude ϕ is surjective.

Corollary 1.21. Let a1, ..., am be nonzero integral ideals coprime in pairs
and let β1, . . . , βm be elements of ok. Then there exists α ∈ ok such that

α ≡ βi (mod ai), i = 1, 2, . . . ,m. (1.6)

Proof. It’s trivial by the above theorem.
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The following corollary means that ideals can be generated by two ele-
ments!

Corollary 1.22. Let a be a fractional ideal of ok and a nonzero α ∈ a.
Then there exists β ∈ a such that

(α, β) = 〈α, β〉 = αok + βok = a.

Proof. Let us first assume that a is an integral ideal. Let p1, p2, . . . , pm be
all the prime factors of (α) ⊂ a, so that a can be written as

a =
m∏
i=1

peii , ei ≥ 0.

Let us choose βi ∈ peii \p
ei+1
i , by Corollary 1.21, there exists β ∈ a, such

that β ≡ βi (mod pei+1
i ), i = 1, 2, . . . ,m. Thus, β ∈ peii \p

ei+1
i , i.e., peii ‖(β),

so β ∈ a. Since for every i, pi - (β)a−1, then we have ((β)a−1, (α)) = 1, i.e.,
(β)a−1 + (α) = ok. To conclude, we have that

a = (β) + (α)a ⊂ (α) + (β) ⊂ a.

If a is a fractional ideal, there exists by definition 0 6= c ∈ ok such that
a = cb with b an integral ideal. Thus α/c ∈ b. By the first part there exists
β ∈ b, such that b = (α/c, β). Thus a = (α, β/c).

Corollary 1.23. Let p be a nonzero prime ideal of ok. Then for any n ≥ 1

ok/p ∼= pn/pn+1 (1.7)

as ok-modules.

Proof. Take β ∈ pn\pn+1, i.e., pn ‖ (β). We consider the map

ϕ : ok −→ pn/pn+1

α 7−→ αβ.

This will conclude the proof since we will prove that kerϕ = p and ϕ is
surjective.

Firstly, we have

kerϕ = {x ∈ ok|xβ ∈ pn+1} = {x ∈ ok|x ∈ p} = p.

Secondly, given any γ ∈ pn, by Corollary 1.21, we can find δ ∈ ok, such
that

δ ≡ γ (mod pn+1)

δ ≡ 0 (mod (β)p−n)
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since ((β)p−n, pn) = 1. And we have δ ∈ pn∩ (β)p−n = (β). In other words,
δ/β ∈ ok. Therefore

ϕ(δ/β) = δ mod pn+1 = γ.

Thus ϕ is surjective.

1.2.4 Norm of ideals

Let a be an integral ideal of ok. We know that a is also a free abelian group
of rank [k : Q] = n. Suppose that {α1, . . . , αn}, {β1, . . . , βn} are respectively
integral basis of ok and a. Then there exists a square matrix T = (tij) with
integral coefficients, such that β1

...
βn

 = T

 α1
...
αn

 .

Denote the absolute norm of the integral ideal a by

N(a) = Nk(a) = Nk/Q(a) = | det(T )|.

Clearly, it is well-defined, independent of the choice of bases. By convention,
the norm of the zero ideal is taken to be zero.

Proposition 1.24. N(a) = |ok/a|.

Proof. According to the abelian fundamental theorem, we can take an
integral basis {ω1, . . . , ωn} of ok, such that ok = Zω1 ⊕ · · · ⊕ Zωn, a =
Za1ω1 ⊕ · · · ⊕ Zanωn, ai ∈ Z. Then, a1ω1

...
anωm

 =

a1

. . .

an


ω1

...
ωn

 .

Thus we obtain Nk(a) = |a1a2 · · · an| from the definition of the norm of
ideal. On the other hand,

ok/a = (Zω1 ⊕ · · · ⊕ Zωn)/(Za1ω1 ⊕ · · · ⊕ Zanωn)
∼= (Zω1/Za1ω1)⊕ · · · ⊕ (Zωn/Zanωn)
∼= (Z/a1Z)⊕ · · · ⊕ (Z/anZ).

Therefore, |ok/a| =
n∏
i=1

|Z/aiZ| = |a1 · · · an| = Nk(a).
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Theorem 1.25. Suppose that a, b are integral ideals of ok, and a = pe11 · · · perr
with pi are distinct prime ideals of ok. Then

(1), N(a) = N(p1)e1 · · ·N(pr)
er .

(2), N(ab) = N(a)N(b).
(3), Let {β1, . . . , βn} be an integral basis of a. Then

d(β1, . . . , βn) = N(a)2dk. (1.8)

(4), Let a = (a) be a principal ideal of ok. Then N(a) = |N(a)|.

Proof. (1), (2), Let a, b be two coprime integral ideals. By CRT, we have

ok/ab ∼= ok/a⊕ ok/b,

thus N(ab) = N(a)N(b).
We are left to prove that N(pi) = N(p)i, for i ≥ 1. Now one of the

isomorphism theorems for rings allows us to write that

N(pi−1) = |ok/pi−1| = |(ok/pi)/(pi−1/pi)|.

By the above Corollary (1.23), we have

N(pi−1) = N(pi)/N(p).

Thus N(pi) = N(pi−1)N(p), and by induction on i, we conclude the proof
of (1) and (2).

(3), Form the formula (1.2), we have

d(β1, β2, . . . , βn) =
(

detσi(βj)
)2

= N(a)2dk.

(4), Let α1, α2, . . . , αn be an integral basis of ok. Then aα1, aα2, . . . , aαn
is an integral basis of (a) = aok. An easy induction gives

d(aα1, aα2, . . . , aαn) = N(a)2dk.

On the other hand,

d(aα1, aα2, . . . , aαn) = det(σi(aαj))
2

= det(σi(a)σi(αj))
2

=

(
n∏
i=1

σi(a)

)2

det(σi(αj))
2

= N(a)2dk.

Hence N(a) = |N(a)|.
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We can extend the definition of norm to fractional ideals, in the following
way. Since any fractional ideal A of k can be written uniquely in the form
A = a/b where a and b are ideals of ok, we can put

N(A) = N(a)/N(b).

Similarly, we have the same theorem (1.25) about the norm of fractional
ideals.
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1.3 Ideal Class Group and Units

We are now interested in understanding two aspects of the ring of integers
of algebraic number fields: what is the proportion of principal ideals among
all the fractional ideals, and what is the structure of their group of units.
We will introduce the notion of class number and prove it is finite. And we
will then prove Dirichlet’s unit theorem for the structure of the group of
units. Both results will be as consequences of Minkowski’s theorem.

1.3.1 Lattices and Minkowski’s theorem

A lattice Λ in Rn is a subgroup of the form

Λ =

{
n∑
i=1

aiαi | ai ∈ Z

}
= Zα1 ⊕ · · · ⊕ Zαn,

where α1, . . . , αn is a basis for Rn. Hence Λ is a free abelian group(Z-
module) of rank n. A subgroup H of Rn is discrete if each bounded subset
of Rn intersects H in a finite set.

Proposition 1.26. A subgroup Λ of Rn is discrete if it is a lattice; and
every discrete subgroup of Rn is a lattice of Rm for some 0 ≤ m ≤ n.

Proof. Let Λ = Zα1 ⊕ · · · ⊕ Zαn be a lattice in Rn. Then for any α ∈ Rn,
we have α =

∑n
i=1 riαi, where ri ∈ R. And let U be a bounded subset of

Rn, which means, there exists a positive number M such that for any α =∑n
i=1 riαi ∈ U , |ri| < M for any i = 1, . . . , n. If α ∈ Λ ∩ U , then |ri| < M

and ri ∈ Z, which clearly have finitely many possibilities. Consequently,
Λ ∩ U is a finite set, hence that Λ is discrete.

Let H be a discrete subgroup of Rn with a maximal R-linear independent
subset {α1, . . . , αm}. It is clear that we have 0 ≤ m ≤ n. We will show
that H is a lattice of Rm. Denote D as the parallelepiped generated by
α1, . . . , αm, that is,

D = D(α1, . . . , αm) =

{
m∑
i=1

aiαi | 0 ≤ ai < 1

}
.

Clearly D ⊆ Rn is bounded, and hence H∩D is a finite set. For any x ∈ H,
x can be denoted as x =

∑m
i=1 λiαi, where λi ∈ R. Write, for any j ∈ Z,

xj = jx−
m∑
i=1

[jλi]αi =
m∑
i=1

{jλi}αi ∈ H ∩ D.
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Then x1 ∈ H ∩ D and x = x1 +
∑m

i=1[λi]αi, so H is a subgroup of Rn

generated by a finite set (H ∩ D) ∪ {α1, . . . , αm}, which implies H is a
finitely generated abelian group.

Moreover, xj ∈ H ∩ D for any j ∈ Z but H ∩ D is finite. Thus there
exist j, k ∈ Z such that j 6= k but xj = xk, which gives

(j − k)λi = [jλi]− [kλi] ∈ Z,

so λi ∈ Q, for any i = 1, . . . ,m. Then every generator of H is a Q-linear
combination of α1, . . . , αm. Multiplying H with a common denominator
d (d 6= 0) of all the coefficients of the finite generators of H, we obtain
dH ⊆ Zα1⊕ · · · ⊕Zαm. So dH is a subgroup of Zα1⊕ · · · ⊕Zαm, and thus
m ≤ rankH = rank(dH) ≤ m. It follows that rankdH = m. Therefore,

dH = Zβ1 ⊕ · · · ⊕ Zβm,

where βi ∈ Rn for any i = 1, . . . ,m. Then

H = Z(β1/d)⊕ · · · ⊕ Z(βm/d),

which yields H is a lattice of Rm spanned by {β1/d, . . . , βm/d}.

Let Λ = Zα1 ⊕ · · · ⊕ Zαn be a lattice of Rn. Denote the fundamental
parallelepiped for Λ by

D =

{
n∑
i=1

aiαi | 0 ≤ ai < 1

}
.

Let e1, . . . , en be a canonical basis of Rn. Suppose αi =
∑n

j=1 cijej with
cij ∈ R. Denote the volume of Λ by

V (Λ) = V (Rn/Λ) = | det(cij)|.

The subset S of Rn is said to be convex if whenever x, y ∈ S then the line
connecting x and y lies entirely in S. And S is called symmetric about the
origin if whenever x ∈ S then −x ∈ S also.

Corollary 1.27. Let Λ be a lattice of Rn. Then Rn/Λ is compact.

Lemma 1.28. (Minkowski’s lattice point theorem) Let Λ be a lattice of Rn,
and let S ⊂ Rn be a convex compact subset which is symmetric with respect
to the origin. If

V(S) ≥ 2nV(Λ),

then there exists 0 6= λ ∈ S ∩ Λ.
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Proof. Firstly, assume that V(S) > 2nV (Λ), let us consider the map

ϕ :
1

2
S −→ Rn/Λ

x 7−→ x+ Λ

If ϕ is injective, then V (1
2
S) ≤ V (Λ), hence V (S) ≤ 2nV (Λ), a contradic-

tion. Hence, there exist x1, x2 ∈ 1
2
S and x1 6= x2, such that ϕ(x1) = ϕ(x2),

and then ϕ(x1 − x2) = 0, and finally that x1 − x2 ∈ Λ. Since S is convex,
0 6= 1

2
(x1 − x2) ∈ S, then 0 6= 1

2
(x1 − x2) ∈ S ∩ Λ.

If V (S) = 2nV (Λ), then for all ε > 0, there exists a piont λε such that
λε ∈ (1 + ε)S ∩Λ because V ((1 + ε)S) > V (S) = 2nV (Λ). If ε < 1, then the
candidates for λε lie in the bounded discrete set 2S ∩ Λ, so they belong to
a finite set. Hence there exists nonzero λ = λε ∈ (1 + ε)S ∩Λ for arbitrarily
small ε. According to S is closed, we have λ ∈ S ∩ Λ.

Let σ1, . . . , σr1 be r1 real embeddings and σr1+1 = σ̄r1+r2+1, . . . , σr1+r2 =
σ̄n be r2 pairs complex conjugate embeddings of k. We consider the following
maping, called canonical embedding of k,

σ : k −→ Rn

α 7−→ (σ1α, . . . , σr1α,<σr1+1α, . . . ,<σr1+r2α,=σr1+1α, . . . ,=σr1+r2α).

Lemma 1.29. Let a be any fractional ideal and σ be the canonical embed-
ding of k. Then σ(a) is a lattice in Rn, and

V (σ(a)) = 2−r2
√
|dk|N(a).

Proof. Let α1, α2, . . . , αn be an integral basis of a, that is,

a = Zα1 ⊕ · · · ⊕ Zαn.

Then

σ(a) = Zσα1 ⊕ · · · ⊕ Zσαn.

As shows in the part above, V (σ(a)) is the absolute value of the determi-
nation of the matrix M
σ1α1 · · · σr1α1 <σr1+1α1 · · · <σr1+r2α1 =σr1+1α1 · · · =σr1+r2α1

σ1α2 · · · σr1α2 <σr1+1α2 · · · <σr1+r2α2 =σr1+1α2 · · · =σr1+r2α2

. . . . . . . . . . . . . . . . .
σ1αn · · · σr1αn <σr1+1αn · · · <σr1+r2αn =σr1+1αn · · · =σr1+r2αn
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By doing the column operators, we have

V (σ(a)) = | detM |

=
∣∣(−2i)−r2

∣∣√dk/Q(α1, α2, · · · , αn)

= 2−r2
√
|dk|N(a).

Since detM 6= 0, show that σα1, . . . , σαn are R-linearly independent. It
follows that σ(a) is a lattice in Rn.

1.3.2 The class number

Let Pk denote the subgroup of Jk formed by the principal fractional ideals,
that is, ideals of the form (α) = αok, for every α ∈ k×. The ideal class
group of k, denoted by Ck, is

Ck = Jk/Pk.

And we denoted by hk the cardinality Ck, called the class number of k.
Before the proof of the class number is finite, we firstly prove the following
lemma.

Lemma 1.30. (1), Let a be a nonzero fractional ideal of the number field
k with [k : Q] = n = r1 + 2r2. There exists a nonzero α ∈ a, such that

|N(α)| ≤
(

4

π

)r2 n!

nn

√
|dk|N(a). (1.9)

(2) Every ideal calss of k contains an integral ideal a such that

N(a) ≤
(

4

π

)r2 n!

nn

√
|dk|. (1.10)

Proof. (1) Let σ be the canonical mapping of k, and let f : Rn → R be the
function defined by

f(x1, . . . , xn) =

r1∑
i=1

|xi|+ 2

r2∑
j=1

√
x2
r1+j + x2

r1+r2+j.

Write St = {x = (x1, . . . , xn) ∈ Rn : f(x) ≤ t}, for any t > 0. It is easy to
check that St is a convex compact subset of Rn which is symmetric about
the origin. And we have

V (St) =

∫
· · ·
∫
f(x)≤t

dx1 . . . dxn = 2r1
(π

2

)r2 tn
n!
.
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By the lemma (1.29) and taking tn = ( 4
π
)r2n!

√
|dk|N(a), we have V (St) =

2nV (σ(a)). There exists 0 6= α ∈ a such that σα ∈ St, that is, f(σα) ≤ t.
Therefore,

|N(α)| =
n∏
i=1

|σi(α)| ≤

(
1

n

n∑
i=1

|σi(α)|

)n

=
1

nn
(f(σα))n ≤ 1

nn
tn

=

(
4

π

)r2 n!

nn

√
|dk|N(a).

This completes the first part of the lemma.
(2), Suppose a is any nonzero fractional ideal of ok. Our goal is to prove

there is an integral ideal αa with small norm. By the above, there exists a
nonzero α ∈ a−1 such that

|N(α)| ≤
(

4

π

)r2 n!

nn

√
|dk|/N(a).

The ideal (α)a is an integral ideal, say b. Then

N(b) = |N(α)|N(a) ≤
(

4

π

)r2 n!

nn

√
|dk|,

which proves the second part of the lemma.

Mk =
(

4
π

)r2 n!
nn

√
|dk| is called the Minkowski’s constant of the number

field k.

Theorem 1.31. The class number of k is finite.

Proof. We claim that there are only finitely many integral ideals a of ok
with norm at most any give positive integer q. Indeed, if N(a) = m, that
is |ok/a| = m, then m ∈ a, see exercis. It follows that

a|(m) = pe11 · · · pegg ,

where pi are different prime ideals of ok. the number of a which satisfies
N(a) = m is finite. And then there are only finite integral ideals satisfy
(1.10) and every ideal class of k contains also an integral ideal satisfy (1.10).
Then the class number of k is finite.

Corollary 1.32. Suppose that k 6= Q is an algebraic number field. Then

|dk| ≥
(π

4

)r2 nn
n!

> 1. (1.11)
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Gauss’ class number problem: The problem of finding an effective
algorithm to determine all imaginary quadratic fields with a given class
number h is known as the Gauss class number problem. Stark (1967) and
Baker (1966) gave independent proofs of the fact that only nine such num-
bers exist; both proofs were accepted.

1.3.3 Dirichlet’s units theorem

We say a nonzero α ∈ ok is a unit if αβ = 1 for some β ∈ ok. Clearly, the
units of ok form a group which in standard notation is just o∗k or Uk. ω ∈ k
is called the root of unity if ωm = 1 for some integer m. All the roots of
unity in k forms a group Wk.

Lemma 1.33. Wk is a finite cyclic group. If H be a finite subgroup of k×,
then H ≤ Wk.

Proof. Let z be an element of H whose order n is the exponent of H, that
is, the least common multiple of the orders of all the elements of H. Then
yn = 1 for every y ∈ H, so H consists of roots of unity. Since the polynomial
Xn − 1 has at most n distinct roots, we have |H| ≤ n. But 1, z, . . . , zn−1

are distinct elements of H, because z has order n. Thus H is cyclic.

Lemma 1.34. (1), u ∈ Uk ⇐⇒ N(u) = ±1.

(2), u ∈ Wk ⇐⇒ |σi(u)| = 1, i = 1, . . . , n.

Proof. (1), If u is a unit, then u−1 is also a unit, and N(u), N(u−1) are
integers. But N(u)N(u−1) = 1, it follows that N(u) = ±1.

Conversely, if u ∈ ok and N(u) = ±1, then u is a root of the equation

f(x) = xm + am−1x
m−1 + · · ·+ a1x± 1 ∈ Z[X].

So, the u−1 is a root of the equation

g(x) = xm ± (a1x
m−1 + · · ·+ am−1x+ 1) ∈ Z[X].

Thus u−1 ∈ ok, which implies u ∈ Uk.
(2), If u ∈ Wk, then there is m satisfies um = 1. And then |σi(u)|m =

|σi(um)| = 1, it follows that |σi(u)| = 1, for every i = 1, . . . , n.

Conversely, if |σi(u)| = 1, i = 1, . . . , n, then σi(u) = e2πini/mi , where
0 ≤ ni/mi < 1, ni,mi ∈ Z, and (ni,mi) = 1. So (σi(u))mi = 1, specially the
embedding is identity, we have um = 1. Thus u ∈ Wk.
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Theorem 1.35. (Dirichlet’s unit theorem)

Uk ∼= Wk ⊗ Zr

where r = r1 + r2 − 1. That is, there exist r units {ε1, . . . , εr} such that
every unit u of ok can be expressed uniquely as

u = ωεn1
1 · · · εnrr , (1.12)

where the ω ∈ Wk and ni ∈ Z.

Proof. Let σ : k → Rr1 × Cr2 ' Rn be the canonical embedding of k. The
logarithmic embedding of k is the mapping

λ : Uk −→ Rr1+r2

α 7−→ (log |σ1(α)|, . . . , log |σr1+r2(α)|).

Since λ(αβ) = λ(α)+λ(β), λ is a homomorphism from multiplicative group
Uk to the additive group of Rr1+r2 .
• The image of λ lies in the hyperplane:

x1 + · · ·+ xr1 + 2xr1+1 + · · · 2xr1+r2 = 0.

If α ∈ Uk, then by the Lemma (1.34),

r1+r2∑
i=1

λi log |σi(α)| =
n∑
i=1

log |σi(α)| = log |N(α)| = 0,

with λi = 1, i = 1, . . . , r1 and λi = 2, i = r1 + 1, . . . , r1 + r2. Clearly, the
hyperplane has dimension r = r1 + r2 − 1.
• The kernel of λ consists of exactly all the roots of unity Wk.

α ∈ kerλ ⇔ log |σi(α)| = 0, i = 1, . . . , r1 + r2

⇔ |σi(α)| = 1, i = 1, . . . , n

⇔ α ∈ Wk.

• The image of λ is a discrete subgroup of Rr1+r2 .
That is, any bounded subset of Rr1+r2 contains only finitely many points

of λ(Uk). Thus λ(Uk) is a lattice in Rs, hence a free Z-module of rank s, for
some s ≤ r1 + r2. Now by the first isomorphism theorem, we have that

λ(Uk) ' Uk/Wk

with λ(x) corresponding to the coset xWk.
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In order to do so, we prove that if C is a bounded subset of Rr1+r2 , then
C ′ = {x ∈ Uk |λ(x) ∈ C} is a finite set.

Since C is bounded, all |σi(x)|, x ∈ Uk, i = 1, . . . , n belong to some in-
terval say [a−1, a], a > 1. Thus the elementary polynomials in the σi(x) will
also belong to some interval of the same form. Now they are the coefficients
of the characteristic polynomial of xi, which has integer coefficients since
x ∈ Uk. Thus there are only finitely many possible characteristic polynomi-
als of elements x ∈ C ′, hence only finitely many possible roots of minimal
polynomials of elements x ∈ C ′, which shows that x can belong to C ′ for
only finitely many x.
• The kernel of λ is a finite group.
Now if we set C = 0, C ′ is the kernel ker(λ) of λ restricted to Uk and is

thus finite.
• Uk is a finite generated abelian group, isomorphic to µ(ok)×Zs, s ≤ r1+r2.
If x1µ(ok), . . . , xsµ(ok) form a basis for Uk/µ(ok) and x ∈ Uk, then xµ(ok)

is a finite product of powers of the xiG, so x is an element if µ(ok) times
a finite product of powers of xi. Since the λ(xi) are linearly independent,
so are the xi (provided that the notion of linear independence is translated
to a multiplicative setting: x1, . . . , xs are multiplicatively independent if
xm1

1 · · ·xmss = 1 implies that mi = 0 for all i, from which it follows that
xm1

1 · · ·xmss = xn1
1 · · · xnss implies mi = ni for all i). The result follows.

We now improve the estimate of s and show that s ≤ r1 + r2 − 1. so as
above, λ(Uk) is free Z-module of rank s ≤ r1 + r2 − 1.

We call {ε1, . . . , εr} in (1.12) a fundamental system of units for the num-
ber field k. Let {ε1, . . . , εr} be a fundamental system of generators of k
modulo roots of unity (this is, modulo the torsion subgroup). Let M be the
r × (r + 1) matrix

log |σ1(ε1)| · · · log |σr1(ε1)| 2 log |σr1+1(ε1)| · · · 2 log |σr+1(ε1)|
log |σ1(ε2)| · · · log |σr1(ε2)| 2 log |σr1+1(ε2)| · · · 2 log |σr+1(ε2)|

...
...

...
...

. . .
...

log |σ1(εr)| · · · log |σr1(εr)| 2 log |σr1+1(εr)| · · · 2 log |σr+1(εr)|


and let Mj be the r × r matrix

(λi log |σi(εj)|)r×r

where λi = 1 if σi is a real embedding and λi = 2 if σi is a complex
embedding, obtained by deleting any jth-column. It can be checked that the
determinant of Mj, is independent up to sign of the choice of fundamental
system of generators of k and is also independent of the choice of j. The

28



absolute value of the determinant of the matrix Mj is called the regulator
of the number field k, say Rk. The regulator is one of the main ingredients
in the analytic class number formula for number fields.

1.3.4 Units in quadratic fields

Imaginary quadratic fields:

Let k = Q(
√
−d) be an imaginary quadratic field. There are no real em-

beddings, so r1 = 0, r2 = 1 and r = r1 + r2− 1 = 0, the only units in ok are
the roots of unity in k.

Uk ∼= Wk =


〈i〉, as k = Q(

√
−1)

〈ρ|ρ = 1+
√
−3

2
〉, as k = Q(

√
−3)

〈−1〉, otherwise.

Real quadratic fields:

Let k = Q(
√
d) be a real quadratic field. Since the Q-automorphisms of k

are the identity and τ : α+β
√
d 7→ α−β

√
d, there are two real embeddings

and no complex embeddings. Thus r1 = 2, r2 = 0 and r = r1 + r2 − 1 = 1.
The only roots of unity in R are ±1. By Dirichlet’s unit theorem, the group
of units in the ring of algebraic integers is isomorphic to

Uk ∼= {±1} × uZ ∼= {±1} × Z.

If u a unit, then ±u,±u−1 are also units. The unique generator greater
than 1 is called the fundamental unit of k.
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1.4 Extensions of Fields

Let K/k be an extension of algebraic number fields with [K : k] = n, and
let p be a prime ideal of ok. Let pOK denote the ideal of OK generated by
p; it consists of all finite sums

∑
απ with α ∈ OK , π ∈ p. The ideal pOK

is not in general prime ideal. In this section, we will consider the following
general problem: Given any prime ideal p of ok, determine the factorization
of pOK into prime ideals of OK .

1.4.1 Factoring of prime ideals in extensions

Recall: Finite Fields (1), Let E be a finite field of characteristic p. Then |E| = pn

for some positive integer n. Moreover, E is a splitting field for the separable polynomial
f(X) = Xpn −X over Fp, so that any finite field with pn elements is isomorphic to E.

(2), If E is a finite field of characteristic p, then E/Fp is a Galois extension. The
Galois group is cyclic and is generated by the Frobenius automorphism σ(x) = xp, x ∈ E.

(3), Let E/F be a finite extension of a finite field, with |E| = pn, |F | = pm. Then
E/F is a Galois extension. Moreover, m|n, and Gal(E/F ) is cyclic and is generated by
the automorphism τ(x) = xp

m

, x ∈ E. Furthermore, F is the only subfield of E of size
pm.

(4), The multiplicative group of a finite field is cyclic. More generally, if G is a finite
subgroup of the multiplicative group of an arbitrary field, then G is cyclic.

(5), GF (pm) is a subfield of GF (pn) if and only if m is a divisor of n.
For more details, we refer the reader to [1] or [5].

Let K/k be a finite extension of algebraic number fields with [K : k] = n
and p be a prime ideal of ok. Let pOK be written in a unique way as

pOK = Pe1
1 · · ·Peg

g ,

where P1, . . . ,Pg are distinct prime ideals of OK and the ei are positive
integers. Then the Pi are called the prime divisors of p in K by writing
P|p. If P|p, then p is called the restriction of P to k, or that P lies over
p (P is above p) since P ∩ ok = p. We then actually have the following
lemma.

Lemma 1.36. Let K/k be a finite extension of algebraic number fields and
P be a prime ideal of OK. Then

(1), p = P ∩ ok is a prime ideal of ok; and p = P ∩ ok ⇔ P|p;
(2), If p = P ∩ ok, then the residue class field ok/p is a subfield of the

finite field OK/P. In particular, the finite field ok/p has characteristic p
where p is the restriction of p in Z.

Proof. (1), Clearly, P ∩ ok is an ideal of ok. For any α, β ∈ ok and αβ ∈
P ∩ ok, then α ∈ P or β ∈ P. Hence, α ∈ P ∩ ok or β ∈ P ∩ ok. It follows
that P ∩ ok is prime.
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If p = P ∩ ok, then p ⊂ P. Hence pOK ⊂ P, and then P|pOK .
Conversely, assume that P|p, hence contains pOK ⊂ P. Then

p = p ∩ ok ⊂ pOK ∩ ok ⊂ P ∩ ok.

We have p = P ∩ ok, because every nonzero prime ideal is maximal in the
Dedekind domain ok.

(2), Let ϕ be the mapping

ϕ : ok −→ OK/P

α 7−→ α + P.

It’s easily check that ϕ is a homomorphism of rings, and kerϕ = P∩ok = p.
By the homomorphism, we may view ok/p as a subring of OK/P, hence
OK/P a finite dimensional vector space over the finite field ok/p.

If we lift p to OK and factor pOK as Pe1
1 · · ·P

eg
g , that is,

pOK = Pe1
1 · · ·Peg

g , (1.13)

the positive integer e(Pi/p) = ei is called the ramification index of Pi over
p. The degree [OK/Pi : ok/p] = f(Pi/p) = fi of the finite fields extension
is called the residue class degree (inertial degree) of Pi over p. The integer
g is called the degree of split(decomposition number) of p.

Theorem 1.37.

g∑
i=1

eifi = [OK/pOK : ok/p] = [K : k]. (1.14)

Proof. Taking norm form two sides (1.13), we have

N(pOK) =

g∏
i=1

N(Pi)
ei =

g∏
i=1

|OK/Pi|ei

=

g∏
i=1

|ok/p|fiei = |ok/p|
g∑
i=1

eifi
= N(p)

g∑
i=1

eifi
.

On the other hand, denote the mapping φ by

φ : ok −→ OK/pOK

α 7−→ α + pOK .
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It is easily seen that the mapping φ is a ring homomorphism and its kernel
is p. Then the ring V = OK/pOK can be look as a vector space over the
finite field Fp = ok/p. It follows that

N(pOK) = |OK/pOK | = |ok : p|dimFp V = N(p)dimFp V ,

hence that
∑g

i=1 eifi = dimFp V. Now, it sufficient to show that dimFp V =
[OK/pOK : ok/p] = n.
• We claim that dimFp V ≤ n.
Let x1, . . . , xn+1 be any elements of OK . Since [K : k] = n, there exist

α1, . . . , αn+1 ∈ k which are not all zeros such that

α1x1 + · · ·+ αn+1xn+1 = 0.

Without loss of generality we can assume that α1, . . . , αn+1 ∈ ok. Let a =
(α1, . . . , αn+1) be an ideal of ok. There exists an integral ideal b such that
ab = (α) * (α)p where α ∈ ok by the exercise. It follows that there is β ∈ b
such that βa * (α)p. Therefore (β/α)a = βb−1 ⊂ ok, and then we obtain
(β/α)αi ∈ ok for 1 ≤ i ≤ n+ 1.

On the other hand, we have (β/α)a * p. Then there exists j such that
(β/α)αj /∈ p. In other words, set γi = (β/α)αi, then γi ∈ ok for 1 ≤ i ≤ n+1
but γj /∈ p for some j. Hence γj 6= 0 in the residue field ok/p. Multiplying
by β/α, we have

γ1x1 + · · ·+ γn+1xn+1 = 0.

Let
γ̄1x̄1 + · · ·+ γ̄n+1x̄n+1 = 0̄

be reductions mod pOK of the above equation. It follows that any n+1 ele-
ments x̄1, . . . , x̄n+1 of OK/pOK are linearly dependent because γ̄1, . . . , γ̄n+1

are not all zeros. Hence dimFp V ≤ n, which is our claim.
• We have dimFp V = n when k = Q.
Let

pOK = Pe1
1 · · ·Peg

g .

By Theorem (1.25), we have

N(pOK) = |NK/Q(p)| = pn.

Therefore, we get dimFp V =
∑g

i=1 eifi = n.
• We have dimFp V = n for any number field k.
Let p ∩ Z = pZ and

pok = pẽ11 · · · pẽrr ,
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where ẽi = e(pi/p) and f̃i = f(pi/p). Then
∑r

i=1 ẽif̃i = [k : Q] = m and
pj = p for some 1 ≤ j ≤ r. Setting [OK/piOK : ok/pi] = ñi, we have ñi ≤ n.
Since

pOK = (pok)OK = (p1OK)ẽ1 · · · (prOK)ẽr ,

we see that

|OK/pOK | = N(pOK) =
r∏
i=1

NK(piOK)ẽi

=
r∏
i=1

|OK/piOK |ẽi =
r∏
i=1

|ok/pi|ñiẽi

=
r∏
i=1

pñiẽif̃i = p
∑r
i=1 ñiẽif̃i .

On the other hand, we have

|OK/pOK | = p[K:Q] = p[K:k][k:Q] = pmn

which follows that

mn =
r∑
i=1

ñif̃iẽi ≤ n
r∑
i=1

f̃iẽi = nm.

Thus ñi = n for any i = 1, 2, . . . , r. In particular, we have ñj = n which
completes the proof.

Definition 1.38. Let k,K and p,Pi be as above.
(1), If ei = 1 for some i, then we say that Pi unramifies over p. If ei > 1

for some i, then we say that Pi ramifies over p and p ramifies over in K/k.
If ei = 1 for all i then we say that p is unramified in K/k.

(2), Let p be the characteristic of the residue field ok/p. If ei > 1 and
p - ei, then we say that Pi is tamely ramified. If p|ei then we say that Pi is
wildly ramified.

(3), The prime ideal p is totally split in K if g = n; totally ramified if
e = n; undecomposed (interia) if f = n.

Lemma 1.39. Let k ⊂ L ⊂ K be a finite extension of number fields. Let
P be a prime ideal of OK, PL = P ∩OL and p = P ∩ ok. Then

e(P/p) = e(P/PL)e(PL/p),

f(P/p) = f(P/PL)f(PL/p).

Proof. Clearly.
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An efficient factorization of a rational prime in a number field

Theorem 1.40. (Dedekind-Kummer Theorem) Suppose that there is an
element α ∈ k such that ok = Z[α]. Let f(x) be the minimal polynomial of
α over Z[α]. Let p be a rational prime and suppose

f(x) ≡ f1(x)e1 · · · fg(x)eg(mod p),

where each fi(x) is irreducible in Fp[X]. Then

pok = pe11 · · · pegg

where pi = (p, fi(α)) are prime ideals, with N(pi) = pdeg fi .

Proof. We first note that

(p, f1(α))e1 · · · (p, fg(α))eg ⊂ pok.

Thus it suffices to show that pi = (p, fi(α)) are prime ideals, with N(pi) =
pdi , di = deg fi.

Now, since fi(x) is irreducible over Fp[X], then Fp[X]/(fi(x)) is a field.
Also

Z[X]/(p) ∼= Fp[X]⇒ Z[X]/(p, fi(x)) ∼= Fp[X]/(fi(x)),

and so Z[X]/(p, fi(x)) is a field.
Consider the map ϕ : Z[X]→ Z[α]/(p, fi(α)), Clearly

(p, fi(x)) ⊂ ker(ϕ) = {n(x) : n(α) ∈ (p, fi(α))}

If n(x) ∈ ker(ϕ), we can divide by fi(x) to get

n(x) = q(x)fi(x) + ri(x), deg(ri) < deg(fi)

We assume that ri is nonzero, for otherwise the result is trivial. Since
n(α) ∈ (p, fi(α)), then ri(α) ∈ (p, fi(α)), so ri(α) = pa(α)+fi(α)b(α). Here
we have used the fact that ok = Z[α].

Now define the polynomial h(x) = ri(x)−pa(x)−fi(x)b(x). Since h(α) =
0 and f is the minimal polynomial of α, then h(x) = g(x)f(x) for some
polynomial g(x) ∈ Z[X]. We conclude that ri(x) = pã(x) + fi(x)b̃(x) for
some ã(x), b̃(x) ∈ Z[X]. Therefore ri(x) ∈ (p, fi(x)).

Thus,

Z[α]/(p, fi(α)) ∼= Z[X]/(p, fi(x)) ∼= Fp[X]/(fi(x))
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and is therefore a field. Hence,(p, fi(α)) is a maximal ideal and is therefore
prime.

Now, let hi be the ramification index of pi, so that

pok = ph11 · · · phgg ,

and let di = [ok/pi : Z/pZ]. Clearly di is the degree of the polynomial
fi(x). Since f(α) = 0, and since f(x) − f1(x)e1 · · · fg(x)eg ∈ pZ[X]. Also,
peii ⊂ pok + (fi(x)ei) and so

pe11 · · · pegg ⊂ pok = ph11 · · · phgg .

Therefore, ei ≥ hi for all i. But∑
eidi = degf = [K : Q] =

∑
hidi

Thus, ei = hi for all i.

The above theorem gives a concrete method to compute the factorization
of a prime p in ok:

(1), Let f(x) be the minimal polynomial of α such that ok = Z[α].

(2), Compute the factorization of f̃(x) = f(x) mod p: f̃(x) =
∏g

i=1 fi(x)ei .
(3), Compute pi = (p, fi(α)).

Examples 1.41. 1, Let us consider k = Q( 3
√

2) with ring of integers ok =
Z[ 3
√

2]. We want to factorize 5ok. By the above theorem, we compute

x3 − 2 ≡ (x+ 2)(x2 − 2x− 1) mod 5.

We thus get that

5ok = p1p2 = (5, 2 +
3
√

2)(5,
3
√

4− 2
3
√

2− 1).

2, As all know, there are two essentially different factorizations into
prime elements

21 = 3 · 7 = (1 + 2
√
−5)(1− 2

√
−5)

in the ring ok = Z[
√
−5]. By the above theorem, we have the decompositions

of prime ideals

(3) = p1p2
def
= (3,

√
−5− 1)(3,

√
−5− 2)

(7) = p3p4
def
= (7,

√
−5− 3)(7,

√
−5− 4).
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This is implied by the decompositions:

x2 + 5 ≡ (x− 1)(x− 2)(mod3), x2 + 5 ≡ (x− 3)(x− 4)(mod7).

We also have

(1 + 2
√
−5) = p1p3, (1− 2

√
−5) = p2p4.

Then the factorization (21) = p1p2p3p4 is unique decomposition as a product
of four prime ideals of ok.

1.4.2 Applications in special fields

Theorem 1.42. Let k = Q(
√
d) be any quadratic field where d is a square-

free integer.
(1), If p|dk, then pok = p2 and N(p) = p, i.e., p is totally ramified.
(2), Assume that p > 2 and p - dk.

(i), If (d
p
) = 1, then we have pok = p1p2, p1 6= p2 and

N(p1) = N(p2) = p, i.e., p is totally splits.
(ii), If (d

p
) = −1, then we have pok = p, N(p) = p2, i.e., p is interia

(3), Assume that p = 2 and p - dk.
(i), If d ≡ 1(mod8), then 2 is p is totally splits in k/Q.
(ii), If d ≡ 5(mod8), then 2 is p is interia.

Corollary 1.43. A positive integer n is a sum of two squares if and only
if m is even where pm ‖ n for all primes p ≡ 3(mod4).

1.4.3 Relative norms

Let k ⊂ K be algebraic number fields. Let Jk and JK be the groups of
fractional ideals of k and K respectively. We can also generalize the relative
norm by multiplicativity as follows:

NK/k : JK → Jk

P 7→ pf(P/p),

which is a group homomorphism. This definition may be extended to each
nonzero fractional ideal A ∈ JK . Note that this defines a relative norm for
ideals, which is itself an ideal.

Proposition 1.44. Let NK/k be the relative norm of number fields K/k
with n = [K : k].

(1), For every a ∈ Jk, NK/k(aOK) = an.
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(2), For k = Q and each nonzero fractional ideal A of K, we have

NK/Q(A) = N(A)Z,

where N(A) = |OK : A| is the absolute norm.
(3), Let k ⊂ L ⊂ K be an extension of number fields. Then

NK/k = NL/k ◦NK/L.

Proof. (1), Due to the multiplicativity of the relative norm of an ideal, it
suffices to prove this for a prime ideal p ∈ Jk. Let

pOK = Pe1
1 Pe2

2 · · ·Peg
g ,

where Pi are distinct prime ideals of OK and |FPi | = fi. Then we have

NK/k(pOK) =

g∏
i=1

NK/k(Pi)
ei =

g∏
i=1

peifi = pn.

(2), Let P be any prime ideal of OK , and let P∩Z = (p). Let [OK/P :
Z/pZ] = f , that is, NP = pf . By definition,

NK/Q(P) = (pZ)f = pfZ = (NP)Z,

which proves the assertion form the multiplicativity of the relative norm.
(3), By the multiplicativity of the relative norm, it suffices to prove the

statement for a prime ideal P of K. Let P ∩ OL = PL and P ∩ ok = p.
Then NK/k(P) = pf(P/p). On the other hand, we have

NK/L(P) = P
f(P/PL)
L and NL/k(PL) = pf(PL/p).

Therefore, by the Lemma (1.39),

NL/k

(
NK/L(P)

)
= NL/k

(
P
f(P/PL)
L

)
= pf(PL/p)fP/PL)

= pf(P/p) = NK/k(P).

Since Z is a principal ideal domain, every finitely generated torsion-
free Z-module has a finite Z-basis; in particular, any fractional ideal in a
number field has an integral basis. If K/k is a finite extension of number
fields where ok is a Dedekind domain but not necessarily a principal ideal
domain, then the fractional ideals of K are finitely generated and torsion-
free as ok-modules, but not necessarily free. That is, the integer ring OK

may not exist a basis as an ok-module.
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1.5 Global Hilbert Theory

Recall: (Galois Theory) If E/F is normal and separable, it is said to be a Galois
extension; we also say that E is Galois over F . If E/F is a finite Galois extension, then
there are exactly [E : F ] F -automorphisms of E. If E/F is an arbitrary extension, the
Galois group of the extension, denoted by

Gal(E/F ) = {σ |σ is an automorphism of E and σ|F = 1}

is the set of F -automorphisms of E.

• An important theorem of Emil Artin states that for a finite extension E/F , each
of the following statements is equivalent to the statement that E/F is Galois:

(1), E/F is a normal extension and a separable extension.

(2), E is a splitting field of a separable polynomial with coefficients in F.

(3), [E : F ] = |Gal(E/F )|; that is, the degree of the field extension is equal to the
order of the automorphism group of E/F.

• Let E/F be a finite Galois extension with Galois group G = Gal(E/F ). Then the
fixed field of G is F . If H is a proper subgroup of G, then the fixed field of H
properly contains F .

• Fundamental Theorem of Galois Theory: Let E/F be a finite Galois exten-
sion with Galois group G. If H is a subgroup of G, let F(H) be the fixed field of
H, and if K is an intermediate field, let G(K) be Gal(E/K), the fixing group of
K.

F is a bijective map from subgroups to intermediate fields, with inverse G. Both
maps are inclusion-reversing, that is, if H1 ≤ H2 then F(H1) ≥ F(H2), and if
K1 ≤ K2, then G(K1) ≥ G(K2).

Suppose that the intermediate field K corresponds to the subgroup H under the
Galois correspondence. Then

I E/K is always normal, hence Galois;

I K/F is normal if and only if H is a normal subgroup of G, and in this case,

I the Galois group of K/F is isomorphic to the quotient group G/H. Moreover,
whether

or not K/F is normal,

I [K : F ] = [G : H] and [E : K] = |H|.

• If the intermediate field K corresponds to the subgroup H and σ is any automor-
phism in G, then the field σK = {σ(x) |x ∈ K} corresponds to the conjugate
subgroup σHσ−1. For this reason, σK is called a conjugate subfield of K.

For the proofs we refer the reader to [1] or [5].

Throughout this section, let K/k be a Galois extension of number fields
with the Galois group G = Gal(K/k) and [K : k] = n. In particular, the
Galois extensions K/k are called the abelian extension and cyclic extension
whose the Galois groups are abelian and cyclic respectively.
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1.5.1 Decomposition of prime ideals: efg = n

Let p be a prime ideal of ok and P be a prime ideal above p in OK . We
firstly show that the Galois group G acts on the set of prime ideals lying
above p.

Lemma 1.45. If σ ∈ G, then σOK = OK. If P is a prime ideal above p
in OK and σ ∈ G, then so does σP.

Proof. If α ∈ OK , then the conjugate σα for every element σ ∈ G has the
same minimal polynomial. Hence σα ∈ OK and σOK ⊂ OK . But σ−1OK

is also contained in OK , hence σOK = OK .
If pOK = Pe1

1 · · ·P
eg
g , then apply σ to get

σ(pOK) = pOK = σ(P1)e1 · · ·σ(Pg)
eg .

Thus σPi must be prime ideals, because σ perserves all algebraic relation.
Since Pi ∩OK = p, it follows that σPi ∩OK = p, so σPi is a prime factor
of p.

The ideals σP, for σ ∈ G, are called the conjugate prime ideals to P.

Recall: (The Orbit-Stabilizer Theorem) Suppose that a group G acts on a set
X. Let B(x) = {gx | g ∈ G} be the orbit of x ∈ X, and let G(x) = {g ∈ G | gx = x}
be the stabilizer of x. Then the size of the orbit is the index of the stabilizer, that is,
|B(x)| = [G : G(x)]. Thus if G is finite, then |B(x)| = |G|/|G(x)|; in particular, the orbit
size divides the order of the group.

For the proofs we refer the reader to [1]

Proposition 1.46. Let p be a prime ideal of ok and

pOK = Pe1
1 · · ·Peg

g .

Then (1), G acts transitively on the the set {P1, . . . ,Pg}, that is, for any
i, j there exists σ ∈ G such that Pi = σPj.

(2), For any i, {P1, . . . ,Pg} are all the prime ideals conjugate to Pi.
(3), We have that e1 = · · · = eg = e, f1 = · · · = fg = f, and n = efg.
(4), Let A be an ideal of the integral ring OK. Then

NK/k(A)OK =
∏
σ∈G

σA.

Proof. (1), Only need to show that for any Pi, there exists σ ∈ G, such
that Pi = σP1. Suppose that, for any i 6= 1, Pi /∈ {σP1 : σ ∈ G}. By the
Chinese Remainder Theorem, there is α ∈ OK , such that

α ∈ Pi and α /∈ σP1, for any σ ∈ G,
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which gives σα /∈ P1. Then

NK/k(α) =
∏
σ∈G

σα ∈ Pi ∩ ok = p ⊂ P1,

this is a contradiction.
(2), It suffices to show that the conjugate prime ideal of P1 is one of

P1, . . . ,Pg. Let P be any conjugate prime ideal of P1. Then there exists
σ ∈ G, such that P = σP1. Since P1 ∩ ok = p, it follows that

P ∩ ok = σP1 ∩ σok = σ(P1 ∩ ok) = σp = p.

Hence P|p, and then P is one of prime factors P1, . . . ,Pg.
(3,) Assume that Pi = σP1 for any i 6= 1 and some σ. Then

Pe1
1 . . .Peg

g = pOK = σ(pOK)

= σ(P1)e1 · · ·σ(Pg)
eg = Pe1

i σ(P2)e2 · · ·σ(Pg)
eg .

Clearly, σ(Pj) 6= Pi for any j > 1, since otherwise σPj = Pi = σP1 which
implies Pj = P1, a contradiction. We must have ei = e1 for the unique
factorization of ideals of a Dedekind domain. Therefore, e1 = · · · = eg = e,
say.

Similarly, we have, for any i > 1,

fi = [OK/Pi : ok/p] = [OK/σP1 : ok/p]

= [σ(OK)/σ(P1) : σ(ok)/σ(p)]

= [OK/P1 : ok/p] = f1.

Therefore, f1 = · · · = fg = f , say. Then n =
∑g

i=1 eifi = efg.
(4), It is sufficient to show the conclusion for any prime ideal P of K.

Let p = P ∩ ok and pOK = (P1P2 · · ·Pg)
e. Since NK/k(Pi) = pf for each

i, we can have

NK/k(P)OK = (P1P2 · · ·Pg)
ef .

On the other hand, since G acts transitively on the set {P1,P2, . . . ,Pg},
it follows that each Pi occurs n/g = ef in the family {σP|σ ∈ G} by the
orbit-stabilizer theorem. Thus

NK/k(P)OK = (P1P2 · · ·Pg)
ef =

∏
σ∈G

σP.

This completes the proof.
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In fact, this proposition implies that the following diagram commutes.

K×
α 7→(α)//

NK/k
��

JK

NK/k
��

k×
α 7→(α) // Jk

In the case K/k is Galois, we shall denote the common values of the
ei = e(P/p), fi = f(P/p) by the ep, fp respectively. If we write gp instead
of g, then we may reformulate (1.14), as n = epfpgp.

1.5.2 Decomposition and inertia groups

From now on, we fix our attention on one prime factor P of p in OK . Let
[K : k] = n = efg, where e = ep = e(P/p) = e(K/k).

Definition 1.47. The stabilizer of P in G is called the decomposition(splitting)
group(Zerlegungs gruppe) of P given by

DP = {σ ∈ G |σP = P}.

Its fixed field

KD = {α ∈ K |σα = α, σ ∈ D},

is called the decomposition(splitting) field of P.

By the orbit-stabilizer theorem, we have [G : DP] = |GP|, where GP =
{σP |σ ∈ G} is the orbit of P under the action of G. Since there is only
one orbit, of size g, we see that

|DP| = |G|/[G : DP] = |G|/|GP| = ef,

which is independent of choice of P.

Proposition 1.48. Let the notations and assumptions be as above.

(1), e(P/PD) = e, f(P/PD) = f, g(P/PD) = 1, that is, P is the only
prime ideal of K lying above PD.

(2), e(PD/p) = f(PD/p) = 1. Moveover, if DPEG, then g(PD/p) = g,
that is, p is completely split in KD.

(3), The subfield KD is the smallest subfield M between k and K such
that PM = P ∩OM does not split, that is, g(P/PM) = 1.
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Proof. (1) and (2), We first prove that K/KD has the property g(P/PD) =
1 where PD = P∩OD. By Galois theory, K/KD is Galois and Gal(K/KD) =
D. Let

PDOK = Pe1Pe1
1 · · ·Pe1

t .

Then for any Pi, there exists σ ∈ Gal(K/KD) = D, such that Pi = σP =
P. Hence g(P/PD) = 1.

Moreover,

e(P/PD)f(P/PD) = [K : KD] = |DP| = ef

and
e(P/PD) ≤ e, f(P/PD) ≤ f

by the lemma (1.39). Then we obtain e(P/PD) = e and f(P/PD) = f . It
follows that e(PD/p) = f(PD/p) = 1. If DP E G, then KD/k is a Galois
extension. We thus get

g(PD/p) = e(PD/p)f(PD/p)g(PD/p) = [KD : k] = g.

(3), Let us now prove the minimality of KD. Assume that there exists an
intermediate field M such that g(P/PM) = 1. Then this unique ideal must
be P, since by definition P is above PM . Then Gal(K/M) is a subgroup
of DP, since its elements are fixing P. Thus M ⊃ KD.

For any σ ∈ DP, then σ induces an automorphism σ of OK/P = FP

which fixes ok/p = Fp,

σ : OK/P −→ OK/P

α = α + P 7−→ σα = σα + P,

that is, we obtain the following lemma.

Lemma 1.49. The σ is an automorphism of FP which fixes Fp, that is,
σ ∈ Gal(FP/Fp).

Proof. • σ is a mapping
It suffices to prove that α = β ⇒ σ(α) = σ(β). Clearly, the following

facts

α = β ⇔ α + P = β + P⇔ α− β ∈ P

⇔ σ(α− β) ∈ σP = P⇔ σα− σβ ∈ P

⇔ σα + P = σβ + P⇔ σ(α) = σ(β).

• σ is an automorphism of the finite field FP
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It is easy to check that σ(α± β) = σ(α)± σ(β) and σ(αβ) = σ(α)σ(β).
And

kerσ = {α ∈ FP : σ(α) = 0}
= {α ∈ FP : σα ∈ P}
= {α ∈ FP : α ∈ σ−1P = P}
= {0},

then σ is an automorphism.
• σ fixes every element of Fp

For any α = α + p ∈ Fp, we have σ(α) = σ(α) = σ(α) + p = α.

Denote a map by

π : DP −→ Gal(FP/Fp)

σ 7−→ σ.

Let IP be the kernel of the group homomorphism π; IP is called the inertia
group(Trägheits gruppe) of P and its fixed field KI is called the inertia field
of P.

Proposition 1.50. (1), The group homomorphism π is surjective.
(2), IP is a normal subgroup of DP of order ep and

DP/IP ∼= Gal(FP/Fp)

is cyclic of order fp.
(3), IP = {σ ∈ DP |σα ≡ α(modP), for any α ∈ OK}.

Proof. (1), Let α ∈ FP be an element such that FP = Fp(α). Lift α to an
algebraic integer α ∈ OK , and let

f(x) =
∏
σ∈DP

(x− σα) ∈ OD[x]

be the characteristic polynomial of α over KD.
By Proposition (1.45), we see that f(x) reduces mod PD to

f(x) =
∏
σ∈DP

(x− σα) ∈ Fp[x]

because OD/PD
∼= Fp. Since the characteristic polynomial of α over Fp is

divided by the minimal polynomial of α , all the conjugates of α over Fp
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have the form σα. Every Fp-automorphism of FP is of the form σ where
σ ∈ DP. It follows that the group homomorphism π is surjective.

(2,) By Galois theory, we know that Gal(FP/Fp) is cyclic, generated
by the Frobenius automorphism defined by σFrob : α 7→ αNp, for α ∈ FP.
It is clear that IP is a normal subgroup of DP. And the order of IP is
DP/Gal(FP/Fp) = ep.

(3,) Obviously, we have

IP = {σ ∈ DP : σ = 1}
= {σ ∈ DP : σ(α) = α, for any α ∈ FP}
= {σ ∈ DP : σ(α) ≡ α(modP), for any α ∈ OK}.

Since the above theorem, we get the following exact sequence:

1→ IP → DP → Gal(FP/Fp)→ 1.

Let KD, KI be fixed fields of the subgroup DP and IP respectively. Let
PD = P ∩ OKD ,PI = P ∩ OKI and FPD = OKD/PD,FPI = OKI/PI .
Clearly, K/KI , K/KD and KI/KD are Galois extensions with Galois groups
IP, DP and DP/IP by Galois theory.

P {1}

��

K OK FP

PI

OO

IP

��

KI

e

OO

OI

OO

FPI

OO

PD

OO

DP

��

KD

f

OO

OD

OO

FPD

OO

p

OO

G k

g

OO

ok

OO

Fp

OO

Theorem 1.51. (1), (i), e(P/PI) = e, f(P/PI) = 1, g(P/PI) = 1, that
is, PI is ramified completely in K.

(ii), e(PI/PD) = 1, f(PI/PD) = f, g(PI/PD) = 1, that is, PD is
unramified and inertia in KI .

(2), For any σ ∈ G, we have DσP = σDPσ
−1, IσP = σIPσ

−1, KDσP =
σKDP

, and KIσP = σKIP .

Proof. (1,) We first have g(P/PD) = 1. For the Galois extension K/KI

with Galois groups IP, the decomposition group and inertia group of P
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lying above PI are both IP. Thus f(P/PI) = 1, and then e(P/PI) = e.
On the other hand, we have

e(P/PD) = e(P/PI)e(PI/PD) = e

f(P/PD) = f(P/PI)f(PI/PD) = f.

Therefore, e(PI/PD) = 1, f(PI/PD) = f .
(2,) Since

τ ∈ DP ⇔ τP = P⇔ στσ−1(σP) = σP⇔ στσ−1 ∈ DσP

we get DσP = σDPσ
−1. It is similar to that IσP = σIPσ

−1.
On the other hand,

α ∈ KDP
⇔ τα = α, for all τ ∈ DP

⇔ στσ−1(σα) = σα for all στσ−1 ∈ DσP

⇔ σα ∈ KDσP

Thus, KDσP = σKDP
. By a similar argument, we have KIσP = σKIP .

1.5.3 The Frobenius automorphism

Let p be a prime ideal of ok that is unramified in OK , i.e., ep = 1, and let P
be a prime ideal lying above p. By Proposition (1.50), then the inertia group
IP is trivial. So DP

∼= Gal(FP/Fp). There is a unique element σP of DP

that the correspondence to σFrob is called the Frobenius automorphism and
is denoted by [K/k

P
]. The Frobenius automorphism is uniquely determined

as an element of G by

σα ≡ αNp modP, (1.15)

for all α ∈ OK . And it obviously has the property[
K/k

σP

]
= σ

[
K/k

P

]
σ−1

for every σ ∈ G; thus it is defined up to conjugacy by p.
It is natural to ask how all these objects behave under change of fields.

We have the following theorem:

Theorem 1.52. Let L be an intermediate field between k and K. Let p be
an unramified prime ideal of ok in OK and P be prime divisor of p in K.
Let H = Gal(K/L) and PL = P ∩OL.

(1), e(P/PL) = 1 and
[
K/L
σP

]
=
[
K/k
P

]f(PL/p)

.

(2), If L/k is Galois, then e(PL/p) = 1 and
[
L/k
PL

]
=
[
K/k
P

] ∣∣∣
L

.

45



Proof. (1), By e(P/p) = e(P/PL)e(PL/p) = 1, it gives e(P/PL) = 1. It is
also clear that

N(PL) = |OL/PL| = |ok/p|f(PL/p) = N(p)f(PL/p).

Therefore, by (1.15), for any α ∈ OK ,[
K/k

P

]f(PL/p)

α ≡ α(Np)f(PL/p)modP

≡ αNPLmodP,

and then we have
[
K/k
P

]f(PL/p)

=
[
K/L
P

]
.

(2), Similarly, we have e(PL/p) = 1. According to, for any α ∈ OK ,[
K/k

P

]
α ≡ αNp(modP),

it gives, for any α ∈ OL,[
K/k

P

]
α ≡ αNp(modPL),

and thus
[
K/k
P

] ∣∣∣
L

=
[
L/k
PL

]
.

1.5.4 The Artin map

If p is ramified, we can also define the Frobenius automorphism, the Frobe-
nius conjugate class , by the set of all elements of G which satisfies (1.15).
This identifies the Frobenius automorphism as a left coset of IP in DP. In
particular, if G is abelian then the Frobenius automorphism depends only
on p; in this case it is called the Artin symbol and is denoted by

σp =

(
K/k

p

)
.

In this way, we obtain a correspondence between prime ideals of k that
are unramified in K and elements of the abelian Galois group G. By mul-
tiplication we can now extend the Artin symbol for any fractional ideal a
of k which involves unramified prime ideal. Indeed, let Jk be the fractional
ideal groups of k and let S be a finite set of primes of ok including all the
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primes that ramify in K. Denote JSk by the subgroup of Jk generated by all
the nonzero prime ideals outside S. An element a of JSk has the form

a =
∏
p/∈S

pordp(a).

Now we define the Artin map as the function

ϕ : JSk −→ Gal(K/k)

a 7−→
(
K/k

a

)
=
∏
p/∈S

(
K/k

p

)ordp(a)

.

The product is well defined because Gal(K/k) is abelian and only a finite
number of exponents ordp(a) are nonzero for any given fractional ideal a.
The Artin symbol plays a central role in class field theory. One of the
major goals is to determine the image and kernel of ϕ. We will see that ϕ
is surjective.

And after the first year [as an undergraduate at Gottingen] I went home with
Hilbert’s Zahlbericht under my arm, and during the summer vacation I worked
my way through it without any previous knowledge of elementary number
theory or Galois theory. These were the happiest months of my life, whose
shine, across years burdened with our common share of doubt and failure, still
comforts my soul.

H. Weyl (1885-1955), Bull. of AMS, 50(1944), 612-654.
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Exercises

You are encouraged to collaborate on solving the problems given as home-
work. However, the solutions should be written on your own and in your
own words. Please send me your homework to my email before the next
week’s class.

1, Let α, β be algebraic numbers such that β is conjugate to α. Show
that α and β have the same minimal polynomial.

2, Let α be an algebraic number and let p(x) be its minimal polynomial.
Show that p(x) has no repeated roots.

3, Let f(x) ∈ Z[x] and g(x) ∈ Q[x] be monic polynomials. If g(x)|f(x).
Show that g(x) ∈ Z[x]. i.e., the minimal polynomial of any algebraic integer
has coefficients in Z.

4, Determine the ring of integers ok of the quadratic field k = Q[
√
d],

where d is square-free integer. And compute the discriminant dk.
5, dK/k(a1, · · · , an) 6= 0⇔ a1, · · · , an are k-linear independence.
6, (Dedekind)
(1), Show that f(x) = x3 + x2 − 2x+ 8 is irreducible in Q[x].
(2), Find the discriminant of f(x).
(3), Let θ be a root of f(x) and k = Q(θ). Compute dk/Q(θ).
(4), Show that 4/θ, 1

2
(θ2 + θ) ∈ ok.

(5), {1, θ, 4/θ} is an integral basis of k and find the discriminant of
k = Q(θ).

(6), For any α ∈ ok, {1, α, α2} is not an integral basis.
(7), The prime 2 splits completely in k.
7,
8, Let a ⊂ ok be an ideal. Let the generalized Euler function φ(a) be

the number of prime residue classes modulo a, that is, the residue classes
α ∈ ok/a such that gcd(α, a) = ok. Then

(1), for all α ∈ ok prime to awe have

αφ(a) ≡ 1 (mod a).

(2), for any prime ideal p and for any α ∈ ok

αφ(a) ≡ α(mod p).

(3),

φ(a) = N(a)
∏
p|a

(
1− 1

Np

)
.
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9, Compute the principal ideal (6) as the product of the prime ideals in
the ring of integers okwhere k = Q(

√
−5).

10, Show that every nonzero prime ideal in ok contains exactly one
integer prime.

11, Let a be an integral ideal of ok. Then (1) Norm(a) ∈ a. (2) If
Norm(a) is a prime number; then a is a prime ideal. Conversely, true or
false?

12, Find a prime ideal factorization of (2), (5) in Z[i].
13, Suppose that a is an ideal of an integral domain R, then there exists

an ideal b such that ab is a principal ideal.
14, Let R be a Dedekind domain with finitely many prime ideals. Then

R is a principal ideal domain.
15, Let a = 1 + i, b = 3 + 2i, and c = 3 + 4i as elements of Z[i].
(1) Prove that the ideals a = (a), b = (b), and c = (c) are coprime in

pairs.
(2) Compute the number of the quotient ring Z[i]/(abc).
(3) Find a single element in Z[i] that is congruent to 1 modulo a, 2

modulo b, and 3 modulo c.
16, Compute the class group and the class number of the following

quadratic fields:

Q(
√

3), Q(
√

5), Q(
√
−3), Q(

√
−5).

17, Show that Q(
√
−23) has class number 3.

18, Compute the group Wk of roots of unity for quadratic fields k =
Q(
√
d) where d is a square-free integer.

19, Find a unit in Q( 3
√

6) and show that this field has class number
h = 1.

20, Compute the fundamental unit of the real quadratic field Q(
√

3).
21, There exist only finitely many number fields with bounded discrim-

inant.
22, Statement and show that the ration prime p decomposes in quadratic

fields Q(
√
d).

23, Let K/k be an extension of algebraic number fields. Then, for
0 6= α ∈ K,

NK/k(αOK) = NK/k(α)ok.

24, Let K be a finite Galois extension of Qwith Galois group G. For
each prime ideal P of OK , let IP be the inertia group. Show that the groups
IP generate G.

25, (1), Find the Galois group Gal(K/Q) where K = Q(
√
−1,
√

5).
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(2), Find the decomposition fields, inertia fields, decomposition groups
and inertia groups of (2), (5) for K = Q(

√
−1,
√

5) over Q.
26, Suppose that the extension K/Q is normal and has a Galois group

which is simple but not cyclic. Show that there is no rational prime p such
that (p) remains prime in K.

27, Let ζn = 1 and assume that

α =

∑m
i=1 ζ

ni

m

is an algebraic integer. Show that either α = ζni for each i or α = 0.
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Chapter 2

Valuation Theory

There are two obvious ways of approaching algebraic number theory, one
by means of ideals and the other by means of valuations. Each has its
advantages, and it is desirable to be familiar with both. In this section we
represent the valuation theory approach.

2.1 Valuations and Completions

2.1.1 Basic concepts

Definition 2.1. For any field k, an absolute value(valuation) of k is a
mapping

| · | : k −→ R
α 7−→ |α|

which satisfies the following conditions, for any α, β ∈ k,
(1), |α| ≥ 0 and |α| = 0⇔ α = 0.
(2), |αβ| = |α||β|.
(3), |α + β|a ≤ |α|a + |β|a, for some a > 0

Clearly, we have |1k| = | − 1k| = 1 and |α| = | − α|. Two valuations
| · |1 and | · |2 of k are called equivalent if |α|2 = |α|c1 form some fixed c > 0
and for all α ∈ k. An equivalent class of valuations is called a place of k, or
prime divisor of k. A valuation of k induces a metric

d(α, β) = |α− β|a

under which k becomes a topological field, that is, k is Hausdorff topolog-
ical space in which the field operations, i.e., addition, multiplication and
inversion operations, are continuous.
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Lemma 2.2. Let | · |1 and | · |2 be valuations on a field k. The following
statements are equivalent:

(1), the valuations | · |1 and | · |2 are equivalent;
(2), the valuations | · |1 and | · |2 induce the same topology;
(3), for any α ∈ k, we have |α|1 < 1 if and only if |α|2 < 1.

Proof. (1)⇒ (2) : If we assume (1), we get that, for any α ∈ k,

|x− α|2 < r ⇔ |x− α|1 < r1/c.

So that any open ball with respect to | · |1 is also open ball with respect to
| · |2. This is enough to show that | · |1 and | · |2 induce the same topology.

(2)⇒ (3) : If | · |1 and | · |2 induce the same topology, then any sequence
that converges with respect to one valuation must be also converges in the
other. For given any α ∈ k, we have that

|α|1 < 1⇔ |αn|1 → 0⇔ |αn|2 → 0⇔ |α|2 < 1.

This gives (3).
(3) ⇒ (1) : Since | · |1 is not trivial, we can assume that there exists

0 6= x0 ∈ k such that |x0|1 < 1. Define c > 0, such that |x0|2 = |x0|c1. For
any 0 6= x ∈ k, we can assume that |x|1 < 1 (otherwise just replace x by
1/x). We now say |x|1 = |x0|λ1 . If m

n
> λ, with m,n ∈ N and n > 0, then∣∣∣∣xm0xn

∣∣∣∣
1

=
|x0|m1
|x0|λn1

= |x0|
m
λn
1 < 1.

Thus |xm0 /xn|2 < 1, so

|x|2 > |x0|m/n2 .

Similarly, if m
n
< λ, with m,n ∈ N and n > 0, we get that

|x|2 < |x0|m/n2 .

Therefore, we get
|x|2 = |x0|λ2 = |x0|cλ1 = |x|c1,

for all x ∈ k.

By the above lemma, every valuation is equivalent to a valuation for
which a = 1 in the definition. For our purposes we can always replace a
given valuation by an equivalent one. Therefore, we will henceforth assume
that all valuations satisfied the usual triangle inequality

|α + β| ≤ |α|+ |β|. (2.1)
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Note that not all valuations satisfy the usual triangle inequality (2.1). A
valuation on a field k is called archimedean if |m1k| > 1 for some m ∈ Z,
and nonarchimedean otherwise. For nonarchimedean valuations we can
radically improve the triangle inequality.

Examples 2.3. (1), (Trivial valuation) |0| = 0, |x| = 1 for any x 6= 0
is called the trivial valuation of k. Henceforth we shall assume that all
valuation are nontrivial. Any valuation over a finite field is trivial.

(2), (Infinite valuation) Let | · |∞ be the usually absolute value over
the field k = Q, R or C. Then (k, | · |∞) is an archimedean valuation.

(3), (p-adic valuation) Let k be a number field and p be any prime
ideal of ok. For any α ∈ k,

(α) = pordp(α)a, (a, p) = 1.

Here (a, p) = 1 means a = b/c ∈ Jk, where b, c ⊂ ok, (bc, p) = 1. Let c > 1
be a fixed real number. Then we define

|α|p = c−ordp(α).

(k, | · |p) is a nonarchimedean valuation of k. In particular, we can take
c = Np which is called the normalized p-adic valuation.

Lemma 2.4. Let | · | be a valuation which satisfies the triangle inequality
over any field k. The following statements are equivalent:

(1), the valuation | · | is nonarchimedean;
(2), the set {|n1k| : n ∈ Z} is bounded.
(3), for any α, β ∈ k,

|α + β| ≤ max{|α|, |β|}. (2.2)

Proof. (1)⇒ (2) : If | · | is nonarchimedean, then we have |n1k| ≤ 1 for any
n ∈ N. Clearly, the set {|n1k| : n ∈ Z} is bounded.

(2) ⇒ (3) : Suppose that there exists M > 0, such that |n1k| ≤ M , for
all n ∈ Z. Then

|(α + β)n| =

∣∣∣∣∣
n∑
i=0

Ci
nα

n−iβi

∣∣∣∣∣
≤ M(n+ 1)(max{|α|, |β|})n

Taking n-th root, we have

|α + β| ≤ n
√
M(n+ 1) max{|α|, |β|}.

We get the result by let n→∞.
(3) ⇒ (1) : For every n ∈ Z, then |n1k| = |1k + · · · + 1k| ≤ |1k| = 1.

Thus | · | is a nonzrchimedean valuation.
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A metric having the property (2.2) is called an ultrametric. In particular,
if |α| 6= |β|, then we immediately obtain from an ultrametric

|α + β| = max{|α|, |β|}. (2.3)

Let | · |v be a nonarchimedean valuation on any field k. Let

o(v) = {α ∈ k : |α|v ≤ 1},
p(v) = {α ∈ k : |α|v < 1},
U(v) = {α ∈ k : |α|v = 1}.

Proposition 2.5. Let | · |v be a nonarchimedean valuation on any field k.
o(v) is a local ring with maximal ideal p(v) and quotient field k. The U(v) is
the group of units of the domain o(v).

Proof. Since |·|v is a non-archimedean on k, 1k ∈ o(v) and for any α, β ∈ o(v),
it follows that

|α + β| ≤ max{|α|, |β|} ≤ 1 and |αβ| = |α||β| ≤ 1,

so that α ± β, αβ ∈ o(v). It is easily seen that o(v) has no zero divisors.
Therefore o(v) is a domain. For any nonzero element α ∈ k, either α ∈ o(v)

or α−1 ∈ o(v), then k is the quotient field of o(v).
We need to prove that p(v) is a maximal ideal of o(v). It is easily seen

that p(v) is an ideal of o(v). Let m be an ideal of o(v), which satisfies to

p(v) ( m ⊆ o(v).

For every α ∈ m but not in p(v), we know |α| = 1 and |α−1| = 1, then
1 = αα−1 ∈ m. So m = o(v), that is, p(v) is a maximal ideal. Let a be any
proper ideal of o(v). In the similar way, we can get a ⊆ p(v). So o(v) is a
local ring with maximal ideal p(v).

Finally, for any α ∈ U(v), then |α−1| = |α| = 1, so α is a unit of o(v).
Obviously, U(v) is the group of units of the domain o(v).

The o(p) is called the valuation ring of p. The field o(v)/p(v) is called the
residue class field of | · |v.

2.1.2 Valuations on number fields

We find all valuations over an algebraic number field k as follows.

Proposition 2.6. If k be an algebraic number field, the archimedean valu-
ations on k are given by |α| = |σα|c∞ where c > 0 and σ is any embedding
k ↪→ C.
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Proof. We will prove the following statements in turn.
• For any n ∈ N and n > 1, then |n| > 1.
If not, then there exists some n0 ∈ N such that n0 > 1 but |n0| ≤ 1. For

any n,N ∈ N with n > 1, write nN in the scale of n0:

nN = a0 + a1n0 + · · ·+ arn
r
0

where 0 ≤ ai < n0 for i = 0, 1, . . . , r and 0 ≤ r ≤ N logn0
n. Let A be the

upper bound for |a| where 0 ≤ a < n0, then

|n|N ≤ |a0|+ |a1||n0|+ · · ·+ |ar||n0|r

≤ A(1 + r) ≤ A(1 +N logn0
n);

taking N -th roots and letting N → ∞ would give |n| ≤ 1 for all n > 1,
which is a contradiction with | · | being archimedean. Thus |n| > 1 for any
n ∈ N, n > 1.
• For every m ∈ Z there exists a fixed c > 0, such that |m| = |m|c∞.
For any m1,m2 ∈ N with m1,m2 > 1, the same argument shows that

|m1|N ≤ B
(
1 +N logm2

m1

)
|m1|N logm2

m1 ,

where B is the upper bound for |a| where 0 ≤ a < m2, taking N -th roots
and letting N →∞ would give

|m1| ≤ |m2|logm1
m2 ,

i.e.,

|m1|
1

logm1 ≤ |m2|
1

logm2 .

Since m1 and m2 can be arbitrary, it follows that |m|
1

logm is a constant,
saying ec. Then |m| = mc for m ∈ N, m > 1. It follows immediately that
|m| = |m|c∞ for any m ∈ Z. Furthermore, we also get that |m| = |m|c∞ for
any m ∈ Q.

We return to the proof of the theorem. It is clearly enough to prove the
result when α is in ok. Now let α be a nonzero element of ok, and order the
σi so that

|σ1α|∞ ≥ |σ2α|∞ ≥ · · · ≥ |σnα|∞.

This ordering depends only on α. Let c have the value obtained above. For
any N ≥ 1, write

f(x) =
n∏
i=1

(x− σiαN) = xn + a1x
n−1 + · · ·+ an ∈ Z[X],
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and

Pm =
m∏
i=1

σiα
N .

The am are symmetric functions of the σiα
N and the largest summand in

am is ±Pm; so |am|∞ < M |Pm|∞ where M depends only on n. Moreover,
if |σmα|∞ > |σm+1α|∞ then once N is large enough this summand is much
larger than any other in am by

|am|∞
|Pm|∞

− 1 =
|
∑

1≤j1<···<jm≤n
∏m

i=1 σjiα
N |∞

|Pm|∞
− 1

≤

∣∣∣∣∣
∑

ji 6=i
∏m

i=1 σjiα
N

Pm

∣∣∣∣∣
∞

≤
∑
ji 6=i

for some i

m∏
i=1

∣∣∣∣σjiασiα

∣∣∣∣N
∞
→ 0, as N →∞,

which implies |am|∞ > 1
2
|Pm|∞. Also |am| = |am|c∞ because the am ∈ Z,

and hence

1

2c
<
|am|
|Pm|c∞

< M c,

where the first inequality only holds if |σmα|∞ > |σm+1α|∞ and the second
inequality holds for any m.

As follows, we shall show that

|σµα|c∞ > |α| > |σµ+1α|c∞, for any µ,

|α| > |σ1α|c∞ and σnα|c∞ > |α|

all do not hold. It follows immediately that |α| = |σα|c∞ for some embedding
σ, which completes the proof.

We need only consider the case of

|σµα|c∞ > |α| > |σµ+1α|c∞,

for some µ. For two cases |α| > |σ1α|c∞ or |α| < |σnα|c∞, the similar argu-
ment would give the same contradiction. From f(αN) = 0, we have that∣∣aµαN(n−µ)

∣∣ =
∣∣αNn + · · ·+ aµ−1α

N(n−µ+1) + aµ+1α
N(n−µ−1) + · · ·+ an

∣∣ .
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Using the triangle inequality of the valuation, we obtain (set a0 = 1),

|aµ|
|Pµ|c∞

=
∣∣α−N(n−µ)

∣∣ ∣∣∣∣∣
µ−1∑
i=0

aiα
N(n−i) +

n∑
i=µ+1

aiα
N(n−i)

∣∣∣∣∣ / |Pµ|c∞
=

∣∣∣∣∣
µ−1∑
i=0

aiα
N(µ−i) +

n−µ∑
j=1

aµ+jα
−Nj

∣∣∣∣∣ / |Pµ|c∞
≤

µ−1∑
i=0

|ai||α|N(µ−i)

|Pµ|c∞
+

n−µ∑
j=1

|aµ+j||α|−Nj

|Pµ|c∞

<

µ−1∑
i=0

M c|Pi|c∞|α|N(µ−i)

|Pµ|c∞
+

n−µ∑
j=1

M c|Pµ+j|c∞
|Pµ|c∞|α|Nj

= M c

(
µ−1∑
i=0

|αN |µ−i

|
∏µ

ν=i+1 σνα
N |c∞

+

n−µ∑
j=1

|
∏µ+j

ν=µ σνα
N |c∞

|αN |j

)

= M c


µ−1∑
i=0

(
µ∏

ν=i+1

|α|
|σνα|c∞

)N

+

n−µ∑
j=1

(
µ+j∏

ν=µ+1

|σνα|c∞
|α|

)N


Because |σµα|c∞ > |α| > |σµ+1α|c∞ , we have

µ∏
ν=i+1

|α|
|σνα|c∞

< 1 and

µ+j∏
ν=µ+1

|σνα|c∞
|α|

< 1.

Letting N →∞, we obtain the last term of the above inequality tends to the
zero which also implies |aµ|/|Pµ|c∞ tends to zero. This contradicts the fact
that |aµ|/|Pµ|c∞ > 1/2c. The proof of the theorem is now completed.

By the above proposition, there is a bijection between the archimedean
places and embeddings k into C up to conjugation. In our case there are
r1 + r2 classes the archimedean places. The archimedean places p or v are
often called the infinite places or the infinite primes, say p|∞ or v|∞. We
say that | · |σ is a real place if it corresponds to a real embedding σ. And
| · |σ is called a complex place if it corresponds to a pair of complex conjugate
embeddings σ = σ̄.

Proposition 2.7. Let | · | be a nonarchimedean valuation of a number field
k. Then there exists a prime ideal p of ok and a constant c > 1 such that

|α| = c−ordp(α),

for every nonzero element α ∈ k.
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Proof. The proof will be divided into three steps.
• For any α ∈ ok, we have |α| ≤ 1.
Clearly, we have |n| ≤ 1 for any n ∈ Z. Any α 6= 0 in ok satisfies an

equation
αm + a1α

m−1 + · · ·+ am = 0

where ai ∈ Z for all i. By the inequality (2.2), we obtain

|α|m = |a1α
m−1 + · · ·+ am|

≤ max{|a1α
m−1|, . . . , |am|}

≤ max{|α|m−1, . . . , 1}.

However if |α| > 1, then |α|m > max{|α|m−1, . . . , 1}. It is a contradiction,
so |α| ≤ 1 for all α in ok.
• The set p = {α ∈ ok : |α| < 1} is a prime ideal of ok.
If |α| = 1 for all α 6= 0 in ok then our valuation would be trivial; so there

exists some 0 6= α ∈ ok with |α| < 1. Then using the inequality (2.2) again,
p is a ideal of ok because α, β ∈ p, γ ∈ ok implies α± β, αβ, αγ ∈ p, and p
is prime because |α1α2| < 1 implies |α1| < 1 or |α2| < 1.
• There exists c > 1 such that |α| = c−ordp(α) for any nonzero α ∈ k.
We now choose π ∈ p\p2, that is, ordp(π) = 1. For any nonzero α ∈ k,

denote m = ordp(α), then

ordp(α/π
m) = ordp(α)− ordp(π

m) = 0.

And hence (p, (α/πm)) = 1, which means( α

πm

)
=

a1

a2

, where a1, a2 ⊆ ok, (p, a1a2) = 1.

According to the Chinese remainder theorem, there exists a β2 ∈ ok such
that {

β2 ≡ 0 (mod a2)
β2 ≡ 1 (mod p)

,

i.e. we can find β2 in a2 and prime to p. Write β1 = β2α/π
m, so that β1 ∈ a1.

Neither β1 nor β2 is in p, so they both have valuation 1; thus |α| = |π|m.
Let c = 1/|π| > 1, then |α| = c−ordp(α) for any nonzero α ∈ k.

Conversely, any p and c determine a nonarchimedean valuation; and
changing c only change the valuation within its places. Let p and q be two
distinct prime ideals of a number field k. Then the p-adic valuations | · |p
and | · |q are inequivalent, see exercise. Simply, for distinct prime numbers
p and q, we have |p|p < 1 but |q|p = 1, it follows that the p-adic valuations
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| · |p and | · |q are not equivalent. This place v can be identified with p and
will be called a finite place, or finite prime, say p <∞ or v <∞. In short,
there is bijection between all places of k and r1 +r2 archimedean places and
all prime ideals of k.

2.1.3 Product formula

Let v or p be any place of an algebraic number field k including infinite
places. There exists a canonical choice of valuations which is called the
normalized valuations :

(1), v is a real place which corresponds to a real embedding σ:

|α|v = |σα|R = |σα|∞;

(2), v is a complex place which corresponds to a pair of complex embed-
dings σ = σ̄:

|α|v = |σα|C = |σα|2∞;

(3), v is a finite place which corresponds to a prime ideal p of ok:

|α|v = |α|p = N(p)−ordp(α).

Theorem 2.8. For any nonzero α ∈ k, we have |α|v = 1 for almost all
places v, i.e., for all but finitely many v and∏

v

|α|v = 1

where the product runs over all normalized valuations | · |v of k.

Proof. For all nonzero α ∈ k, we have

(α) = pe11 · · · pegg , (2.4)

where ei = ordpi(α) ∈ Z× and S = {p1, . . . , pg} are distinct prime ideals of
k. Clearly, |α|p = 1 for any p /∈ S. We now compute N((α)) in two ways, one
which will make appear the finite places, and the other the infinite places.
Now take norms of the equation (2.4) to obtain

N((α)) = Np1
e1 · · ·Npg

eg =
∏
p∈S

|α|−1
p =

∏
v<∞

|α|−1
v .

And

N((α)) = |N(α)|∞ =
n∏
i=1

|σiα|∞ =
∏
v|∞

|α|v.
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Therefore, ∏
v

|α|v =
∏
v|∞

|α|v
∏
v<∞

|α|v = 1.

2.1.4 Completions

Let | · |v be any valuation over a field k. Then the valuation induces a metric

d(α, β) = |α− β|v,

such that (k, | · |v) is a metric space. A sequence {αn} of elements of k is
called a Cauchy sequence if for any ε > 0 there exists a positive integer N
such that for any n,m ≥ N , we have |αn − αm|v < ε. The sequence {αn}
converges to an element α of k if for any ε > 0 there exists a positive integer
N such that for any n ≥ N , we have |αn − α|v < ε. A completion of the
field k with respect to the valuation | · |v is a completion of k as a metric
space, that is, any Cauchy sequence is convergent in the completion of k.

More specifically, let R denote the set of all Cauchy sequences with
respect to | · |v and let P denote the set of all null Cauchy sequences, i.e.,
the set of all Cauchy sequences convergent to 0.

Lemma 2.9. P is a maximal ideal of the ring R.

Proof. It is clear that P is closed under addition. Let x = (xn) ∈ P, y =
(yn) ∈ R. Then |yn|v is a bounded sequence, so that |xnyn|v → 0(n→∞).
Thus, xy ∈ P. Thus P is an ideal of R. Let x = (xn) ∈ R \P. By
adding an element of P to x, we can find a sequence y = (yn) ∈ R −P,
such that yn are nonzero for all n. Then y−1 = (y−1

n ) ∈ R, for |yn|v ≥ c > 0
for some c since y /∈ P. Then we deduce that y−1 is a Cauchy sequence,
since

|y−1
n − y−1

m |v ≤ c−2|yn − ym|v → 0,

as m,n → ∞. Then y−1y is contained in the ideal generated by x and P.
Thus, (x,P) = R, and P is maximal.

There is a natural injective map ρ from k to R/P sending an element
to the constant Cauchy sequence. We now extend the valuation on k to
R/P by, still denote by | · |v,

|α|v = |(αn)|v = lim
n→∞

|αn|v
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for any α = (αn)∞n=1 ∈ R/P. This limit exists because
∣∣|α|v − |β|v∣∣∞ ≤

|α−β|v implies that {|αn|v} is a Cauchy sequence of real numbers. Obviously
this limit does not depend on the choice of the representative (αn) of α. We
have the following fundamental facts:

(1), The valuation | · |v of k is also a valuation on the field R/P;
(2), The field R/P is complete with respect to the valuation | · |v;
(3), ρ(k) is dense in R/P; furthermore,
(4), R/P is unique up to a unique isomorphism fixing k.

The detailed proof is left as an exercise to the reader. Define kv to be
the completion of k with respect to the metric defined by | · |v. Then

kv = R/P.

We shall denote the natural embedding of k into kv by ρv. Whenever confu-
sion will not arise, we shall identify k with ρv(k) and consider k as a subfield
of kv, that is, we shall identify α and (α) for any α ∈ k.

Proposition 2.10. The valuation | · | is nonarchimedean on kv if and only
if it is so on k. If | · | is nonarchimedean, then the set of values taken by | · |
on k and kv are the same.

Proof. The first part follows from Lemma (2.4) which asserts that a valua-
tion is non-archimedean if and only if |n1k| < 1 for all integers n. Since the
valuation on kv extends the valuation on k, the first statement follows.

For the second, we only need to find β ∈ k such that |β| = |α| for any
α ∈ kv. Since k is dense in kv, there exists β ∈ k such that

|β − α| < |α|.

According to the formula (2.3), we have |β| = max{|α|, |β−α|} = |α|, which
completes the second part of the theorem.
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2.2 Local Fields

A global field k is an algebraic number field, or a finite extension of Fp(t),
i.e., the field of rational functions in one variable over the finite field. The
completions kv of a global field k at any place v are called local fields.
Obviously, if v is a real place, then kv = R; if v is a complex place, then
kv = C. In what follows, We will mainly consider local fields of an algebraic
number field at a finite place.

2.2.1 The structure of local fields: p-number fields

Let vp be a fixed finite place associated to a prime ideal p of ok with the nor-
malized valuation. The completion kp of k with respect to a nonarchimedean
valuation vp is called p-adic number field. Set

op = {α ∈ kp : |α|p ≤ 1},
pp = {α ∈ kp : |α|p < 1},
Up = {α ∈ kp : |α|p = 1}.

The op is called the ring of p-adic integers. The field op/pp is also called the
residue class field of p. The group Up is called the p-adic units group of the
domain op.

Proposition 2.11. (1), Then op is a local ring with maximal ideal pp and
quotient field kp.

(2),

op/pp ∼= ok/p ∼= o(p)/p(p). (2.5)

Proof. (1), The proof is similar to Proposition (2.5). Left as an exercise for
the reader.

(2) We could define a mapping

ϕ : op −→ ok/p,

as for any Cauchy sequence (an) in op, via

ϕ((an)) = aN(mod p),

where N ∈ N such that when n,m ≥ N, an ≡ am(mod p). Obviously it is
surjective because constant sequences are all in op. Its kernel is the set of
Cauchy sequences whose elements are eventually all in p, which is exactly
pp. This completes the first part of the proof. A slight change the the proof
actually shows that the second isomorphism, which proves the theorem.
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Example 2.12. For the rational number field Q, we obtain

Z(p)/pZ(p)
∼= Zp/pZp ∼= Z/pZ.

Let π be in p but not in p2 and $p be the image of π in kp. Then
ordp(π) = 1 and |$p|p = |π|p = (Np)−1 and pp = $pop = ($p). The element
$p is called the uniformizer, or the prime element of p. Every nonzero
element α ∈ kp can be written uniquely in the form

α = u$m
p , m ∈ Z, u ∈ Up. (2.6)

The integer m is independent of the choice of $p. We may define ordp(α) =
m and ordp(0) =∞. By the Proposition (2.10), we have the surjective map
ordp

ordp : kp −→ Z ∪ {∞}
α 7−→ ordp(α).

The map ordp is said to be additive valuation satisfies

ordp(αβ) = ordp(α) + ordp(β),

ordp(α + β) ≥ min{ordp(α), ordp(β)},

and specifically, if ordp(α) 6= ordp(β),

ordp(α + β) = min{ordp(α), ordp(β)}.

Then we have

op = {α ∈ kp : |α|p ≤ 1} = {α ∈ kp : ordp(α) ≥ 0},
pp = {α ∈ kp : |α|p < 1} = {α ∈ kp : ordp(α) > 0},
Up = {α ∈ kp : |α|p = 1} = {α ∈ kp : ordp(α) = 0}.

Since (2.6), it is also straightforward to show that

k×p = Up × 〈$p〉.

Actually, we have the following disjoint unions

k×p =
⋃
m∈Z

$m
p Up, op =

∞⋃
m=0

$m
p Up, pp =

∞⋃
m=1

$m
p Up.

Proposition 2.13. (1), Every ideal of op is of the form pmp (m ≥ 1). More-
over, pmp = ($m), so that op is a principal ideal domain.

(2), op and pp are the closure of ok and p, respectively.
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Proof. (1) For any ideal a of op, let

r = min{ordp(x) : 0 6= x ∈ a}.

Then there exist α ∈ a such that ordp(α) = r. From $r/α ∈ Up, we obtain
$r ∈ a, and hence ($r) ⊂ a.

Furthermore, for any β ∈ a, we conclude from ordp(β/$
r) ≥ 0 that

β/$r ∈ op, hence that β ∈ ($r), and finally that a ⊂ ($r), which proves
a = ($r) = prp.

(2) We may view op as the set of equivalent classes of Cauchy sequences
(αn) in k such that αn ∈ ok for n sufficiently large. Clearly, we have that
ok ⊂ op. For any α = (αn) ∈ op and any 0 < ε < 1, there exist a positive
integer N such that |αn−αm| < ε for n,m ≥ N . Take the constant sequence
β = (β) ∈ ok with β = xM ∈ ok and M > N . Then

|α− β|p = lim
n→∞

|αn − αN | ≤ ε.

It immediately follows that op is the closure of ok. We conclude similarly
that pp is the closure of p.

Remarks 2.14. By the above the Proposition, for any α ∈ op, there exist
β ∈ ok such that |α − β|p < 1, i.e., α − β ∈ pp. Hence op = ok + pp. It is
clear that p = ok ∩ pp. According to the second isomorphism theorem, we
have

op/pp = (ok + pp)/pp ∼= ok/(ok ∩ pp) = ok/p.

We gave another proof of the isomorphism (2.5) of residue class fields.

Let A = {r0 = 0, r1, . . . , rq−1} be a complete system of representatives
of the residue class field op/pp where q = Np such that if ri 6= rj then
ri 6= rj(mod p) and for any α ∈ op, there exists an element ri ∈ A such that
α ≡ ri(mod p). The set $nA is a system of representatives for pnp/p

n+1
p .

Proposition 2.15. Every element α ∈ op can be written uniquely as

α =
∞∑
n=0

an$
n
p = a0 + a1$p + a2$

2
p + · · · (2.7)

with ai ∈ A . An element of α ∈ kp can be written as

α =
∞∑
n=r

an$
n
p = ar$

r
p + ar+1$

r+1
p + · · · (2.8)

form some r ∈ Z. Moveover, if ar 6= 0, then ordp(α) = r.
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Proof. Let α ∈ op. Let a0 ∈ A be the representative if the class α + pp in
op/pp. We set α1 = (α− a0)/$p. Clearly α1 ∈ op since |α1| ≤ 1, then we
could get a1 ∈ A such that a1 ≡ α1(modpp). Keep on this progress for k
times, we could get

α = a0 + a1$p + · · ·+ ak−1$
k−1
p + αk$

k
p

with a0, a1, . . . , ak−1 ∈ A and αk ∈ op. From the progress we could know
that the representation is unique. This completes the first part of the proof.

If α ∈ kp, let r = ordp(α) ∈ Z. Then |α$−rp |p = 1, it follows that
α$r

p ∈ Up ⊂ op. So we have

α$−rp =
∞∑
n=0

an$
n
p = a0 + a1$p + a2$

2
p + · · ·

with ai ∈ A and a0 6= 0. Then α ∈ kp can be written as

α =
∞∑
n=r

an−r$
n
p = a0$

r
p + a1$

r+1
p + · · · .

Examples 2.16. (1), Let p be a fixed prime number and Qp be the local
field with respect to the p-adic valuation. Then A = {0, 1, . . . , p − 1}. We
have the following p-adic expansions

−1 =
∞∑
n=0

(p− 1)pn = (p− 1) + (p− 1)p+ (p− 1)p2 + · · · ,

1

1− p
=

∞∑
n=0

pn = 1 + p+ p2 + · · · .

(2), By the series (2.8), write α = (ar, ar+1, . . . ). For Q3, we have

−5 = (1, 1, 2, 2, ...) = (1, 1, 2, ...)

1/5 = (2, 0, 1, 2, 1, 0, 1, 2, 1, ...) = (2, 0, 1, 2, 1, ...)√
7 = (1, 1, 1, 0, 2, ...).

Recall: Topological Groups (1), A topological group is a group G which is also a
topological space with the property that the multiplication map and the inversion map
are continuous with respect to the topology.

(2), A topological space is locally compact if every point has a neighborhood which
is itself contained in a compact set. A locally compact group is a topological group
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which is locally compact as a topological space. By homogeneity, local compactness for
a topological group need only be checked at the identity. That is, a group G is locally
compact if and only if the identity element has a compact neighborhood. Every closed
subgroup of a locally compact group is locally compact. Locally compact groups are
important because they have a natural measure called the Haar measure. This allows
one to define integrals of functions on G.

(3), A topological space is said to be disconnected if it is the union of two disjoint
nonempty open sets. Otherwise, it is said to be connected. The maximal connected
subsets (ordered by inclusion) of a nonempty topological space are called the connected
components of the space. A Hausdorff topological space is totally disconnected if the
connected components are the one-point sets. Equivalently, each point has a basis for its
neighborhoods which consists of sets that are both open and closed.

(4), A profinite group is a Hausdorff, compact, and totally disconnected topological
group. Equivalently, one can define a profinite group to be a topological group that is
isomorphic to the inverse limit of an inverse system of discrete finite groups.

For the proofs we refer the reader to [12] or [18].

Theorem 2.17. The p-adic integer ring op is the maximum compact open
subring of k with respect to the | · |p topology. In particular, kp is a locally
compact topological field.

Proof. Let {Uλ : λ ∈ Λ} be any open cover of op. We must show that there
is a finite subcover. We suppose not. Since

op =
⋃
a∈A

(a+$op),

there is an a0 ∈ A such that a0 + $op is not covered by finitely many of
the Uλ. Similarly, by

a0 +$op =
⋃
a∈A

(a0 + a$ +$2op),

there is an a1 ∈ A such that (a0 +a1$+$2op) is not finitely covered. And
so on, one has

α = a0 + a1$ + a2$
2 + · · · ∈ op.

Then α ∈ Uλ0 for some λ0 ∈ Λ. Since Uλ0 is open, there is a neighborhood

α +$Nop = a0 + a1$ + · · ·+ aN−1$
N−1 +$Nop

of α such that α + $Nop ⊂ Uλ0 . This is a contradiction because we con-
structed α so that none of the sets α+$nop, for each n, are not covered by
any finite subset of the Uλ.

It R is an arbitrary compact open subring of k, we have

α ∈ R⇒ αR ⊂ R⇒ |α|p ≤ 1⇒ α ∈ op,

whence R ⊂ op. Therefre op is the maximum compact open subring of k.
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I Additive structure
We extend the fractional ideal of the number field k to the local field

kp. A subset a of kp is called a fractional ideal if there exists α ∈ k×p such
that αa is an ideal of op. By Proposition (2.13), αa = ($n

p ) = pnp (n ≥ 0).
Suppose that α = $m

p u(m ∈ Z, u ∈ Up), then

a = α−1($n
p ) = ($n−m

p ) = pn−mp .

On the other hand, a = pmp (m ∈ Z) is a fractional ideal of kp, because there
is $−mp ∈ k×p such that $−ma = op. Therefore, all fractional ideals of kp are
{pnp : n ∈ Z}. We also have a chain of additive subgroups:

k ⊃ · · · ⊃ p−2
p ⊃ p−1

p ⊃ p0
p = op ⊃ pp ⊃ p2

p ⊃ · · · ⊃ {0}.

It is obvious that {pnp : n ≥ 1} is a fundamental system of neighborhoods
of the zero in kp with both open and closed sets pnp . In particular, kp is a
locally compact and totally disconnected topological field.

For any n,m ∈ Z, we have an isomorphism as additive groups from pnp
to pmp via α 7→ α$m−n

p . For r ∈ N,m ∈ Z, there is a surjective mapping

φ : op −→ pmp /p
m+r
p

α 7−→ α$m
p ,

which its kernel is prp. Then op/p
r
p
∼= pmp /p

m+r
p . In particular,

pmp /p
m+1
p
∼= op/pp ∼= ok/p = Fp.

I Multiplicative structure
For r ≥ 1, write

U
(r)
p = 1 + prp

= {α ∈ k×p : ordp(α− 1) ≥ r}
= {α ∈ k×p : |α− 1|p ≤ (Np)−r}.

It is easily seen that U
(r)
p is a multiplicative subgroup of k×p and is called

the r-th higher unit group. In particular, U (1) = 1+pp is called the group of
principal units and any element of it is called a principal unit. The higher
unit groups provide a decreasing filtration of the unit group:

k×p ⊃ Up ⊃ U
(1)
p ⊃ U

(2)
p ⊃ · · · ⊃ {1}.

67



We conclude similarly that {1 + prp : r ≥ 1} is a fundamental system of
neighborhoods of 1 in k×p . In particular, k×p is a locally compact and totally
disconnected topological field. Denote a mapping ψ by

Up −→ (op/pp)
×

α 7−→ αmod pp.

It is a surjective homomorphism of groups, which its kernel is U
(1)
p . Hence,

we actually have an exact sequence:

1→ U
(1)
p → Up → (op/pp)

× → 1.

Similarly, denote the mapping ϕ : U
(r)
p → op/pp via 1 + α$r 7→ αmod pp,

which induces the isomorphism U
(r)
p /U

(r+1)
p

∼= op/pp. Therefore, we have

[Up : U
(r)
p ] = [Up : U

(1)
p ] · · · [U (r−1)

p : U
(r)
p ] = (Np)r−1(Np− 1).

2.2.2 Hensel’s lemma

Lemma 2.18. (First Hensel’s Lemma) Let f(x) ∈ op[X] and let f(x) be
the reduction of f(x) modulo p its coefficients. Let f(x) = φ1(x)φ2(x) where
φ1, φ2 ∈ Fp[X] are coprime. Then there exist polynomials f1 and f2 in op[X]
such that

f(x) = f1(x)f2(x), and f 1 = φ1, f 2 = φ2.

Proof. We construct polynomials f
(n)
1 , f

(n)
2 in op[X] for n = 1, 2, . . ., whose

reductions modp are φ1, φ2 and which have the properties degf
(n)
1 = degφ1,

degf
(n)
2 ≤ degf − degφ1, and

pn|(f − f (n)
1 f

(n)
2 ) and pn|(f (n+1)

1 − f (n)
2 ) for ν = 1, 2.

Then fν = lim f (n) will exist and have the required properties.
For the f

(1)
ν , we lift φν to op in any way. To construct the f

(n+1)
ν from

the f
(n)
ν , we proceed as follows. By hypothesis

f = f
(n)
1 f

(n)
2 + πnh(n) for same h(n) in op[X] with degh(n) ≤ degf.

If we choose f
(n+1)
ν = f

(n)
ν + πngnν with gnν in op[X], then the second condi-

tion on the fourth line will certainly be satisfied, and the first one will be
equivalent to

h(n) ≡ f
(n)
1 g

(n)
2 + f

(n)
2 g

(n)
1 (mod p)
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therefore

h(n) = φ1g
(n)
2 + φ2g

(n)
1 .

Since φ1, φ2 are coprime and Fp[X] is a principal ideal domain, there are

polynomial ψ1, ψ2 in Fp[X] such that φ1ψ2 +φ2ψ1 = h(n) and degψ1 < degφ1

and we can take g
(n)
ν be any lifts of ψν .

Corollary 2.19. If α ∈ OP then α is integral over op; in particular TrKP/kpα
and NKP/kpα are in op.

Proof. Suppose that Pe||p and choose Π in P so that P||Π. Let B1, B2, . . . ,
Bn be a base for OP as an (o/p)-vector space. The representation on priv-
ious pages implies that the ΠµBν with 0 ≤ µ < e form a base for OP as
an op-module. Hence KP is algebraic over kp. In what follows, we use the
absolute value associated with P, which clearly induces an absolute value
on k associated with p. Let

f(X) = c0x
m + c1x

m−1 + · · ·+ cm (c0 = 1)

be the minimal monic polynomial for α over kp. We assume that the cµ are
not all in op and obtain a contradiction. Let b in op such that bcµ are all in
op but not all divisible by p. If bcm is the only one of the bcµ not in p, then
bcm would have strictly larger absolute value than any of the other terms in
f(α) = 0, contradicting the ultrametric law. In any other case, we use the
above lemma to lift the factorization bf(X) · 1 to a non-trivial factorization
of bf(X) over op, and f would not be minimal.

The problem of finding good approximations to the roots may sometimes
be handled on the basis of our the following result.

Lemma 2.20. (Newton’s method) Let f(x) ∈ op[X] be a monic polynomial
with formal derivative f ′(x). Assume that there exists α ∈ op such that
|f(α)|p < |f ′(α)|2p. Then there uniquely exists β ∈ op such that f(β) = 0
and

|β − α|p ≤
|f(α)|p
|f ′(α)|p

< |f ′(α)|p. (2.9)

Theorem 2.21. Every finite algebraic extension of kp lies in some KP

where K is a finite algebraic extension of the number field k and P is a
prime ideal of K above p.
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2.2.3 Weak approximation theorem

In the language of valuations we can restate the Chinese remainder theorem
as follows. Let p1, . . . , pm be distinct prime ideals in ok and α1, . . . , αm any
elements of ok. Then for any ε > 0 we can find α ∈ ok such that |α−αi|pi < ε
for each i.

In this subsection we shall observe the behavior of distinct places of a
field. For this purpose we shall first prove the following lemma.

Lemma 2.22. Let | · |1, . . . , | · |m be distinct places of k. There exists an
element α of k such that

|α|1 > 1, |α|2 < 1, . . . , |α|m < 1.

Proof. When m = 2, as | · |1 and | · |2 are distinct places of k, we could find
α, β ∈ k such that |α|1 ≥ 1, |α|2 < 1 and |β|1 < 1, |β|2 ≥ 1. Let γ = αβ−1.
Then we have |γ|1 > 1, |γ|2 < 1. The lemma is right.

Suppose that when m = t−1(t ≥ 3) the lemma is right. Then for m = t,
we could find α, β ∈ k such that

|α|1 > 1, |α|j < 1, j = 2, 3, . . . , t− 1, |β|1 ≥ 1, |β|t < 1.

If |α|n ≤ 1, then set γ = αrβ, with r large enough we could get

|γ|1 > 1, |γ|j < 1, j = 2, 3, . . . , t;

if |α|n > 1, then set γ = αrβ/(1 + αr), with r large enough we could get
the same result.

Theorem 2.23. Let | · |1, . . . , | · |m be distinct places of k and α1, . . . , αm
any elements of k. For any ε > 0, we can find α in k such that

|α− αi|i < ε

for each i.

Proof. Thus by the lemma we could find βl ∈ k, 1 ≤ l ≤ m such that
|βl|l > 1 and |βl|j < 1(l 6= j). Then let

α =
m∑
i=1

αiβ
r
i

1 + βri
,

we could have that

|α− αi|i ≤
|α|i

|1 + βri |i
+

m∑
j=1,j 6=i

|α|i|βri |i
|1 + βri |vi

≤ |α|i
|βi|ri − 1

+
m∑

j=1,j 6=i

|α|i|βi|ri
1− |βi|ri

.
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Then when r →∞, we have |α−αi|i → 0 for each i. Thus for all ε > 0,
with r large enough, we obtion

|α− αi|i < ε

for each i.

The week approximation theorem asserts that inequivalent valuations
are in fact almost totally independence. Let us now state two corollaries of
week approximation theorem.

Corollary 2.24. (Independence Theorem) Let | · |1, . . . , | · |m be distinct
places of k. Then for 1 ≤ r ≤ m there exists α ∈ k such that

|α|1 > 1, . . . , |α|r > 1, |α|r+1 < 1, . . . , |α|m < 1.

Corollary 2.25. Let | · |1, . . . , | · |m be distinct places of k. If

|α|r11 · · · |α|rmm = 1,

for all α ∈ k×, where ri are real constants, then r1 = · · · = rm = 0.
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2.3 Extensions of Valuations

Let k be a field with valuation | · | and let V be a vector space over k. A
real valued functions ‖ · ‖ on V is called a norm if

• ‖v‖ > 0 for all nonzero v ∈ V (positivity);

• ‖v + w‖ ≤ ‖v‖+ ‖w‖ for all v, w ∈ V (triangle inequality);

• ‖αv‖ = |α|‖v‖ for all α ∈ k and v ∈ V (homogeneity).

Two norms ‖ · ‖1 and ‖ · ‖2 on the same space V are equivalent if there
exist positive real numbers c1 and c2 such that for all v ∈ V ,

c1‖ · ‖1 ≤ ‖ · ‖2 ≤ c2‖ · ‖1.

This is clearly an equivalence relation.

Lemma 2.26. Suppose that k is complete with respect to | · | and that V is
an n-dimensional normed vector space over k. Then any two norms on V
are equivalent. Let {v1, . . . , vn} be a basis of V over k. In particular, V is
complete with respect to a norm and the vector space homomorphism

φ : kn −→ V

(α1, . . . , αn) 7−→
n∑
i=1

αivi

is a homeomorphism.

Proof. The proof of the lemma is similar to the case for k = R. The details
are left to the reader. See any good Functional Analysis textbook.

2.3.1 Extensions of valuations

Suppose K ⊃ k is a finite extension of fields, and that | · | and ‖ · ‖ are
valuations on k and K, respectively. We say that ‖·‖ extends |·| if ‖α‖ = |α|
for all α ∈ k.

Theorem 2.27. Suppose that k is a field that is complete with respect to
the nonarchimedean valuation | · | and that K is a finite extension ‖ · ‖ of
k of degree n = [K : k]. Then there is precisely one extension of | · | to K,
namely

‖α‖ = |NK/k(α)|
1
n . (2.10)
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Proof. Let us first prove that the existence of the extended valuation. Define
‖ · ‖ on K by

‖α‖ = |NK/k(α)|
1
n

for α ∈ K. Clearly, it satisfies the conditions (1) and (2) in the definition
of valuation. It remains to show that ‖α + β‖ ≤ max(‖α‖, ‖β‖) for all
α, β ∈ K. By the exercise, it suffices to show that if α ∈ K is such that
|NK/k(α)| ≤ 1, then

|NK/k(1 + α)| ≤ 1.

Consider the irreducible polynomial

f(x) = xm + am−1x
m−1 + · · ·+ a0

of α over k. By the Viete’s theorem and the proposition (1.3), we have

(−1)n(a0)n/m = NK/k(α)

and then |a0| ≤ 1. In other words, a0 ∈ ok = {α ∈ k : |α| ≤ 1}. Since

f(−1) = (−1)mNk(α)/k(1 + α)

= (−1)m + (−1)m−1am−1 + · · ·+ a0,

if we can show that all coefficients ai ∈ ok, then so does Nk(α)/k(1 + α) and
hence NK/k(1 + α), implying that |NK/k(1 + α)| ≤ 1. Indeed, we have the
following lemma. See exercise.

Claim: Let the polynomial f(x) = anx
n + an−1x

n−1 + · · ·+ a0 ∈ kp[X] be
irreducible. Then

max{|ai|p : 0 ≤ i ≤ n} = max{|a0|p, |an|p}.

It remains to prove that the uniqueness of the extended valuation. View
K as an n-dimensional vector space over k. Any valuation ‖ · ‖ on K
extending | · | defines a norm on K satisfying ‖αx‖ = |α|‖x‖ for α ∈ k
and x ∈ K. By Lemma (2.26), any two valuations on K extending | · | are
equivalent. It follows that the uniqueness of the extended valuation ‖·‖.

Corollary 2.28. Let k be a complete field with a nonarchimedean valuation
| · | and K/k be a Galois extension with the Galois group G. Let ‖ · ‖ be a
valuation of K. Then, for any α ∈ K and σ ∈ G, we have ‖σα‖ = ‖α‖.

Proof. It is clear that N(σα) = N(α) for any α ∈ K and σ ∈ G. Hence we
have ‖σα‖ = ‖α‖ follows from Theorem (2.27).
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From now on, we only consider the case of number fields. Let K/k be
an extension of algebraic number fields with [K : k] = n. Let p be a prime
ideal of ok with the decomposition

pOK = Pe1
1 · · ·Peg

g , (2.11)

for some prime ideals P1, . . . ,Pg in OK . Let kp and KPi be the local fields
at the prime ideals p and Pi, respectively. Let w and v be the places of K
and k corresponding to P and p, so that w lies above v, say w|v. Let π and
Π be uniformizers at p and P, respectively. Let the nations

Kw = KP,OK ,OP,PP,Fw = OP/PP
∼= OK/P = FP, UP,Π

and
kv = kp, ok, op, pp,Fv = op/pp ∼= ok/p = Fp, Up, π

be as above. For fixed P|p, set e(P/p) = e and f(P/p) = f .

Lemma 2.29. For any α ∈ kp, we have

ordP(α) = eordp(α), and |α|P = |α|efp .

Proof. According to π ∈ p \ p2 and Π ∈ P \P2, thus πok = pa where a is
an ideal coprime to p. If we lift π in OK , we get

πOK = paOK = aOK

∏
P|p

Pe,

where aOK is coprime to the P. Now ordP(π) = e, thus we see immediately
that π = uΠe, where u ∈ UP. For any α ∈ kp, we have

vΠordP(α) = α = wπordp(α) = uwΠeordp(α),

where v ∈ UP and w ∈ up. Taking the valuation | · |P to both sides of the
last equation, we complete the proof of the lemma.

Proposition 2.30. With the nations above,

[KP : kp] = ef. (2.12)

Proof. Let A be any set of representatives of the residue class field OP/PP

in OP. We know that for any α ∈ KP,

α =
∞∑
i=m

aiΠ
i, where ai ∈ A and m ∈ Z
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and Πi = ujΠ
tπs, uj ∈ UP where 1 ≤ t ≤ e − 1. Obviously we have

that aiuj ∈ A . Hence we have that α =
∑e−1

i=0

∑
m>−∞ simΠiπm such that

sim ∈ A . Let S be a set of representatives of the residue field op/p in op
and let w1, . . . , wf be elements in OP such that modulo P they form a basis

over op/p. Then we choose A = {
∑f

j=1 sjwj : sj ∈ S}. This shows that

wjΠ
i, 1 ≤ j ≤ f, 0 ≤ i ≤ e− 1, generate KP over kp.

It remains to show that wjΠ
i, 1 ≤ j ≤ f, 0 ≤ i ≤ e − 1 are linearly

independent over kp. Suppose otherwise. Let
∑

i,j aijwjΠ
i = 0 be a non-

trivial linear relation over kp, where 1 ≤ j ≤ f, 0 ≤ i ≤ e − 1. We may
assume that all aij are in OP and some aij is a unit. Let i0 be the smallest
index m such that amj is a unit for some j. Then aij ∈ p for i < i0 and
all j so that

∑
i 6=i0,j aijwjΠ

i ∈ Pi0+1. Consequently,
∑

1≤j≤f ai0jwjΠ
i ∈

Pi0+1, which implies that
∑

1≤j≤f ai0jwj ∈ P, or equivalently, modulo P,∑
1≤j≤f ai0jwj = 0 in OP/P. That’s in contradict with the linear indepen-

dency of {wj} over op/p. Therefore wjΠ
i, 1 ≤ j ≤ f, 0 ≤ i ≤ e − 1, form a

basis of KP over kp.

Corollary 2.31. With the nations above. Then

OP = ⊕ 1≤i≤f
0≤j≤e−1

ωiΠ
jop,

that is, the set {ωiΠj : 1 ≤ i ≤ f, 0 ≤ j ≤ e− 1} constitutes a basis of the
ring OP over the ring op.

Proof. Since the set {ωiΠj : 1 ≤ i ≤ f, 0 ≤ j ≤ e − 1} constitutes a basis
of KP over kp, it suffices to show that for given elements cij ∈ kp, if the sum∑
cijω

iΠj is contained in the ring OP, then all cij are elements of the ring
op. Firstly, we claim that

• Let α = a1ω1 + · · ·+ afωf with any ai ∈ kp. Then

ordP(α) = min{ordP(ai) : 1 ≤ i ≤ f}.

Proof. Without loss of generality, we assume that not all ai are zero and
ordP(a1) = min{ordP(ai) : 1 ≤ i ≤ f}. It gives that ai/a1 ∈ op and

α = a1{ω1 + · · ·+ (af/ai)ωf} = a1β.

By the choice of {ωi}, we obtain β 6= 0, so ordP(β) = 0, and then ordP(α) =
ordP(a1β) = ordP(a1).
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We can now turn to prove the corollary. For 1 ≤ i ≤ f, 0 ≤ j ≤ e− 1,∑
cijω

iΠj ∈ OP ⇒ ordP(
∑

cijω
iΠj) ≥ 0

⇒ ordP(cijΠ
j) ≥ 0

⇒ ordP(cij) ≥ −j
⇒ ordp(cij) ≥ 0

⇒ cij ∈ op.

Corollary 2.32. There exists α ∈ OP such that OP = op[α] and KP =
kp(α). In particular, OP is a free op-module of rank ef .

Proof. Take α ∈ OK such that the residue class ᾱ generates Fw, i.e., Fw =
Fv(ᾱ). Let f(x) be a polynomial in op[X] such that f̄(x) is an irreducible
polynomial with f̄(ᾱ) = 0. Then we have ordPf(α) ≥ 1, and ordPf

′(α) = 0.
We may assume that ordPf(α) = 1. In fact, if ordPf(α) > 1, we may replace
α by β = α + Π. By

f(β) = f(α + Π) ≡ f(α) + Πf ′(α) mod P2
P,

we get ordPf(β) = 1. We may therefore assume that f(α) is prime element
of KP. Hence, by Corollary (2.31), the set {αif(α)j : 0 ≤ i ≤ f−1, 0 ≤ j ≤
e− 1} constitutes an op-base of OP, and therefore the set {1, α, . . . , αef−1}
constitutes an op-base of OP.

Let K/k be an extension of any field of finite degree [K : k] = n. Let
ω1, . . . , ωn be a basis of K over k. Then

ωiωj =
n∑
k=1

aijkωk, with aijk ∈ k,

and this relation determines K up to isomorphism. Let A be a ring con-
taining k. The tensor product denote by

K⊗kA =

{
n∑
i=1

ci(1⊗ ωi) : ci ∈ A

}
. (2.13)

Algebraically, it is a ring with the componentwise addition and with multi-
plication table given by (2.13). Note that both A and K are imbedded in
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K⊗kA. If there is a topology on A, then we put on K⊗kA the topology
coming from the product topology on An via the isomorphism

An −→ K⊗kA

(c1, . . . , cn) 7−→
n∑
i=1

ci(1⊗ ωi).

One checks easily that both algebraic and topological structure on K⊗kA
are independent of the choice of a basis {ω1, . . . , ωn} of K over k. Clearly,
we have [K⊗kA : A] = [K : k].

Theorem 2.33. Let K = k(α) be an algebraic number field with [K : k] = n
and α ∈ OK, and let f(x) be the minimal polynomial of α over k. Let
f(x) =

∏h
i=1 fi(x) where the fi(x) are irreducible and distinct in kp[X].

Then h = g. After renumbering, deg fi(x) = eifi and KPi
∼= kp[X]/(fi(x)).

There is a natural isomorphism

K ⊗k kp ∼= KP1 ⊕ · · · ⊕KPg (2.14)

both algebraically and topologically.

Proof. By assumption, we have an isomorphism K = k(α) ∼= k[X]/(f(x)).
Hence

K ⊗k kp ∼= (k[X]/(f(x)))⊗k kp ∼= kp[X]/(f(x)).

Because K/k is separable, the minimal polynomial f(x) has distinct roots.
Therefore f(x) factors in kp[X] into monic irreducible polynomials

f(x) = f1(x) · · · fr(x)

that are relatively prime in pairs. Algebraically, we have, by the Chinese
reminder theorem,

kp[x]/(f(x)) ∼=
r∏
i=1

kp[x]/(fi(x)).

Here each kp[x]/(fi(x)) is a finite field extension of kp of degree degfi, say
Ki. As k is dense in kp, K = K⊗k k is dense in K⊗k kp, hence K is dense in
each Ki. So | · |i restricts to K corresponds to a place Pi of K. By Theorem
(2.21), we have Ki = KPi for some prime ideal Pi lying above p. According
to

[K ⊗k kp : kp] = [K : k] =

g∑
i=1

eifi =

g∑
i=1

[KPi : kp],

the theorem follows.
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Corollary 2.34. For any element α ∈ K,

TrK/kα =

g∑
i=1

TrKPi
/kpα,

NK/kα =

g∏
i=1

NKPi
/kpα

Proof. As shown in the above proof, we have
∑g

i=1[KPi/kp] = n = [K : k],
hence Corollary holds for α ∈ k. Next assume K = k(α). Let f(x)
and fi(x) be as in the proof above; we have NK/k(α) = (−1)nf(0) and
NKPi

/kp(α) = (−1)[KPi
:kp]fi(0), and TrK/k(α) = −coefficient of xn−1 in f

and TrKPi
/kp(α) = −coefficient of x[KPi

:kp]−1 in fi(x). As f(x) = f1(x) · · · fg(x),
the global norm and trace of α are related to local norm and trace of α as
stated. Finally, for any element α ∈ K, suppose M = k(α) is an inter-
mediate field. Let P1, · · · ,Ps be the prime ideals of M dividing p. Then
P1, · · · ,Pg are the prime ideals of K dividing one of P1, · · · ,Ps. Fix an
prime ideal Pi of M . We have∏

Pj |Pi

NKPj
/kp(α) =

∏
Pj |Pi

NMPi/kp
◦ NKPj

/MPi
(α)

= NMPi/kp
(α)

∑
Pj/Pi

[KPj
:MPi ]

= NMPi/kp
(α)[K:M ].

Therefore∏
Pj

NKPj
/kp(α) =

∏
Pi|p

∏
Pj |Pi

NKPj
/kp(α) =

∏
Pi

NMPi/kp
(α)[K:M ]

= NM/k(α)[K:M ] = NK/k(α).

Similar proof shows TrK/k(α) =
∑g

i=1 TrKPi
/kp(α).

2.3.2 Unramified and ramified extensions

In the subsection, let E/F be an extension of nonarchimedean local fields
of an algebraic number field k with respect to prime ideals P|p. Let e =
e(P/p) and f = f(P/p) be the ramification index and the residue class
fields degree, respectively, which implies that [E : F ] = n = ef . Let p be
the characteristic of the finite field F̄ . The extension E/F of local fields is
called unramified extension if e = 1 and totally ramified extension if f = 1.
The finite extension E/F is said to tamely ramified and wildly ramified if
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p - e and p|e, respectively. By the above definitions, we obtain an unramified
extension is tamely ramified and E/F is both totally and tamely ramified
if and only if p - e = [E : F ].

Let OF ,PF , UF , F̄ , πF denote respectively the p-adic integers ring, the
maximal prime ideal, the unit group, the residue class field and the uni-
formizer of F . For a finite extension E of F , then OE,PE, UE, Ē, πE will
be above with respect to E.

Unramified Extensions:

Theorem 2.35. (1), Suppose that the extension E/F is unramified and
Ē = F̄ (ᾱ) where α ∈ OF . Then E = F (α) and f̃(x) = f(x) mod PF is
the minimal polynomial of ᾱ over F̄ where f(x) is the minimal polynomial
of α over F .

(2), Suppose f(x) ∈ OF [X] is a monic polynomial such that f̃(x) is
irreducible and separable. If α is root of f(x) then E = F (α) is unramified.

Proof. (1) As we have that α ∈ OF , hence f(x) is monic and degf̃(x) =degf(x),
f̃(ᾱ) = 0. Hence we have that

degf̃ ≥ [F̄ (ᾱ) : F̄ ] = [Ē : F̄ ] = [E : F ],

degf = [F (α) : F ] ≤ [E : F ]

As degf̃(x) =degf(x), hence the inequality signs can be turned into equal
ones. Hence we have E = F (α) and f̃(x) is the minimal polynomial of ᾱ
over F̄ .

(2) As f(x) is monic, we have that degf̃(x) =degf(x). We also have
that f̃(ᾱ) = 0. Hence we have that

degf = [F (α) : F ] = [E : F ]

degf̃ = [F̄ (ᾱ) : F̄ ] ≤ [Ē : F̄ ] ≤ [E : F ]

Hence we have [Ē : F̄ ] = [E : F ], E = F (α) is unramified.

Theorem 2.36. Let E/F be an extension of nonarchimedean local fields.
Then there is a unique local field K with F ⊂ K ⊂ F such that E/K is
totally ramified with [E : K] = e and K/F is unramified with [K : F ] = f .

Proof. Let e = e(E/F ), f = f(E/F ). Then we can let κf be the number
of elements in the residue of E. By Hensel’s lemma, the (κf − 1)-th roots
of unity are in E. Let K = F (ζ) where ζ is a primitive (κf − 1)-th root of
unity. Let g be the monic minimal polynomial of ζ over F . By the corollary
of Hensel’s lemma, g is over OF . Since g(x)|(xκf − x), one has that g is
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prime to g′ over the residue field of F . Therefore g is also irreducible over
the residue field of F by Hensel’s lemma and [K : F ] = deg(g) = f .

It is clear that any element in K can be written as x
b

where x ∈ OF [ζ]
and b ∈ OF . Furthermore there are aij ∈ O×F or aij = 0 such that

x =
n∑
i=0

(
f−1∑
j=0

aijζ
j

)
πiF .

It is clear that

f−1∑
j=0

aijζ
j = 0 or ordp

(
f−1∑
j=1

aijζ
j = 0

)
,

since {1, ζ, · · · , ζf−1} are linearly independent over the residue field of F .
Let i0 be the smallest integer such that ai0j 6= 0 for some 0 ≤ j ≤ (f − 1).
Then

ordp(x) = ordp(π
i0
F ).

This implies that ordp(K
×) = ordp(F

×) and K/F is unramified.
Since the residue of K is the same as the residue field of E, E/K is

totally ramified. Let πE be a uniformizer of E. Then

πeE = a0πF with a0 ∈ O×E,

and
a0 = b

(0)
0 + b

(0)
1 πE + · · ·+ b

(0)
e−1π

e−1
E + a1πF

where b
(0)
0 ∈ O×K and b

(0)
1 , · · · , b(0)

e−1 ∈ OK and a1 ∈ OE. Consider

a1 = b
(1)
0 + b

(1)
1 πE + · · ·+ b

(1)
e−1π

e−1
E + a2πF

where b
(1)
1 , · · · , b(1)

e−1 ∈ OK and a2 ∈ OE.

· · · · · · · · ·

Let

ci =
∞∑
j=0

b
(j)
i πjF ∈ OK for 1 ≤ i ≤ (e− 1).

Then c0 ∈ O×K and πE satisfies the following Eisenstein polynomial over OK

h(x) = xe − ce−1πFx
e−1 − · · · − c1πFx− c0πF .

One also has that O×E ⊆ OK [πE] by the above argument. Therefore

E = K(πE) and [E : K] = deg(h) = e.
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Now we show the uniqueness of K. Suppose there is another interme-
diate field K ′ satisfying the conditions of this proposition. It is clear that
K ′ ⊇ K by our construction. Then K ′/K is both unramified and totally
ramified. Therefore K = K ′.

Theorem 2.37. Let L̄ be a finite extension of the residue field F̄ . Then
there exists a unique unramified extension L/F with the residue field L̄.
Such a field L is Galois over F , and the Galois group of L/K is isomorphic
to the Galois groups of L̄/F̄ .

Proof. Let a be a generator of L̄/F̄ with a minimal polynomial f(x) over
F̄ . Choose a monic polynomial E(x) over F such that

E(x)(mod p) = f(x)

and put L = F (b), where b is any root of E(x), taken as usual from a fixed
algebraic closure of Qp, we obtain

[L : F ] = degb over K ≤ degE = degf = [L̄ : F̄ ] ≤ [L̄L : F̄ ] ≤ [L : F ]

because the image of b in L̄L is a root of f(x), and so L̄ is contained in L̄L.
The resulting chain of inequalities shows that [L̄L : F̄ ] = [L : F ]; thus L/F
is unramified and [L̄ : F̄ ] = [L̄L : F̄ ]; hence L̄ = L̄L. Thus L/F satisfies our
first assertion. It remains to prove its uniqueness and normality. Let L1 be
another field, unramified over K and with L̄L1 = L̄. By Hensel’s lemma the
polynomial E(x) has a root b1 in L1 and we have

F (b1) ∼= F (b) = L,

but
[F (b1) : F ] = [L̄ : F̄ ] = [L1 : F ];

thus L1 = F (b1) and L1 is indeed isomorphic to L.
Now let’s turn to the normality. The extension L̄/F̄ is normal and thus

L̄ is a splitting field of some polynomial h(x) over L̄. Choose H(x) over F
so that

H(x) = h(x)(mod p).

By Hensel’s lemma H(x) splits into linear factors in L, and the preceding
argument shows that one of its roots generates L over K, i.e. that L is the
splitting field of H(x) over F and so is normal.

If g is any element of the Galois group G of L/F and for any a in
S we donate by ā its image in L̄, then the formula ḡ(x̄) = g(x) defines
an automorphism ḡ of L̄/F̄ . We shall prove that the mapping g → ḡ is
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bijective. Since the groups of L/F and L̄/F̄ have the same number of
elements, it suffices to show that this mapping is surjective. Let a, b, f(x)
and E(x) have the same meaning as at the beginning of the prove and let
b̄ = a. If s is an element of the Galois group G(L̄/F̄ ), then s(a) = a1 is
again a root of f(x), and Hensel’s lemma implies the existence of b1 in S
such that F (b1) = 0 and b̄1 = a1. Such an element is unique because f has
in L̄ as many roots as F has in L, and so all roots of F have distinct images
in L̄. Now if g is an element of G which takes b into b1, then ḡ = s; hence
the required surjectivity follows.

Ramified Extensions:

A monic polynomial

e(x) = xm + am−1x
m−1 + · · ·+ a0 ∈ op[X]

is said to be an Eisenstein polynomial if ordp(a0) = 1 and ordp(ai) ≥ 1 for
1 ≤ i ≤ m− 1, that is, a0 ∈ p \ p2 and ai ∈ p for 1 ≤ i ≤ m− 1. It is clear
that an Eisenstein polynomial e(x) is irreducible.

Theorem 2.38. (1), If E = F (α) and the minimal polynomial E(x) of α
is an Eisenstein polynomial, then E/F is totally ramified and ordE(α) = 1.

(2), If E is totally ramified over F and α is a uniformizer, then the
minimal polynomial of α over F is an Eisenstein polynomial and E = F (α).

Proof. (1) Let f(x) = xn + a1x
n−1 + · · · + an be the minimum polynomial

of α over F . Then f is Eisenstein, that is, ordpF (ai) ≥ 1 for 1 ≤ i ≤ n
and ordpF (an) = 1. Hence, the Newton polygon of f(x) is the line joining
(n, ordpF ) = (n, 0) with (0, ordpF ) = (0, 1).

Thus, we have

ord(α) = 1/n,

where ord(·) is the extension of ordpF (·) on the algebraic closure of F and
since

E(α) = 0, ai ≡ 0 mod pF ,

α ≡ 0 mod PE, e(E/F )ordpF (α) = ordPE(α) ≥ 1.

This means that e = n, and that E/F is totally ramified. Furthermore,
ordE(α) = ordPE(α) = eordpF (α) = 1.

(2) Let f(x) = xm+a1x
m−1 + · · · be the minimum polynomial of α over

OF [X] and ord(·) be the extension of ordpF (·) on the algebraic closure of F .
Since E/F is totally ramified, 1 = ordPE(α) = nord(α) with n = [E : F ].
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Suppose that α1, · · · , αm are m roots of f(x). Then ord(αi), 1 ≤ i ≤ m are
all equal. Hence,

ordpF (am) = ord(am) = ord(α1) + · · ·+ ord(αm)

= mord(α) =
m

n
.

However, ordpF (am) ∈ Z. So m ≥ n.
On the other hand, n = [E : F ] ≥ [F (α) : F ] = m, meaning that

n = m and E = F (α). Since ai are polynomials of α1, · · · , αm and ord(αi) =
ord(α) > 0, ordpF (ai) = ord(ai) ≥ 1 for 1 ≤ i ≤ m. From ordpF (am) = m

n
=

1, we have f(x) is Einsenstein polynomial.

2.3.3 Galois extensions: Local Hilbert theory

Let K/k be a Galois extension of number fields with the Galois group G =
Gal(K/k) and [K : k] = n. Let p be a fixed prime ideal of ok and P be prime
ideal above p in OK . Let w and v be the places of K and k corresponding
to P and p, so that w lies above v, say w|v.

By the global Hilber theory, the decomposition group of P is DP with
the order ef . The elements of DP acts as isometries of K in the norm | · |P.
Consequently σ ∈ DP extends to an automorphism of KP, and we can thin
in terms of an inclusion.

Theorem 2.39. There is a natural embedding Gal(KP/kp) into G such that
Gal(KP/kp) ∼= DP and the extension of local fields KP/kp is also Galois.

Proof. Let KP = kp(α) where α is generator of the extension K/k. The
conjugates of α over kp from a subset of the set of conjugates of α over k,
and so they all lie in K ⊂ KP. Denote the mapping φ by

φ : Gal(Kw/kv) −→ G.

By Corollary, σ ∈ Gal(Kw/kv) is an isometry with respect to the metric
induced by | · |P. In particular, σOP = OP and σPP = PP. It follows
that σP = P. Then Im(φ) ⊂ DP. On the other hand, for any τ ∈ DP,
denote the mapping by σα = σ(αn) = (ταn), where the Cauchy sequence
(αn) ∈ KP. We have σ ∈ Gal(Kw/kv). Then Im(φ) = DP.

It remains to prove that φ is injective. If φ(σ) is the identity map over
K, then σ is also the identity map one the whole field KP because K is
dense in KP. This proves the theorem.

In global Hilbert theory, we have the following exact sequence:

1→ IP → DP → Gal(FP/Fp)→ 1.
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Similarly, we can define a local mapping

π : Gal(Kw/kv) −→ Gal(Fw/Fv)
σ 7−→ σ,

via σ(αmodPP) = σ(α) modPP. It is clear that this mapping is a surjective
homomorphism. The kernel Iw of the homomorphism is given by

Iw = {σ ∈ Gal(Kw/kv) : σα ≡ αmodPP for all α ∈ OP}.

A slight change in the proof actually show that we have also the same exact
sequence:

1→ Iw → Gal(Kw/kv)→ Gal(Fw/Fv)→ 1.

P {1} K

e

KP

e

PI IP KI

f

KPI

f

Fw
f

PD DP KD

g

kp Fv

p G k

Let us define the sequence of subgroups of Iw

Ri = {σ ∈ Iw : σα ≡ α(modPi+1
P ), for all α ∈ OP}.

It’s clear that Ri is subgroup of G, and is called the ith ramification group
of G at P and

Gal(Kw/kv) ⊃ Iw = R0 ⊃ R1 ⊃ R2 ⊃ · · · .

Corresponding to this decreasing sequence of subgroups, we have the in-
creasing sequence of subfields:

kv ⊂ K1 ⊂ K2 ⊂ · · · ⊂ Kw.

Proposition 2.40. (1), Let Π be an element of P with not in P2. Then

Ri = {σ ∈ IP : σΠ ≡ Π(modPi+1)},

and is a normal subgroup of DP.
(2), R1 is the unique Sylow p-subgroup of IP where p is the restrict of p

to Z. R0/R1 is cyclic and its order divides NP− 1.
(3), Ri/Ri+1, i ≥ 1 is an elementary p-group.
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Proof. (1), For a fixed Π ∈ P \P2, denote

R′i = {σ ∈ IP |σΠ ≡ Π(modPi+1)}.

According to Equation (2.6), any nonzero α ∈ OP can be written uniquely
as

α = uΠordPα, where u ∈ OP \PP = UP.

If σ ∈ R′i, then there exists a β, β′ ∈ OP such that σΠ = Π + βΠi+1 and
σu = u+ β′Π. Thus

|σα− α|P = |α|P · |σα/α− 1|P

≤ |σu
u
·
(
σΠ

Π

)ordPα

− 1|P

= |(1 + β′u−1Π)(1 + βΠi)ordPα − 1|P
= max{|β′u−1Π|P, |βΠi|P}
≤

So σ ∈ Ri. And clearly σ ∈ Ri ⇒ σ ∈ R′i. Hence

Ri = {σ ∈ IP |σΠ ≡ Π(modPi+1)}.

For any τ ∈ DP, σ ∈ Ri, α ∈ OP,

|τ−1στα− α|P = |τ−1(στα− τα)|P = |σ(τα)− (τα)|P ≤ NP−(i+1).

Then τ−1στ ∈ Ri, which means Ri is a normal subgroup of DP.
(2), If σ is an element of R1 other than identity, then we can choose a

Π ∈ P \ P2 so that σΠ 6= Π. Thus σΠ ≡ Π + uΠm mod Pm+1 for some
m > 1 and u ∈ UP. By iterating we obtain σrΠ ≡ Π + ruΠm mod Pm+1.
Suppose that r is the order of σ, then σrΠ = Π, which means ruΠm ∈ Pm+1.
Thus σ cannot have order prime to p where p is the rational prime underlying
P, and the same happens for any power of σ other than the identity. So
any element of R1 has order a power of p.

Let σ ∈ R0; then σΠ is also a prime element and so σΠ = uΠ with u a
unit in OP. Then the map

ϕ0 : R0 −→ UP/(1 + PP)

σ 7−→ u mod (1 + PP)

is a group homomorphism with kernel R1. So R1 is normal in R0, and
R0/R1 is isomorphic to a subgroup of UP/(1 + PP) ∼= F×w = (OP/PP)×,

85



a cyclic group of order NP − 1. And thus R0/R1 is cyclic and its order
divides NP− 1.

Since NP is a power of p, |R0/R1| is relatively prime to p. So R1 is
a Sylow p-subgroup of R0 = IP. What’s more, we know that all Sylow
p-subgroups of an arbitrary finite group are conjugate, and R1 is normal in
R0. So R1 is the unique Sylow p-subgroup.

(3), For i ≥ 1, if σ ∈ Ri, then σΠ− Π ∈ Pi+1, that is, σΠ/Π− 1 ∈ Pi.
Consider the mapping

ϕi : Ri −→ U
(i)
P /U

(i+1)
P

σ 7−→ σΠ

Π
mod U

(i+1)
P

where

U
(i)
P = 1 + Pi

P

= {α ∈ K×P : ordP(α− 1) ≥ i}
= {α ∈ K×P : |α− 1|P ≤ (NP)−i}.

Then ϕi is a group homomorphism with kernel Ri+1. So Ri/Ri+1 is i-

somorphic to a subgroup of U
(i)
P /U

(i+1)
P . We have already known that

U
(i)
P /U

(i+1)
P

∼= OP/PP via 1 + αΠi 7→ αmodPP, and OP/PP is a addi-
tive group of order NP, which is an elementary p-group, being a vector
space over Z/(p). So Ri/Ri+1 is an elementary p-group.

Corollary 2.41. The Galois group of any finite normal extension of a p-
adic field is solvable.

For a Galois extension, it is clear that KP/kp is unramified if and only
if R0 = {1} and KP/kp is tamely ramified if and only if R1 = {1}.
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2.4 Ramification Theory

Many number-theoretic objects give rise to an ideal which identifies the
bad primes for that object and measures how bad they are. Such an ideal
is important primarily because it has this this property.

2.4.1 The different

Let E/F be a finite separable extension of local fields or global fields with
the integral domain OE ⊃ OF and [L : K] = n. Let M be a nonzero subset
of E. The complementary set M ′ of M is denoted by

M ′ = {α ∈ E : TrE/F (αM) ⊂ OF}.

Our first major result will state that if M is a fractional ideal of E, then so
is M ′.

Lemma 2.42. If ω1, . . . , ωn is a basis of E over F and

M = OFω1 + · · ·+OFωn.

Then

M ′ = OFω
′
1 + · · ·+OFω

′
n,

where {ω′1, . . . , ω′n} is the dual basis relative to the trace, that is, TrE/F (ωiω
′
j) =

δij. In particular, if a is a fractional ideal of OE, then a′ is also a fractional
ideal. Furthermore OE ⊂ O′E.

Proof. Let α ∈M ′ and write

α = a1ω
′
1 + · · ·+ anω

′
n

with ai ∈ F . Then Tr(αωi) = ai, whence ai ∈ OF for all i. This proves
M ′ ⊂ OFω

′
1 + · · ·+OFω

′
n.

Conversely,

Tr(OFω
′
iM) = OFTr(ω

′
iM) ⊂ oF .

So OFω
′
1 + · · ·+OFω

′
n ⊂M ′.

Since every a fractional ideal of E is squeezed between two OF -modules
of type OFω1 + · · · + OFωn for suitable bases {ωi} of E over F , and since
OF is noetherian. We get that if a is a fractional ideal of OE, then a′ is also
a fractional ideal.
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The integral idealO′−1
E ofOE is called the different of E/F and is denoted

by DE/F , i.e.,

D−1
E/F = {α ∈ E : TrE/F (αOE) ⊂ OF}.

We prove now the following transitivity properties of the different.

Proposition 2.43. For a tower of fields F ⊂ E ⊂ K, one has

DK/F = DK/EDE/F .

Proof. It is easy to see that (DE/FOK)−1 = D−1
E/FOK , and therefore

DK/F = DK/EDE/F ⇐⇒ D−1
K/F = D−1

K/ED
−1
E/F .

Now, for any α ∈ K we have

α ∈ D−1
K/F ⇐⇒ TrK/F (αOK) ⊂ OF

⇐⇒ TrE/F (TrK/E(αOK)) ⊂ OF

⇐⇒ TrK/E(αOK) ⊂ D−1
E/F

⇐⇒ TrK/E(αDE/FOK) ⊂ OE

⇐⇒ αDE/F ⊂ D−1
K/E

⇐⇒ α ⊂ D−1
K/ED

−1
E/F .

This completes the proof.

Lemma 2.44. (Euler lemma) Let E = F (α) be a finite separable extension
of degree n. Let f(x) be the irreducible polynomial of α over F and f ′(x)
be its formal derivative. Write

f(x)

x− α
= bn−1x

n−1 + · · ·+ b1x+ b0.

Then the dual basis of {1, α, . . . , αn−1} is

b0

f ′(α)
, . . . ,

bn−1

f ′(α)
.

Proof. For if α1, ..., αn are the roots of f , then one has

n∑
i=1

f(x)

x− αi
αri

f ′(αi)
= xr, 0 ≤ r ≤ n− 1,
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as the difference of the two sides is a polynomial of degree ≤ n − 1 with
roots α1, ..., αn, so is identically zero. We may write this equation in the
form

TrE/F

[
f(x)

x− α
αr

f ′(α)

]
= xr.

Considering now the coefficient of each of the powers of x, we obtain

TrE/F

(
αi

bj
f ′(α)

)
= δij

and the lemma follows.

Corollary 2.45. If OE = OF [α]. Then DE/F = (f ′(α)).

Proof. As OE = OF [α] = OF +OFα + · · ·+OFα
n−1, we get

D−1
E/F = O′E = f ′(α)−1(OF b0 + · · ·+OF bn−1).

Considering the coefficient of each of the powers of x of f(x), we get

bn−i = αi−1 + an−1α
i−2 + · · ·+ an−i+1,

so that

OF b0 + · · ·+OF bn−1 = OF [α] = OE.

Then D−1
E/F = f ′(α)−1OE, and thus DE/F = f ′(α)OE = (f ′(α)).

2.4.2 The discriminant

For a finite extension k/Q, we have defined the absolute discriminant dk
of k. The definition of the discriminant of a general algebraic number field
K/k was given by Dedekind. Let [K : k] = n and let α1, . . . , αn be n
elements of OK linearly independent over k. We write

dK/k(α1, . . . , αn) = det(TrK/k(αiαj));

then the relative discriminant dK/k of K/k is the ideal in k generated by
all the dK/k(α1, . . . , αn). Note that dK/k is an integral ideal of ok.

Lemma 2.46. (1), For a extension of k/Q, we have Nk/Q(Dk/Q) = |dk|.
(2), dK/k = NK/k(DK/k).
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Proof. (1), Let α1, . . . , αn be an integral basis of k, that is,

ok = Zα1 + · · ·+ Zαn.

Then
D−1
k/Q = Zβ1 + · · ·+ Zβn,

where Tr(αiβj) = δij. Assume that βj =
∑n

i=1 cijαs with cij ∈ Q. Then

(Tr(αiαj))(cij) =
( n∑
s=1

Tr(αiαs)csj

)
=

(
Tr
(
αi

n∑
s=1

csjαs
))

= (Tr(αiβj))

= I.

It implies that |dk| det(cij) = 1. According the definition of norm of ideals,
we obtain

Nk/Q(Dk/Q) =
{

Nk/Q(D−1
k/Q)

}−1

= {det(cij)}−1 = |dk|.

Let K/k be a extension of number fields with [K : k] = n. Let p be
a fixed prime ideal of ok and P be prime ideal above p in OK . For any
extension of local fields KP/kp with the degree ef , we also can define the
local discriminant for KP/kp. Let

D−1
KP/kp

= O′−1
P = {α ∈ KP : TrKP/kp(αOP) ⊂ op}

be the local different for the extension KP/kp. Then DKP/kp is an integral
ideal of op, say Pd

P where d is called the differential exponent. Let ω1, . . . , ωef
be a basis of KP over kp satisfying

OP = opω1 + · · ·+ opωef .

We have
D−1
KP/kp

= (Π−d) = opω
′
1 + · · ·+ opω

′
ef ,

where {ω′1, . . . , ω′ef} is the dual basis relative to the trace. We define the
local discriminant by

dKP/kp = det(TrKP/kp(ωiωj)).

It is easy check that dKP/kp ∈ op and the ideal (dKP/kp) of op is independent
the choice of the basis {ω1, . . . , ωn}.
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Lemma 2.47. With notations and assumptions as above. Then ordp(dKP/kp) =
fd and dKP/kpop = NKP/kp(DKP/kp).

Proof. If S is a multiplicative subset of KP, then clearly dS−1KP/S−1kp =
S−1dKP/kp and DS−1KP/S−1kp = S−1DKP/kp . Assume that KP has an in-
tegral basis α1, . . . , αn. So we have dKP/kp = (d(α1, . . . , αn)). Dedekind’s

Complementary module CKP/kp is generated by the dual basis α
′
1, . . . , α

′
n

which satisfies TrKP/kp(αiα
′
j) = δij. On the other hand, CKP/kp is a princi-

pal ideal (β) and admits the kp− basis βα1, . . . , βαn of discriminant

d(βα1, . . . , βαn) = NKP/kp(β)2d(α1, . . . , αn).

But (NKP/kp(β)) = NKP/kp(CKP/kp) = NKP/kp(D
−1
KP/kp

) = NKP/kp(DKP/kp)
−1,

and (d(α1, . . . , αn)) = dKP/kp .One has d(α1, . . . , αn) = det((σiαj))
2, d(α

′
1, . . . , α

′
n) =

det((σiα
′
j))

2, and Tr(αiα
′
j) = δij. Then d(α1, . . . , αn) · d(α

′
1, . . . , α

′
n) = 1.

Combining these yields

d−1
KP/kp

= (d(α1, . . . , αn)−1) = (d(α
′

1, . . . , α
′

n)) = (d(βα1, . . . , βαn))

= NKP/kp(DKP/kp)
−2dKP/kp ,

and hence NKP/kp(DKP/kp) = dKP/kp .

2.4.3 Ramification theory

With notations and assumptions as above. We identify DKP/kp with a power
of P, though strictly speaking it is a power of PP.

Proposition 2.48. (1), The global different is the product of the local dif-
ferents, i.e.,

DK/k =
∏
P

DKP/kp .

(2), The global relative discriminant is the product of the local discrim-
inants, i.e.,

dK/k =
∏
P

dKP/kp .

Proof. Let x ∈ D−1
KP/kp

, we choose y ∈ K, which’s very close to x at P, very

close to 0 at all other prime divisors of p in K, and of value at most 1 at
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all other finite K-primes. Then by Corollary 2.35, for all k-primes p and
z ∈ OK

TrK/k(yz) =
∑
P|p

TrKP/kp(yz) ∈ op

⇒ TrK/k(yz) ∈ ok

Therefore

y ∈ d−1
K/k

⇒ x ∈ d−1
K/k

⇒ DK/k ⊆ DKP/kp

Conversely, we assume that x ∈ D−1
K/k, and choose y ∈ K, which’s very close

to x at P, very close to 0 at other prime divisors of p in K, and of valve at
most 1 at all other finite K-primes. Reasoning as above, we see that for all
z ∈ OK

TrKP/kp(yz) ∈ op

⇒ TrKP/kp(xOP) ⊆ op

⇒ x ∈ D−1
KP/kp

⇒ DK/k ⊇ DKP/kp

This shows DK/k is dense in DKP/kp , that is, DK/kOKP
= DKP/kp . Then

DK/k =
∏
P

DKP/kp .

Theorem 2.49. Let e = e(P/p) and ordP(DK/k) = m. Then Pe−1|DK/k.
In particular, we have

(1), P is ramified in K/k if and only if P|DK/k.
(2), P is tamely ramified in K/k if and only if m = e− 1.
(3), P is wildly ramified in K/k if and only if e ≤ m ≤ ordP(e) + e− 1.

Corollary 2.50. The prime ideal p of k is ramified in K/k if and only if
p|dK/k.

Corollary 2.51. For any finite extension k/Q at least one prime p ramifies.

Proof. It follows immediately that |dk| > 1 for any number field k 6= Q by
Corollary (1.32) and the above theorem.
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Exercises

1, The p-adic valuation is nonarchimedean.
2,Let |·| be any valuation over any field k and |·|∞ be the usual absolute

value over R. Then, for any α, β ∈ k,

||α| − |β||∞ ≤ |α− β|.

3, A field of nonzero characteristic has only nonarchimedean valuations.
4, Let | · | be any valuation over any field k. Then the following state-

ments are equivalent:
(1), the valuation | · | is nonarchimedean;
(2), for any |α| < 1, we have |1 + α| < 1;
(3), for any |α| ≤ 1, we have |1 + α| ≤ 1 .
5, Let σ1, . . . , σr1 , σr1+1 = σ̄r1+r2+1, . . . , σr1+r2 = σ̄n be embeddings of

k. Let | · |1, . . . , | · |r1+r2 be archimedean valuations induce by σ1, . . . , σr1+r2 .
Then | · |1, . . . , | · |r1+r2 are pairwise inequivalent.

6, Let p and q be two distinct prime ideals of a number field k. Then
the p-adic valuations | · |p and | · |q are inequivalent.

7, Find α ∈ Q, such that v2(α−1/3) ≥ 2, v3(α−1/2) ≥ 3, and |α−1|∞ <
1/2.

8, If a sequence αn converges a nonzero element α withe respect to
any nonarchimedean valuation over a field k, then we have |α| = |αn| for
sufficiently large n.

9,

ordp : k −→ Z
α 7−→ ordp(α).

Then it is surjective.
10,
11, A valuation | · | on a field k is discrete if there is a δ > 0 such that

for any α ∈ k

1− δ < |α| < 1 + δ =⇒ |α| = 1.

A non-archimedean valuation | · | on any field k is discrete if and only if
p = {α ∈ k : |α| < 1} is a principal ideal.

12, Let | · |1, . . . , | · |m be distinct places of k. If

|α|r11 · · · |α|rmm = 1,
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for all α ∈ k×, where ri are real constants, then r1 = · · · = rm = 0.
13, (1), Let the polynomial f(x) = anx

n + an−1x
n−1 + · · ·+ a0 ∈ kp[X]

be irreducible. Then

max{|ai|p : 0 ≤ i ≤ n} = max{|a0|p, |an|p}.

In particular, if f(x) = xn + a1x
n−1 + · · · + an ∈ kp[X] is irreducible and

an ∈ op, then all ai ∈ op, i.e., f(x) ∈ op[X].
(2), Let f̄(x) ∈ Fp[X] be the polynomial obtained from f(x) by reducing

the coefficients of f(x) modulo pp. If f(x) ∈ ok[X] is monic and irreducible
over kp, then f̄(x) is a power of an irreducible polynomial in Fp[X].

14, Show that for any prime p, there are p− 1 distinct (p− 1)-th roots
of unity in Zp.

15, ok =
⋂

all prime ideals p op.
15, Show that Fermat equation xn+yn = 1 has infinitely many solutions

over Zp for any integer n ≥ 1.
16, Write power series of the number 2/3 and −2/3 as 5-adic numbers.
17, Show that the equation x2 = 2 has a solution in Z7.
18, Show that the exponential series

ex =
∞∑
n=0

xn

n!

converges for ordp(x) > 1
p−1

in Qp and diverges elsewhere.

19, (Krasner’s Lemma) Let F be a local field and α, β be two elements
of the algebraic closure of F . Assume that α is separable over F (β) and
assume that for all isomorphisms σ of F (α), σ 6= 1, we have

|β − α| < |σα− α|.

Then F (α) ⊂ F (β).
20, Suppose that f(x) ∈ Z[X], then f(x) = 0 has a solution in Zp iff

for any n ≥ 1, the equation f(x) ≡ 0( mod pn) has solutions in Z.

21, LetKP ⊃ kp be local fields. If x ∈ KP, then |x|P = |NKP/kpx|
1/[KP:kp]
p ,

and ordp(N(x)) = f(P/p)ordP(x).
22, Show that x2 − 82y2 = ±2 has solutions in every Zp but not in Z.

What conclusion can you draw about Q(
√

82)?
23, Let k = Q(α) with α a root of f(x) = x4 − 14.
(1), Show that the prime 11 has three extensions to prime p1, p2, p3 of k

and kp1 = kp2 = Q11 while [kp3 : Q11] = 2.
(2), The prime 13 has four extensions to primes of k.
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(3), Show the prime 5 has two extensions to primes p1, p2 of k and
[kp1 : Q] = [kp2 : Q] = 2.

24, Let E/F be a finite separable extension of local fields or global fields
with the integral domain OE ⊃ OF and [L : K] = n. Let I be a fractional
ideal of E. Then

(1), Tr(I) ⊂ OF if and only if I ⊂ O′E.
(2), I is an integral ideal if and only if I ′−1 ⊂ O′E

−1.
(3), (I ′)′ = I.
(4), Tr(O′E) = OF ,
(5), I ′ = O′EI

−1.
25, Prove that if [kv : Qp] = n and Dv = Dkv/Qp , then kv/Dv and

(Qp/Zp)n are topologically isomorphic.
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Chapter 3

Adele, Idele and Harmonic
Analysis

In this chapter, we saw how we could associate various locally compact
groups to an algebraic number field, and we saw how the topological prop-
erties of these groups translate into arithmetic properties of the field.

3.1 Adeles and Ideles

In discussing ”local-to-global” problems it is often necessary to consider
several different v-adic fields simultaneously, where each v may be either a
finite or an infinite place. The natural language for this is that of adeles
and ideles.

Recall: Some fundamental facts on any topological group Let G be a topological group and
H be its subgroup, and let A be any subset of G.

(1),
∏
Gi is compact if and only if Gi is compact for every i.

(2),
∏
Gi is locally compact iff Gi is locally compact for every i and Gi is compact for almost all i.

(3), if H is open, then xH,Hx,H−1, AH and HA are open.

(4), every open subgroup H is also closed, and every closed subgroup with the finite index is open.

(5), the quotient map ρ : G→ G/H is open.

(6), the subgroup H is open if and only if the quotient space G/H is discrete.

(7), if H CG, then G/H is a topological group.

(8), if G is compact and H is a closed subgroup, then H is compact.

(9), if G is compact, then the topological space G/H is compact.

(10), If H is compact and the quotient space G/H is compact, then G is compact.

For detailed proof, see [12].

3.1.1 Restricted direct products

Let {Gv : v ∈ Λ} be a family of locally compact topological groups where
Λ is a set of indices; let Λ∞ be a finite subset of Λ. For each v ∈ Λ\Λ∞, we
fix a compact open subgroup Hv of Gv. We say a condition holds for almost
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all elements of a set if it holds for all but finitely many elements. We define
the restricted direct product of the Gv with respect to the Hv as follows

G =
∏
v∈Λ

′
Gv = {(xv) : xv ∈ Gv with xv ∈ Hv for almost all v}.

We give G a topology by taking as a basis of open sets the sets
∏
Nv where

the open sets Nv ⊂ Gv for all v, and Nv = Hv for almost all v. It is clear
that the restricted topological product G of Gv is locally compact. For the
detailed proof, see [12].

Let S be any finite subset of Λ containing Λ∞ and consider the subgroup
GS defined by

GS =
∏
v∈S

Gv

∏
v/∈S

Hv.

Then GS is an open subset of G and the topology induced on GS as a subset
of X is the same as the product of a finite family of locally compact groups
with a compact group; hence GS is locally compact in the product topology.

3.1.2 The adele ring

Let k be an algebraic number field and v be any place. Let kv be the
completion of k with respect to the normalized valuation at the place v.
For each nonarchimedean place v of k, let ov denote the ring of integers of
kv and Uv denote the unit group of kv. The adele ring Ak is the restricted
direct product of the kv with respect to the ov, that is

Ak =
{

(αv) ∈
∏

kv : αv ∈ ov for almost all v
}
.

The adele ring form a commutative ring under componentwise addition and
multiplication. For any α ∈ k, there is a natural continuous ring inclusion
which is called the diagonal map

k −→ Ak

a 7−→ (α).

We see at once that the diagonal map is injective because each map k → kv
is an inclusion. It enables us to identify k with a subring of Ak. The
image of the diagonal map is called the ring of principal adeles. Write
Sf = {v : v < ∞} all finite places and S∞ = {v : v|∞} all infinite places
of k. Let S be a finite set of places of k containing S∞. The

AS
k =

∏
v∈S

kv
∏
v/∈S

ov

is called the S-adeles.
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Lemma 3.1. The field k is the discrete subring of Ak.

Proof. On account of the additive group structure of Ak it suffices to find
a neighborhood U of 0 in Ak which contains no elements of k other than 0.
Denote the set U by

U =
∏
v|∞

Nv

∏
v<∞

ov

= {(αv) : |αv|v < 1 for v|∞ and αv ∈ ov for v <∞},

is an open set containing 0; and it contains no other elements of k by the
Product Formula.

Theorem 3.2. Ak/k is compact.

Proof. In order to prove this important result, we require the following
preliminary result, which will be useful in its own right.

• AS∞
k ∩ k = ok and AS

k + k = Ak.
That AS∞

k ∩ k = ok follows immediately from the fact that α ∈ k lies in
ok if and only if ordp(α) ≥ 0 for all nonzero prime ideals p in ok.

Let α = (αv) ∈ Ak and T = {v < ∞ : αv /∈ ov}. Then T is finite
set of places of k. By the approximation theorem, there exists β ∈ k such
that |β − αv|v ≤ 1 for v ∈ T and |β|v ≤ 1 for v /∈ T ∪ S∞. It follows
that |β − αv| ≤ max{|β|v, |αv|v} ≤ 1 for v /∈ T ∪ S∞. We conclude that
(β − αv) ∈ ov for v ∈ Sf , hence that β − (αv) ∈ AS

k , and finally that
α ∈ AS

k + k.

Now we turn to prove the theorem. We first have( ∏
v∈S∞

kv

)
/ok ∼= Rn/ok

is compact because ok is a lattice. Therefore, we get that

Ak/k = (AS∞
k + k)/k ∼= AS∞

k /(AS∞
k ∩ k)

= AS∞
k /ok =

( ∏
v∈S∞

kv

)
/ok

∏
v∈Sf

ov

=
(
Rn/ok

) ∏
v∈Sf

ov

is compact.
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•Recall: Fundamental domain Given a topological space X and a group G acting
on it, the images of a single point under the group action form an orbit of the action. A
fundamental domain D is a subset of the space which contains exactly one point from
each of these orbits, i.e., for each x ∈ X, there exists α ∈ D and g ∈ G such that gx = α
and the choice of α is unique.

Corollary 3.3. (Strong approximation theorem for adeles) The fundamen-
tal domain D for k \ Ak is given by

D = D∞
∏
v∈Sf

ov,

where

D∞ =

{
n∑
i=1

aiωi : 0 ≤ ai < 1

}
with {ωi : 1 ≤ i ≤ n} being integral basis of k. In particular, the D =
[0, 1)

∏
Zp is called the fundamental domain for Q \ AQ. That is, we have

a disjoint union

AQ =
⋃
α∈Q

(α +D).

Proof. This corollary is to say that every element α ∈ Ak could be expressed
uniquely in the form β + γ, where β ∈ k, γ ∈ AS∞

k , and where the infinite
component of γ is of the form

n∑
i=1

aiωi, 0 ≤ ai < 1.

From the proof of theorem 3.2 we know that every α could be expressed
like that. Then we only need to prove the uniqueness.

If β1 + γ1 = β2 + γ2, then we know β1 − β2 = γ1 − γ2. Hence we know
γ1−γ2 ∈ k. As we know γ1−γ2 ∈ AS∞

k , then we could have that γ1−γ2 ∈ ok.
Hence we know γ1 = γ2 by the infinite component. Hence β1 = β2.

3.1.3 The idele group

The idele group Ik is the restricted direct product of the k×v with respect to
the Uv, that is

Ik =
{

(αv) ∈
∏

k×v : αv ∈ Uv for almost all v
}
.

It follows easily that the idele group Ik is the group of invertible elements
of the adele ring Ak. But although Ik is a subset of Ak we must not give it
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the subspace topology, for α 7→ α−1 would not continuous in that topology.
By the restricted direct product, a basis for the open sets in Ik is given by∏
Nv where each Nv is open in k×v and Nv = Uv for almost all v. For the

convenience, we set Uv = {±1} if v is a real place and Uv = S1 if v is a
complex place.

As with adele, there is diagonal map k× −→ Ik defined by a 7−→ (α).
Thus we can identify k× with a subset of Ik and its image are called the
principal ideles. This map induces on k× the subspace topology; and we
can form Ik/K× and endow it with the quotient topology. The

ISk =
∏
v∈S

k×v
∏
v/∈S

Uv

is called the S-ideles where S ⊃ S∞ is a finite set of places of k. In
particular, the element α ∈ IS∞k is called the unit ideles.

Lemma 3.4. The group k× is the discrete subgroup of Ik.

Proof. Set U = {(αv) : |xv−1|v < 1 for v|∞ and |xv−1|v ≤ 1 for v <∞}.
Then U is an open neighborhood of 1 and U ∩ k× = {1}.

The factor group Ak/k is called the adele class group, and similarly the
group Ik/k× is called the idele class group.

If α = (αv) ∈ Ik, define the content of the idele α by

|α| =
∏
v

|αv|v.

It is clearly well-defined because αv ∈ Uv for almost all v.

Lemma 3.5. The map φ : Ik → R×+ as above is continuous epimorphism
where R×+ is the multiplicative group of positive real numbers. There is an
exact sequence

1→ I1
k → Ik

φ→ R×+ → 1,

where I1
k = kerφ = {α ∈ Ik : |α| = 1}.

Proof. By the definition of the content map φ, we easily see φ is a homo-
morphisms. Define the two subgroups

I1 =
∏
v∈S∞

k×v

I2 = {(αv) ∈
∏
v∈Sf

k×v : αv ∈ Uv for almost all v ∈ Sf}
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considered as closed subgroup of Ik in the obvious way. Let φi(i = 1, 2) be
the restriction of φ to Ik. It suffices to show that φi is continuous, since
Ik = I1 × I2, φ = φ1φ2. But the map

k×v −→ R×+
α 7−→ |α|v|∞

are continuous and surjective, so φ1 is continuous and surjective. The map
φ2 contains the open subgroup

∏
v∈Sf Uv in its kernel, and is therefore con-

tinuous. The surjectivity of φ follows from the surjectivity of φ1.
On the other hand, by the definition of I1

k, we know ker(φ) = I1
k. So

there is an exact sequence

1→ I1
k → Ik

φ→ R×+ → 1.

Lemma 3.6. I1
k/k

× is closed both as a subset of Ik and as a subset of Ak,
and the two induced topologies on it coincide.

Proof. To prove that I1
k is closed in Ak, it suffices to show that there exists

Ak−neighborhoodW of α which does not meet I1
k for any α = (αv) ∈ Ak−I1

k.
Since |α| 6= 1, there are two cases to consider.

First suppose that |α| > 1. Then there is a finite set S including all
infinite places and those finite prime p which either Normp ≤ 2|α| or |αp|p >
1. We can choose ε so small that |wv − αv|v < ε for v ∈ S implies 1 <∏

v∈S |wv|v < 2|α|. Then define

W = {w = (wv) : |wv − αv|v < ε for v ∈ S,wv ∈ ov for any others}.

This works because if w ∈ W, then either |wv|v = 1 for all v 6∈ S, in which
case |w| > 1, i.e. w 6∈ I1

k, either |wv0 |v0 < 1/2|alpha| for some v0 6∈ S, in
which case

|w| = (
∏
v∈S

|wv|v) · |wv0| · · · < 2|α| · 1/(2|α|) · · · < 1,

so w 6∈ I1
k.

If instead |α| < 1. Then there is a finite set S including all infinite
places and those finite prime p with |αp|p > 1, such that

∏
v∈S |αv|v < 1. We

can choose ε so small that |wv − αv|v < ε for v ∈ S implies
∏

v∈S |wv|v <
1
2
(
∏

v∈S |αv|v + 1) < 1. Then define

W = {w = (wv) : |wv − αv|v < ε for v ∈ S,wv ∈ ov for any others}.
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Obviously, W does not meet I1
k.

Thus I1
k is closed in Ak. It is closed in Ik, because the idelic topology on

Ik is finer than he restriction of the adelic topology.
For the last assertion in the lemma it suffices to show that any Ik−open

subset of I1
k is Ak−open, the converse being trivial. Now let W =

∏
Wv

be any basic Ik−open set; we need to find a Ak−open set W ′ such that
W
⋂

I1
k = W ′⋂ I1

k. By writing W as a union of smaller basic open sets if
necessary, we can assume that each Wv is bounded; since for all but finitely
many v we have Wv = o×k and therefore |αv|v = 1 for all αv in Wv, there is
a constant C such that |α| =

∏
|αv|v < C for all α in W. Now write

W ′
v =

{
op if p is finite, Wp = o×p and Normp > 2C

Wv otherwise
(3.1)

Since the first of these happens for all but finitely many p,W ′ =
∏
W ′
v

open in Ak; and W ′⋂ I1
k = W

⋂
I1
k as in the first part of the proof.

There is a natural homomorphism map of Ik to the fractional ideals Jk
of ok. Indeed, given an idele α = (αv) ∈ Ik,

η : α = (αv) 7−→ (α) =
∏
v∈Sf

pordp(αv)
v ,

where pv is the prime ideal of ok with respect to the finite place v. It is
easily seen that this map is onto and its kernel is

ker η = {(αv) : ordv(αv) = 0 for all finte v} = IS∞k .

Thus we have an isomorphism

Ik/k×IS∞k ∼= Jk/Pk = Ck,

where Pk is the principal fractional ideals group and Ck is the ideal class
group. By the product formula we have that k× ⊂ I1

k. The following result
is of vital importance in class field theory.

Theorem 3.7. I1
k/k

× is compact.

Proof. Let the map η be as above. Then it induces a homomorphism of
I1
k/k

× onto Ck whose kernel consists of the idele classes I1
∞ = H ×

∏
v<∞ Uv

where

H =
{

(αv) ∈
∏
v|∞

k×v :
∏
v|∞

|αv|v = 1
}
.
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Indeed, the map η restricts only the nonarchimedean co0rdinates and we
can adjust the archimedean coordinates to obtain |α| = 1. Then we have
the exact sequence

1→ k×I1
∞/k

× → I1
k/k

× → Jk/Pk → 1.

Clearly, I1
∞ ∩ k× = Uk, and thus

k×I1
∞/k

× = k×
(
H ×

∏
v<∞

Uv

)
/k×

∼=
(
H ×

∏
v<∞

Uv

)
/
(
H ×

∏
v<∞

Uv

)
∩ k×

=
(
H ×

∏
v<∞

Uv

)
/Uk

∼=
(
H/Uk

)
×
∏
v<∞

Uv.

By Dirichlet unit theorem (1.12), we have the map

λ : H → Rr1+r2 , (αv)v|∞ 7→ (log |αv|v)v|∞.

It follows that kerλ =
∏

v|∞ Uv is compact and λ(Uk) is a lattice in λ(H).

Therefore H/Uk is compact, and then
(
H/Uk

)
×
∏

v<∞ Uv is compact. The

theorem immediately follows from the finiteness of the class group.

To prove the above Theorem we used the finiteness of the ideal class
group and Dirichlet’s unit theorem. Conversely, from an independent proof
of the above Theorem we can immediately these two results–which are the
key structural theorems of the elementary theory. For such a proof, see
Chapter II of [4].

Let {ε1, . . . , εr−1} be fundamental system of units of the number field k
and denote by

P =

{
r−1∑
i=1

aiλ(εi) : 0 ≤ ai < 1

}
.

We define

E0 = {α = (αv) ∈ H : λ(α) ∈ P and 0 ≤ argαv0 < 2π/ω} ,

where ω is the order of the group of the roots of unity in k and v0 is a
fixed finite place of k. Let β1, . . . , βh be ideles such that η(β1), . . . , η(βh)
are representatives of the ideal classes of Ck.
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Corollary 3.8. (Strong approximation theorem for ideles) The fundamental
domain D for k× \ I1

k is given by

D =
h⋃
i=1

βi

E0

∏
v∈Sf

Uv

 .

That is,

Ik =
⋃
α∈k×

αD

is a disjoint union.

In particular, the D = (0,∞)
∏

Z×p is the fundamental domain for Q× \
IQ. That is, we have a disjoint union

IQ =
⋃
α∈Q×

αD.
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3.2 Idele class group and ray class group

3.2.1 Idele class groups

3.2.2 Ray class group

3.2.3 Hecke characters
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3.3 Characters on local and global fields

Let G be a topological group. A quasi-character χ of G is a continuous
homomorphism from G into C×. In particular, A quasi-character is called
(unitary) character if its image is in the circle group S1 = {z ∈ C : |z| =
1}. We shall show that any quasi-character can be written uniquely as a
unitary character times a real power of the norm, so there is no big difference
between the two definitions.

3.3.1 Duality theory

Let G be a locally compact abelian group. The set Ĝ of all characters of G
forms a multiplicative group in an obvious way,

χ1χ2(g) = χ1(g)χ2(g), g ∈ G,

called the character group or dual group of G. We can topologize Ĝ as
follows. It is said to compact-open topology. Fix a character χ0 of G; then
a basis for the open neighbourhood U(χ0, ε) of χ0 in Ĝ is given by

UK(χ0, ε) = {χ ∈ Ĝ : |χ(g)− χ0(g)| < ε, for any g ∈ K},

where ε > 0 is in R and K is any compact subset of G. We have the
following fundamental facts, for detailed proof see [12] or [18].

(1), The group Ĝ is a locally compact abelian group. If G is compact,

then Ĝ is discrete, and if G is discrete, then Ĝ is compact.
(2), (Pontryagin Duality Theorem) The map that associated to g ∈ G

the character χ̂g : χ 7→ χ(g) of Ĝ is an isomorphism of the topological

groups G and
̂̂
G.

(3), If H is closed subgroup of G and the annihilator H⊥ = {χ ∈ Ĝ :

χ(H) = 1}, then H⊥ is closed in Ĝ and there are canonical isomorphisms

Ĥ ∼= Ĝ/H⊥ and Ĝ/H ∼= H⊥.
(4), Any character on a closed subgroup of G can be extended (non-

uniquely) to the whole of G.
(5), If G is compact, or if every element of G is of finite order, then

every quasi-character of G is a character.
(6), The dual group of the direct product G1 × G2 is isomorphism to

Ĝ1 ×G2.
The G is called the self-dual if there is a topological isomorphism from G

onto Ĝ. We shall show that kv and Ak are self-dual locally compact abelian
topological groups.
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3.3.2 Characters on local fields

Let k be a locally compact topological field. Then it is a group under ad-
dition, and at the same time the set of elements of k other than 0 forms
a group under multiplication. Henceforth we denoted by k+ is the addi-
tive group of k, and by k× its multiplication group. Let χ be an additive
character of a local field k+, i.e., a continuous homomorphism such that

χ(x+ y) = χ(x)χ(y), for any x, y ∈ k+.

Let ψ be a multiplicative character of a local field k×, i.e., a continuous
homomorphism such that

ψ(xy) = ψ(x)ψ(y), for any x, y ∈ k×.

A topological group G is said to have no small subgroup if there exists a
neighborhood U of the identity that contains no nontrivial subgroup of G;
otherwise G is said to have small subgroup. A basic example of a topological
group with no small subgroup is the general linear group over the complex
numbers. In particular, the circle S1 has no small subgroups. The subgroups
{1 + pmp } are small subgroups of nonarchimedean local field k×p , that is, any
neighborhood of the identity in k×p contains some 1 + pnp .

The complex valued function f(g) on a topological group G is locally
constant if it is constant in some neighborhood of each point.

Lemma 3.9. Let G be a totally disconnected locally compact topological
group. Then any quasi-character χ is locally constant.

Proof. Let {Hn} be a basis of neighborhood of the identity consisting of
open and compact subgroups of G. Then χ(H1) is compact subgroup of C×
and C× ⊂ S1. Denote the neighborhood N of 1 in S1 by {z ∈ S1 : <z >
1/2}. Then χ−1(N ) is a neighborhood of the identity of G. Hence we have
Hn ⊂ χ−1(N ) for sufficiently large n. It follow that χ(Hi) is a subgroup
of S1 contained in N and must therefore be trivial because N contains no
nontrivial subgroups.

Let kp be a local field and χp be a nontrivial additive character. Then
χp is locally constant, i.e., there exists pmp such that χp(p

m
p ) = χp(0) = 1.

Let m be the smallest integer such that χp(p
m
p ) = 1. We call fp = pmp the

conductor of χp. Similarly, let ψp be a nontrivial multiplicative character of
k×p . Let m be the smallest integer such that ψp(1 + pmp ) = 1. We also call
fp = pmp the conductor of ψp. If m = 0, then by define, f = op.
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♠ Additive characters

Lemma 3.10. Let kv be a nonarchimedean local field. Then every quasi-
character χv of k+

v is a character.

Proof. Let ov be the ring of integers of kv. Then the restrict of χv to ov
must be a character because ov is compact. But every element of k×v can
be written the form α/m with α ∈ ov and m ∈ N, and since |χ(α/m)|m =
|χ(α)| = 1 we get |χ(α/m)| = 1.

Theorem 3.11. Let kv be any local field. Let χ be a fixed nontrivial additive
character of k+

v . For each α ∈ k+
v the map χα(x) = χ(xα) is an additive

character of k+
v , and the map α 7→ χα of k+

v into k̂+
v is a topological group

isomorphism. That is, the local field kv is self-dual.

Proof. The map x 7→ χα(x) is a continuous homomorphism of k+
v into S1,

since the map x 7→ xα for fixed α is a continuous homomorphism of k+
v into

itself.
As is easily seen, ϕ : α 7→ χα is a injective group homomorphism of k+

v

into k̂+
v .

The topology in k̂+
v is defined by the neighborhood system of the unit

(i.e., trivial) character χ0, which consists of the sets

U(ε, B) = {χ′ ∈ k̂+
v : |χ′(x)− 1| < ε for anyx ∈ B},

where ε > 0 is in R, and B is a compact subset of k̂+
v . It suffices to take for

B the sets of the form

Bm = {x ∈ k̂+
v : |x| ≤ m}

with m ∈ R,m > 0.
To establish the continuity of ϕ we must show that for every U(ε, Bm)

there exists a neighborhood U of 0 in k̂+
v with ϕ(U) ⊆ U(ε, Bm). Let δ > 0

with |χ(β)− 1| < ε for |β| < δ. Then

U = {α ∈ k+
v : |α| < δ

m
}

provides what we need to show.
The map ϕ−1 of ϕ(k+

v ) onto k+
v is likewise continuous. For this we must

show that for every δ > 0 there exist ε > 0 and m > 0 with |ϕ−1(χα)| < δ
for χα ∈ ϕ(k+

v ) ∩ U(ε, Bm).
Let x0 be an element of k+

v with χ(x0) 6= 1. We set

ε = |χ(x0)− 1|, m =
|x0|
δ
.
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For α ∈ k+
v with ϕ(α) ∈ U(ε, Bm) we have x0 6∈ αBm and thus |x0| > |α|m;

that is, |α| < δ.
We have proved that the topological groups k+

v and ϕ(k+
v ) are isomor-

phic. When k+
v is complete, then so is ϕ(k+

v ), and it is therefore closed in

k̂+
v ). By Pontryagin duality theory, there exists a one to one relation be-

tween the closed subgroup of k+
v and k̂+

v . Here there corresponds to ϕ(k+
v )

in k+
v the subgroup of x ∈ k+

v with χα(x) = 1 for all α ∈ kv. Since χ
is nontrivial, this holds only for x = 0. It follows that ϕ(k+

v ) is equal to

k̂+
v ).

For any local field kv, we may construct the standard character χv ∈ k̂+
v .

For simplicity, we set e(z) = e2πiz for z ∈ C.
• Case kv = R: For any α ∈ R, set λp(α) = −α mod Z and χv(α) =

e(−α) = e(−λp(α)).
• Case kv = C: For any z ∈ C, set λp(z) = −2=z mod Z and χv(z) =

e(−2=z) = e(−λp(z)).
• Case kv = Qp, p < ∞: For any α ∈ Qp, choose m ∈ Z so that

pmα ∈ Zp. Since Z is dense in Zp, there exists a ∈ Z such that∣∣∣∣α− a

pm

∣∣∣∣
p

≤ 1.

Set λp(α) = a/pm(modZ) which is independent of the choice of m and a.
Clearly, λp is a nontrivial continuous homomorphism of Q+

p into R/Z in

both cases. Denote χp ∈ Q̂+
p by

χp(α) = e(λp(α)).

It is clear that χp is trivial on Zp.
• Case kv/Qp, p <∞: Denote χv ∈ k̂+

v by χv = e ◦ λp ◦ Trkv/Qp , i.e.,

χv(α) = e(λp(Trkv/Qp(α))).

By Theorem (3.11), we immediately obtain that, for any fixed α ∈ kv,
the map

kv −→ k̂+
v

α 7−→ χα

is an algebraic and topological isomorphism where χα(x) = e(λp(Trkv/Qp(xα)))
is a nontrivial additive character of k+

v .
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♠ Multiplicative characters

For any α ∈ k×v , we have that α can be represented uniquely in the form

v|∞ : α = ur, u ∈ Uv, r > 0;

v <∞ : α = uπrv, u ∈ Uv, r ∈ Z, (3.2)

where πv is an uniformizing parameter at the place v; that is, we have

k×v
∼= Uv × R×+ or k×v

∼= Uv × Z (3.3)

according as v is archimedean or not. By the fact Ĝ1 × Ĝ2
∼= Ĝ1 ×G2, we

firstly shall consider the character on the unit group Uv.
Let ψv be a multiplicative character of a local field k×v . The quasi-

character ψv is called the unramified at the place v if it is trivial on Uv;
otherwise we called it ramified.

Lemma 3.12. The unramified quasi-characters ψv are the form ψv : α 7→
|α|sv, where s is any complex number; s is determined by ψv if v is archimedean
and s is determined only mod 2πi/ logNp if v is p-adic.

Proof. It is clear that the quasi-character ψv(α) = |α|sv are unramified.
Conversely, let χ be an unramified quasi-character. Then ψv(α) depends
only on the value group Γv = {|α|v : α ∈ k×v }. The value group Γv = R×+ if
v is infinite and Γv is the infinite cyclic group generated by Npv.

By (3.3), we have ψv(α) = |α|itv , t ∈ R, since every character of R×+ is of
the form α 7→ αit, t ∈ R, see exercises. If v is a finite place, then

|α|sv = es log |α|v = e−ordv(α)s logN(pv).

Hence s is determined up to addition of a multiple of 2πi/ logNpv.

Lemma 3.13. Let α ∈ k×v be written as the form (3.2). Every quasi-
character ψv of k×v has the form

ψv(α) = cv(u)|α|sv, (3.4)

where cv is a character of Uv and s ∈ C.

Proof. It is clear that every mapping of the form (3.4) is a quasi-character.
Conversely, let ψv be an arbitrary quasi-character, and let cv be the restric-
tion of ψv on Uv. Then cv is a character since Uv is compact. Furthermore,
ψv(α)cv(α)−1 is an unramified quasi-character of k×v . The result immedi-
ately follows the above lemma.
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Suppose that cv is a character of Uv for any place v.

(1) v is a real place. We have Uv = {±1}. There are just two classes
of characters on Uv:

cv(x) = 1 or cv(x) = sign(x).

It follows that we have, for x ∈ R,

ψv(x) = |x|sv or ψv = sign(x)|x|sv , (3.5)

for some pure imaginary sv.

(2) v is a complex place. We have Uv = S1. It is well know that

Ŝ1 ∼= R̂/Z ∼= Z, that is, any character of S1 is the form cv : eiθ 7→ eimθ for
any m ∈ Z. It follows that we have, for z ∈ C,

ψv(z) =

(
z

|z|

)nv
|z|sv , (3.6)

for some pure imaginary sv and for some integer nv.

(3), v is a finite place with respect to a prime ideal p. Let pmp be
the conductor of cv, i.e., cv(1 + pmv ) = 1 and cv(1 + pm−1

v ) 6= 1. Uv/(1 + pmv )
is the finite group with the order Npr−1(Np−1) because Uv is compact and
1 + pmp is open. Thus cv is essentially a character of this finite group.

3.3.3 Characters on global fields

Now let us consider the dual groups of the adeles and ideles. Since both the
adels and ideles are constructed as restricted direct products, let us consider
the general problem of calculating the dual of a restricted direct product

G =
∏′

Gv, with respect to the compact open subgroup Hv.

Let χ ∈ Ĝ. The the restricted of χ to Gv is a character χv of Gv, i.e., for
any αv ∈ Gv, denote χv by

χv(αv) = χ(α|v), where α|v = (1, . . . , 1, αv, 1, . . . ).

Proposition 3.14. (1), Let χ ∈ Ĝ and χv be as above. Then χv(Hv) = 1
for almost all v and for α = (αv) ∈ G,

χ(α) =
∏
v

χv(αv).
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(2), Conversely, let χv ∈ Ĝv and χv(Hv) = 1 for almost all v. Then for
any α = (αv) ∈ G,

χ(α) =
∏
v

χv(αv)

defines a character of G.

Proof. (1), Let U be a neighborhood of 1 in S1 that contains no subgroups
of S1 other than {1} and let N be a neighborhood of the identity in G such
that χ(N) ⊂ U and such that

N =
∏
v∈S

Nv

∏
v/∈S

Hv,

where S is a finite set of v and Nv is a neighborhood of the identity of Gv.
Hence the restrict χv of χ on Gv satisfies χv(Hv) = 1 for v /∈ S.

For any given α = (αv) ∈ G, let T be a finite set of v containing all v
for which (1) αv /∈ Hv, (2), v ∈ S, or (3) Hv undefined. Then

α = (αv) = (αv; 1, . . . , 1︸ ︷︷ ︸
v/∈T

)(1, . . . , 1︸ ︷︷ ︸
v∈T

;αv) ∈
∏
v∈T

Gv

∏
v/∈T

Hv

and χv(Hv) = 1 for any v /∈ T . It follows that

χ(α) = χ((αv; 1, . . . , 1︸ ︷︷ ︸
v/∈T

))χ((1, . . . , 1︸ ︷︷ ︸
v∈T

;αv))

=
∏
v∈T

χv(αv) =
∏
v

χv(αv).

(2),

For each v, we define H⊥v = {χv ∈ Ĝv : χv(Hv) = 1}. Since Hv is open

in Gv, we have Gv/Hv is discrete, hence that H⊥v
∼= Ĝv/Hv is compact. Also

since Hv is compact in Gv, we have Ĝv/H
⊥
v
∼= Ĥv is discrete, hence that H⊥v

is open. Thus for almost all v, the subgroups H⊥v of Ĝv are compact and

open in Ĝv. Thus we can define the restricted direct product of Ĝv with
respect to H⊥v∏′

Ĝv =
{

(χv) ∈
∏

Ĝv : χv ∈ H⊥v for almost all v
}
.

Theorem 3.15. The map χ 7→ (χv) is canonically isomorphic of the topo-

logical group Ĝ into
∏′Ĝv.

113



Proof. From Prop 3.13, We can know that the mapping χ → (χv) is an
algebraic isomorphism. Let us show that it is also a topological isomorphis-
m. Now χ ∈ Ĝ is close to the identity character ⇔ χ(B) is contained in a
small neighborhood of 1, for B ⊆ G some large compact set. Without loss
of generality, assume that B is of the form

∏
v∈S

Nv

∏
v/∈S

Pv, where Nv ⊆ Gv

compact, S is a finite set of v. Assume that S is so large that if χv(Hv) 6= 1,
then v ∈ S. Then χ is close to the identity character ⇔ χ(B) is close to 1
⇔ χv(Nv) is close to 1, for v ∈ S; χv(Hv) = 1, for v /∈ S ⇔ χv close to the

identity character in Ĝv, for v ∈ S; χv ∈ H⊥v , for v /∈ S ⇔ χ = (χv) is close

to the identity in
∏′Ĝv.

As a particular case of Theorem (3.15), let G = Ak, the adele ring of a
number field k. Then Gv = kv, Hv = ov and

o⊥v = {χv ∈ k̂v : χv(ov) = 1}
= {α ∈ kv : χα(ov) = 1}
= {α ∈ kv : e(λp(Trkv/Qp(αov))) = 1}
= {α ∈ kv : λp(Trkv/Qp(αov)) ⊂ Z}
= {α ∈ kv : Trkv/Qp(αov) ⊂ Zp}
= D−1

v .

Since there is only a finite number of primes that ramify in the extension
k/Q, we have o⊥v = D−1

v = ov for almost all v. Thus

Âk =
∏′

v
k̂v =

∏′

v
kv = Ak,

because kv is self-dual. The isomorphism between Ak and Âk can be explic-
itly realized as follows. Define the continuous additive mapping

Λ : Ak −→ R/Z
(αv) 7−→

∑
v

λp(Trkv/Qp(αv)).

This sum is well defined since αv ∈ ov = D−1
kv/Qp for almost all v, so

λp(Trkv/Qp(αv)) = 0 for almost all v. The character χα corresponding to
α = (αv) in Ak is given by, for any β = (βv) ∈ Ak,

χα(β) =
∏
v

χv(αvβv) =
∏
v

e
(
λp(Trkv/Qp(αvβv))

)
= e

(∑
λp
(
Trkv/Qp(αvβv)

))
= e (Λ(αβ)) .
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Corollary 3.16. The character χα is trivial on k if and only if α is in k.

In particular, we have Âk/k ∼= k, that is, given any non-trivial character
χ on Ak/k, all characters on Ak/k are of the form x 7→ χ(αx) for some
α ∈ k.

Proof. Suppose first that α, β are both in k. We have

−λ∞
∑
v|∞

Trkv/Q(αβ) =
∑
p

λp
∑
v|p

Trkv/Qp(αβ)

Let G = {α ∈ Ak : χα(k) = 1}. Then G ⊃ k is a k-vector space; thus
G/k is a subspace of Ak/k. But the latter is compact, so G/k is trivial.
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3.4 Harmonic Analysis on Adele groups

3.4.1 Haar measures and Haar integrals

Let G be a locally compact topological group, and denote by B the sigma
algebra generated by the closed compact subsets of G. A left Haar measure
on G is a measure µ on B which is:

(1), µ(E) = inf{µ(U) : U ⊃ E,U open} for all sets E.
(2), µ(E) = sup{µ(K) : K ⊂ E,K compact} for all open sets E.
(3), µ(gE) = µ(E) for all sets E and g ∈ G.
(4), µ(K) <∞ for all compact sets K.
(5), µ(E) > 0 for all non-empty open sets E.

Let µ be a left Haar measure of G and L1(G) be the linear space of
measurable complex valued functions on G with respect to dµ. In this
section we shall be mainly interested in locally compact abelian groups.
Left and right Haar measure are the same thing. The main result about
Haar measure is the following.

Theorem Let G be a locally compact topological group. There exists on
G a left Haar measure µ uniquely determined up to a constant. There is a
corresponding integral

∫
G
f(g)dµ(g) with the property∫

G

f(g0g)dµ(g) =

∫
G

f(g)dµ(g).

Now let kv be a locally compact topological field. Associated with kv
there are two topological groups: k+

v with the addition law and k×v with
the multiplication law. The corresponding Haar measure µ+ and µ× are
different.

Let α be any non-zero element of kv and S be any measurable set of kv.
Then the map x 7→ αx is an automorphism of the additive group kv and
µ+(αS) is also an additive Haar measure. Then we have

µ+(αS) = modv(α)µ+(S)

by the uniqueness of Haar measure, where the constant modv(α) does not
depend on the choice of S and µ+. Clearly, we have

modv(αβ) = modv(α)modv(β).

Lemma 3.17. Let the notations and assumptions be as above. Then modv(α) =
|α|v or symbolically d+αx = |α|vd+x.
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Proof. It is clear that the result is true for v|∞. For nonarchimedean local
fields, we take S = ov and ordvα = m with m ≥ 0. The additive subgroup
αov = pmv of ov has index (Npv)

m and µ(ov) is finite because ov is open and
compact. Hence we get µ(ov) = (Npv)

mµ(αov); it follows that modv(α) =
Npv

−m = |α|v.

♠ Additive Haar Measures: By the fundamental theorem of Haar
measures on locally compact abelian groups, we know that Haar measures
are unique up to scalars. It will be convenient for us to set:
• v is real. d+x is standard Lesbegue measure for R.
• v is complex. d+z is twice standard Lesbegue measure for C.
• v is finite. We choose the Haar measure on k+

v such that µ(ov) =
|dv|−1/2 = (NDv)

−1/2 where dv is the discriminant of the extension kv/Qp

and Dv is the local different of the extension kv/Qp.
It is called the normalized additive measure on k+

v .

♠ Multiplicative Haar Measures: Let µ+ be any additive Haar
measure of k+

v . Then the measure

µ×(S) =

∫
S

d+x

|x|v
is a multiplicative measure of k×v . Indeed, We have, for any measurable set
S of k×v and any α ∈ k×v ,

µ×(αS) =

∫
αS

d+x

|x|v
=

∫
S

d+αx

|αx|v
=

∫
S

d+x

|x|v
= µ×(S)

by Lemma (3.17). We normalized the multiplicative measure on k×v such
that

d×x =

{
d+x
|x|v , if v|∞;
Npv
Npv−1

d+x
|x|v , if v <∞.

Lemma 3.18. For v <∞, we have µ×(Uv) =
∫
Uv

d×x = |dv|−1/2.

Proof.

µ+(ov) =

∫
ov

d+x =
∑
m≥0

∫
πmv Uv

d+x

=
∑
m≥0

∫
Uv

d+πmv u =
∑
m≥0

(Npv)
−m
∫
Uv

d+u

= µ×(Uv).
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♠ Measures on Restricted Direct Products: We wish to create
a measure on the restricted direct product G =

∏′Gv with respect to the
compact open subgroups Hv. Let µv be measures on the Gv (represented
by dxv in an integral), with µ(Hv) = 1 for almost all v. Let S be a finite
set of v which includes all v for which Hv is undefined and all v for which
µ(Hv) 6= 1. Let

GS =
∏
v∈S

Gv ×
∏
v/∈S

Hv =
∏
v∈S

Gv ×GS.

Then GS is compact and GS is an open subgroup of G. Choose a Haar
measure dxS on GS so that µS(GS) = 1. Given GS the product measure

dxS =
∏
v∈S

dxv × dxS.

Since GS is an open subgroup of G, a Haar measure dx on G is now deter-
mined by the requirement that dx = dxS on GS.

Let T ⊃ S be a larger set of indices. Then GS ⊂ GT , and we have only
to check that the dxT constructed with T coincides on GS with the dxS
constructed with S. Now one sees form the decomposition

GS =
∏
v/∈S

Hv =
∏
v∈T\S

Hv ×GT

that dxS =
∏

v∈T\S dxv × dxT . Therefore

dxS =
∏
v∈S

dxv × dxS =
∏
v∈S

dxv
∏
v∈T\S

dxv × dxT =
∏
v∈T

dxv × dxT = dxT .

Then this measure is independent of the set S, so that it defines a unique
Haar measure on G which we may denote symbolically by dx =

∏
dxv.

Proposition 3.19. For each v, let fv ∈ L1(Gv). Suppose that (1), fv(Hv) =
1 for almost all v; (2),

∏∫
Gv
|fv(xv)|dxv < ∞. Set f(x) =

∏
fv(xv) for

any x = (xv) ∈ G. Then∫
G

f(x)dx =
∏∫

Gv

fv(xv)dxv.

Proof. Since dx is a Haar measure,
∫
G
f(x)dx can be computed as

sup{
∫
B

f(x)dx}
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where B ranges over all compact subsets of G. But every compact subset
of B is contained in some GS for some finite subset S of v, Assume that S
is so large that fv(Hv) = 1 for v 6∈ S. Then

|
∫
B

f(x)dx| ≤
∫
B

|f(x)|dx ≤
∫
GS

|f(x)|dx

=
∏
v∈S

∫
Gv

|fv(xv)|dxv

≤
∏∫

Gv

|fv(xv)|dxv <∞

So f ∈ L1(G). And∫
G

f(x)dx = sup{
∫
B

f(x)dx} = lim
S

∫
GS

f(x)dx

= lim
S

∏
v∈S

∫
Gv

fv(xv)dxv

=
∏∫

Gv

|fv(xv)|dxv

3.4.2 Fourier transforms

Let µ be a Haar measure of G and L1(G) be the linear space of measurable
complex valued functions on G with respect to dµ. The Fourier transform
of f is the function on Ĝ given by

f̂(χ) =

∫
G

f(g)χ(g)dµg.

There is an important result about the Fourier transform as follows.

Inversion Theorem There exists a unique Haar measure µ̂ on the dual
group Ĝ such that for every continuous and integrable function f on G,
whose Fourier transform f̂ is also integrable, the following formula holds:

f(g) =

∫
Ĝ

f̂(χ)χ(g)dµ̂χ =
̂̂
f(−g).

In the above theorem, the Haar measure µ̂ is said to be dual to µ. In
particular, if G is self-dual, then one can choose the Haar measure so that
the inversion formula holds with the same measure on G and Ĝ; it is called
the self-dual Haar measure.
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Theorem 3.20. The normalized Haar measure d+x of k+
v is self-dual.

Proof. To prove the theorem, is to prove that on identifying k with its dual
as α 7→ χα = e(xλp(Trk/Qp(α))), the Fourier inversion formula holds for
d+χα = d+α.It suffices to verify that the Fourier inversion formula holds for
a single f . Let us consider the three cases separately.

Case 1: kv = R, set f(x) = e−πx
2
. Then

f̂(x) =

∫
R
e−πy

2+2πxyd+y = e−πx
2

∫ ∞
−∞

e−π(ix+y)2d+y

= e−πx
2

∫ ∞
−∞

e−πy
2

d+y = e−πx
2

Hence we have that f̂(x) = f(x) and
ˆ̂
f(x) = f(x) = f(−x), the Fourier

inversion theorem holds.

Case 2: kv = C, set f(z) = e−π|z|∞ and z = x + iy. Then we have
d+z = 2d+xd+y and |z|∞ = x2 + y2. Therefore,

f̂(χx + iχy) = 2

∫ ∞
−∞

∫ ∞
−∞

e−π(x2+y2)+4πiRe((x+iy)(χx+iχy))d+xd+y

= 2

∫ ∞
−∞

∫ ∞
−∞

e−πx
2+4πxχxe−πy

2−4πyχyd+xd+y

= 2

(∫ ∞
−∞

e−π(x−2iχx)2d+x)(

∫ ∞
−∞

e−π(y+2iχy)2d+y

)
= 2e−4π(χ2

x+χ2
y)

= 2f(2χx + 2iχy)

Therefore,
ˆ̂
f(z) = f(z) = f(−z), the Fourier inversion theorem holds.

Case 3: v <∞, let f be the characteristic function of ok. Then we have

f̂(y) =

∫
k

f(x)χy(x)d+x =

∫
ok

χy(x)d+x.

If y ∈ D−1,D = Dk/Qp , then χy(x) = 1 for any x ∈ ok, hence f̂(y) = ND−
1
2 .

If y /∈ D−1, then there exists x0 ∈ ok such that χy(x0) 6= 1, so that χy(x) is
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nontrivial. Therefore,

f̂(y) =

∫
ok

χy(x)d+x =

∫
ok

χy(x+ x0)d+x

= χy(x0)

∫
ok

χy(x)d+x

⇒ (1− χy(x0)

∫
ok

χy(x)d+x) = 0

⇒ f̂(y) = 0

Hence we have f̂(y) = ND−
1
2 .(characteristic function of D−1)

Therefore,
ˆ̂
f(x) = ND−

1
2

∫
D−1

χx(y)d+y.

By the same method as we calculate f̂ , we have that for x ∈ ok,

ˆ̂
f(x) = ND−

1
2

∫
D−1

d+y = ND−
1
2

∫
πordk(D

−1)ok

d+y

= ND−
1
2Np−ordk(D−1)ND−

1
2 = 1

Similarly, if x /∈ ok,
ˆ̂
f(x) = 0. Therefore,

ˆ̂
f(x) = f(−x), the Fourier

inversion theorem holds.

Corollary 3.21. Let d+xv be the normalized Haar measures (self-dual) of
k+
v for any places v of k. Then dx =

∏
d+xv is a self-dual measure on Ak.

Proof. Let χx = (χxv) ∈ Ak and f(x) = (fv(xv)) where fv(xv) is continuous
for all v and is the characteristic function of Hv for almost all v. For almost
all v, χxv ∈ H⊥v . Thus for almost all v, fv(xv)〈xv, χxv〉 is the characteristic
function of Hv. Moreover,∏

v

∫
Gv

|fv(xv)〈xv, χxv〉|∞d+xv ≤
∏
v

∫
Gv

|fv(xv)|∞d+xv <∞.

Since almost all the factors of the product is 1 and fv ∈ L1(Gv). Therefore,
we have that

f̂(χx) =

∫
G

f(x)〈x, χx〉dx

=

∫
Gv

(
∏
v

fv(xv)〈xv, χxv〉)dx

=
∏
v

∫
Gv

fv(xv)〈xv, χxv〉d+xv

=
∏
v

f̂v(χxv)
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Hence we have that

ˆ̂
f(x) =

∏
v

ˆ̂
fv(xv) =

∏
v

fv(−xv) = f(−x),

the Fourier inversion theorem holds.

3.4.3 The Schwartz-Bruhat space

In this subsection, we shall introduce a class of functions: the Schwartz-
Bruhat functions on the additive groups G = knv , where kv is any local field
or G = An where A is the adele ring of a global field.

Let f be a complex valued function on knv . Then f is said to smooth
if f has derivatives of all order as v|∞, i.e., f ∈ C∞ (knv ) and f is locally
constant as v < ∞. The function f on Rn is said to rapidly decreasing at
∞ if

‖f‖α,β = sup
x∈Rn
|xα1

1 . . . xαnn |
∂β1+···+βnf

∂xβ11 . . . ∂xβnn
(x)

is bounded for all αi, βi ∈ {0} ∪ N. The function f is said to compactly
supported if the closure of the set suppf = {x : f(x) 6= 0} is compact.

Definition 3.22. (1), The complex valued function f(x) on G = knv is
called the Schwartz-Bruhat function if f is smooth and rapidly decreasing
as v|∞; if f is smooth and compactly supported if v < ∞. Denote the
Schwartz-Bruhat functions space by S(G).

(2), A Schwartz-Bruhat funtion on Ak is a linear combination of func-
tions of the form

f =
∏
v

fv = f∞
∏
v<∞

fv, f∞ ∈ S(Rn) and fv ∈ S(kv)

where fv is the characteristic function of ov for almost all v <∞.

Proposition 3.23. For any f ∈ S(G), there is an open compact subgroup
K of G, such that f is right K-invariant.

Proof. Let S be the support of the functions f . It is compact. According
to locally constant, for all x ∈ S, there exists an open compact subgroup
Kx such that f(x) is constant on xKx. We have

S ⊂
⋃
x∈S

xKx.
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By the compactness of S, there are x′1, x
′
2, · · · , x′m, such that

S ⊂
m⋃
i=1

x′iKxi .

Take K = ∩i=mi=1 Kx′i
. Since Kx′i

/K is finite, we have

S ⊂
n⋃
i=1

xiK.

Therefor there exist complex numbers c1, c2, · · · , cn such that

f(x) =
n∑
i=1

ci char(xiK)

where char(giK) is the characteristic function of the right coset giK. It is
clear now that f(x) is right K-invariant.

According to Prop(**), we can define∫
G

f(g)dg =
n∑
i=1

ciµ(K),

which is a finite sum.
The main result about the Fourier transform of a Schwartz-Bruhat func-

tion is as follows.

Theorem 3.24. The Fourier transform of a Schwartz-Bruhat function on a
locally compact abelian group is a Schwartz-Bruhat function on the Pontrya-
gin dual group. In particular, if f ∈ S(G) for the self-dual groups G = k+

v

or Ak, then f̂ ∈ S(G).

Proof. See [7].

3.4.4 Poisson summation formula

The Poisson summation formula is an equation that relates the Fourier se-
ries coefficients of the periodic summation of a function to values of the
function’s continuous Fourier transform. Consequently, the periodic sum-
mation of a function is completely defined by discrete samples of the original
function’s Fourier transform. And conversely, the periodic summation of a
function’s Fourier transform is completely defined by discrete samples of
the original function [22].
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Theorem 3.25. Let H be a discrete subgroup of a locally compact abelian
group G such that G/H is compact. Then

µ (G/H)
∑
h∈H

f(h) =
∑
ĥ∈H⊥

f̂(ĥ),

provided that f is integrable on G, the series
∑

h∈H f(g + h) is absolutely

convergent uniformly in g and
∑

ĥ∈H⊥ f̂(ĥ) is absolutely convergent.

Proof. H⊥ is discrete and Ĝ/H⊥ is compact, by the Pontryagin Duality
Theorem. Define the function φ(x) on G/H by φ(x) =

∑
h∈H f(x+h); then∫

G/H

φ(x) dµ =

∫
G

f(g) dµ, φ̂(ĥ) =

∫
G/H

φ(x)ĥ(x) dµ. (∗)

By the Fourier Inverse formula,

φ(x)µ(G/H) =
∑
H⊥

ĥ(x)φ̂(ĥ)

up to a constant factor. To see that the constant is correct, set φ(x) = 1;
the φ̂(1) = µ(G/H) and φ̂(ĥ) = 0 otherwise, the latter result coming from
writing xx0 for x in the second equation (∗) where ĥ(x0) 6= 1. Also,

φ̂(ĥ) =

∫
G/H

φ(x)ĥ(x) dµ =

∫
G

f(g)ĥ(g) dµ,

the change in the order of summation and integration being justified by the
hypotheses on f. Hence

φ(x)µ(G/H) =
∑
ĥ∈H⊥

ĥ(x)f̂(ĥ)

and writing x = 0, φ(0) =
∑

h∈H f(h) gives the theorem.

Corollary 3.26. Let f =
∏

v fv ∈ Then

µ(Ak/k)|α|
∑
x∈k

f(αx) =
∑
x∈k

f̂(α−1x).

Proof. Write g(ξ) = f(αξ), then

ĝ(η) =

∫
A
g(ξ)χη(ξ) dµ =

∫
A
f(αξ)χ(ξη) dµ

= |α|−1

∫
A
f(ξ)χ(α−1ξη) dµ = |α|−1f̂(α−1η),

where to go from the first line to the second we have written α−1ξ for ξ.
Now apply the Theorem 3.25 to g(ξ) with G = Ak and H = k, and use the
fact that H⊥ = k by the Corollary 3.16.

124



Corollary 3.27. The measure of Ak/k is 1 with respect to the self-dual
Haar measure dx on Ak.

Proof. If we identify Ak with Ak, the symmetry property of the Fourier
transform becomes

f̂(η) =

∫
A
f(ξ)χ(ξη) dµ⇔ f(ξ) =

∫
A
f̂(η)χ(ξη) dµ

where µ is normalized by the condition µ(Ak/k) = 1. For we know from the
Fourier inversion formula that f(ξ) = A

∫
A f̂(η)χ(ξη) dµ for some constant

A depending on µ. Applying Theorem 3.25. to both f and f̂ and remem-
bering that χ(ξη) = χ(−ξη) we obtain A(µ(Ak/k))2 = 1. Therefore A = 1
is equivalent to µ(Ak/k) = 1
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Exercises

You are encouraged to collaborate on solving the problems given as home-
work. However, the solutions should be written on your own and in your
own words. Please send me your homework to my email before the next
week’s class.

1, Let pn be the nth positive prime in Z, and let αn = (α
(n)
v ) ∈ AQ with

α
(n)
v = pn if v = pn and α

(n)
v = 1 if v 6= pn. The result is a sequence {αn}

of ideleds in IQ. Show that this sequence converges to the idele (1)v in the
topology of the adeles but not converges in the topology of the ideles.

2, Let p1, . . . , pm be distinct places of a number field k and x1, . . . , xm ∈
k. Let ε > 0 be given. Then there exists x ∈ k such that |x− xi|pi < ε for
1 ≤ i ≤ m and ordp(x) ≥ 0 for any p /∈ {p1, . . . , pm}.

3, Show that |α|v = 1 at each place v ≤ ∞ of k if and only if α is a root
of unity in k.

4, Show that R̂/Z ∼= Z, i.e., every character of R/Z is of form x 7→ e(mx)
for some integer m.

5, Let χ be a character on a compact group G and dx be a Haar measure
on G. Then ∫

G

χ(x)dx =

{
µ(G), if χ is trivial;
0, otherwise.

6, ôv ∼= k+
v /D

−1
v .

7, Every additive quasicharacter χα of R+ is of form χα : x 7→ χα(x) =
e(xα) for some complex number α, i.e., the mapping

R+ −→ R̂+ by α 7−→ χα

is an isomorphism of topological groups.
8, Every multiplicative character of the group R×+ (the multiplicative

group of positive real numbers) is of form x 7→ xs for some s ∈ C.
(2) Every multiplicative character of the group R× (the multiplicative

group of nonzero real numbers) is of form x 7→ signε(x)|x|s for some s ∈ C
and ε = 0, or 1.

9, The circle group S1 has no small subgroups, i.e., there is a neighbor-
hood U of the identity 1 ∈ S1 such that the only subgroup of S1 inside U
is the trivial group {1}.

10, Let G be a totally disconnected locally compact topological group.
Prove that the kernel of any continuous homomorphism of G −→ GLm(C)
contains an open subgroup.
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11, If G is a compact topological abelian group, or if every element of
G is of finite order, then every quasicharacter of G is a character.

12, Let n be a positive integer and let

U(n) = R×+
∏
p|n

Up(n)
∏
p-n

Z×p

where Up(n) = {x ∈ Z×p : x ≡ 1 mod n}. And let

V (n) = R×+
∏
p|n

Up(n)
∏
p-n

Q×p .

Show that

IQ/U(n)Q× ∼= (Z/nZ)×.

13, We will call χ : Ik/k× → S1 a character of finite order if there
exists a positive integer m such that χ(x)m = 1 for all x ∈ Ik. Then χ has
finite order if and only if its restriction to R×+ is trivial.

14, (1) Let dx be an additive measure such that the measure Zp is 1.
Let d×x be a multiplicative measure such that the measure Z×p is 1. Then

d×x =
p

p− 1

dx

|x|p
.

(2), Compute the integral ∫
Zp
|x|sp dx.

15, Let χp(α) = e(λp(α)) be an additive character of Qp and dx be an
additive measure such that the measure Zp is 1.

(1), Compute k ∈ Z ∫
$kZp

χp(x)dx.

(2), Compute k ∈ Z ∫
$kUp

χp(x)dx,

where $ is an uniformizer of Zp and Up = Z×p is the unit group of Zp.
16, Show that Theorem 3.23.
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Chapter 4

Arithmetic L-functions

4.1 Tate’s thesis

In number theory, Tate’s thesis is the 1950 thesis of John Tate (1950) under
supervision of Emil Artin. In it he used a translation invariant integration
on the locally compact group of ideles to lift the zeta function of a number
field, twisted by a Hecke character, to a zeta integral and study its properties.
Using harmonic analysis, more precisely the summation formula, he proved
the functional equation and meromorphic continuation of the zeta integral
and the twisted zeta function. He also located the poles of the twisted zeta
function. His work can be viewed as an elegant and powerful reformulation
of a work of Erich Hecke on the proof of the functional equation of the
twisted zeta function (L-function). Hecke used a generalized theta series
associated to an algebraic number field and a lattice in its ring of integers.

Kenkichi Iwasawa independently discovered during the war essentially
the same method (without an analog of the local theory in Tate’s thesis) and
announced it in his 1950 ICM paper and his letter to Dieudonne written
in 1952. Hence this theory is often called Iwasawa-Tate theory. Iwasawa
in his letter to Dieudonne derived on several pages not only the meromor-
phic continuation and functional equation of the L-function, he also proved
finiteness of the class number and Dirichlet’s theorem on units as immediate
byproducts of the main computation.

A noncommutative generalisation: Iwasawa-Tate theory was extended
to a general linear group over an algebraic number field and automorphic
representations of its adelic group by Roger Godement and Herv Jacquet in
1972. This work is part of activities in the Langlands correspondence. [22]

In hindsight, Tate’s work may be viewed as giving the theory of auto-
morphic representations and L-functions of the simplest connected reducible
group GL1(F ), where F is the number field.
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4.1.1 Local theory

4.1.2 Global theory

130



4.2 Dedekind zeta functions, Hecke charac-

ter and Hecke L-functions

4.2.1 Dedekind zeta functions

4.2.2 Hecke character

4.2.3 Hecke L-functions
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4.3 Applications of Hecke L-functions

4.3.1 Splitting of primes

4.3.2 Abelian L-functions

4.3.3 Tchebotarev’s density theorem

4.3.4 Class number formulas
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4.4 Artin L-functions
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Artin symbol, 46

canonical embedding, 23
Cauchy sequence, 60
character

ramified, 111
standard, 110
unramified, 111

character group, 107
Chinese remainder theorem, 16
class group

adeld, 101
idele, 101

class number, 24
compact-open topology, 107
complementary set, 87
completion, 60
conductor, 108
congruent modulo a, 16
conjugate prime ideals, 39
content, 101
cyclic extension, 38

decomposition field, 41
decomposition group, 41
Dedekind domain, 10
Dedekind-Kummer theorem, 34
diagonal map, 98, 101
different, 88
differential exponent, 90
Dirichlet’s unit theorem, 27
discrete subgroup, 21
discriminant, 5

absolute discriminant, 8
local, 90
relative discriminant, 89

equivalent valuation, 51
Euler lemma, 88

filtration, 67
Fourier transform, 119

fractional ideal, 12, 67
Frobenius automorphism, 45
Frobenius conjugate class, 46

global field, 62
greatest common divisor, 15
group

of p-adic units, 62
of principal units, 67

Hensel’s lemma, 68

ideal class group, 24
ideal group, 12
idele

unit idele, 101
idele group, 100
independence theorem, 71
inertia field, 43
inertia group, 43
integral ar p, 11
integral basis, 8
integral ideal, 12
integrally closed, 10
inverse of a, 12
invertible, 12

lattice, 21
lattice point theorem, 22
least common multiple, 15
local field, 62
local ring, 11
localization, 11
locally constant, 108

measure
multiplicative, 117
self-dual, 119
normalized additve, 117

no small group, 108
Noetherian ring, 9
norm, 3, 72
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absolute norm, 18
relative norm, 36

number field
p-adic, 62

order, 15

place, 51
complex, 57
finite, 59
infinite, 57
real, 57

prime divisor, 51
finite prime, 59
infinite prime, 57

prime divisors, 30
prime element, 63
principal adeles, 98
principal fractional ideal, 12
principal ideles, 101
product formula, 59

quadratic field, 8
quasi-character, 107

ramification group, 84
ramification index, 31
ramified, 33

tamely, 78
tamely ramified, 33
totally, 78
totally ramified, 33
wildly, 78
wildly ramified, 33

regulator, 29
relatively prime of ideals, 12
residue class degree, 31
residue class field, 30, 54
residue class field of p, 62
restricted direct product, 98
restriction of P, 30
ring

of p-adic integer, 62
roots of unity, 26

self-dual, 107
smooth function, 122
split degree, 31
Stickelberger’s theorem, 8

topological field, 51
totally imaginary, 6
totally real, 6
totally split, 33
trace, 3

ultramatric, 54
undecomposed, 33
uniformizer, 63
unit, 26

principal unit, 67
fundamental system of units, 28
fundamental unit, 29

unramified, 33, 78

valuation, 51
p-adic, 53
normalized, 59
additive, 63
archimedean, 53
discrete, 93
nonarchimedean, 53
normalized p-adic, 53
trivial, 53

valuation ring, 54
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