Power sums of Hecke's eigenvalues of newforms and their sign changes

Jie Wu

CNRS, Université Henri Poincaré (Nancy 1)

March 11, 2009

▲□ ▶ ▲ □ ▶ ▲ □ ▶

Presented works

æ

Presented works

[1] J. WU, Power sums of Hecke eigenvalues and application, Acta Arith. (in press)

イロン 不同と 不同と 不同と

Presented works

[1] J. WU, Power sums of Hecke eigenvalues and application, Acta Arith. (in press)

[2] Y.-K. LAU & J. WU, The number of Hecke eigenvalues of same signs, Math. Z. (in press)

・ 同 ト ・ ヨ ト ・ ヨ ト

Table of contents

- - 4 回 ト - 4 回 ト

æ

Table of contents

2 Motivation and statement of results

Table of contents

- 2 Motivation and statement of results
- 3 Power sums of Hecke's eigenvalues

回 と く ヨ と く ヨ と

Table of contents

1 Modular forms

- 2 Motivation and statement of results
- 3 Power sums of Hecke's eigenvalues
- 4 Elliott-Tenenbaum's method

向下 イヨト イヨト

Table of contents

1 Modular forms

- 2 Motivation and statement of results
- 3 Power sums of Hecke's eigenvalues
- Elliott-Tenenbaum's method
- 5 Rankin's method and proof of Theorem 3

向下 イヨト イヨト

Table of contents

1 Modular forms

- 2 Motivation and statement of results
- 3 Power sums of Hecke's eigenvalues
- Elliott-Tenenbaum's method
- 5 Rankin's method and proof of Theorem 3
- 6 B-free numbers and proof of Theorem 1

向下 イヨト イヨト

Motivation and statement of results Power sums of Hecke's eigenvalues Elliott-Tenenbaum's method Rankin's method and proof of Theorem 1 *®*-free numbers and proof of Theorem 1

Table of contents

1 Modular forms

- 2 Motivation and statement of results
- 3 Power sums of Hecke's eigenvalues
- ④ Elliott-Tenenbaum's method
- 5 Rankin's method and proof of Theorem 3
- $\fbox{6}$ \mathscr{B} -free numbers and proof of Theorem 1

イロト イポト イヨト イヨト

Motivation and statement of results Power sums of Hecke's eigenvalues Elliott-Tenenbaum's method Rankin's method and proof of Theorem 1 \mathscr{B} -free numbers and proof of Theorem 1

Definitions of modular forms, 1

Notation

$$\begin{split} k &:= \text{even integer} \\ N &:= \text{squarefree integer} \\ \mathbb{H} &:= \{z \in \mathbb{C} : \Im m \, z > 0\} \\ \Gamma_0(N) &:= \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : ad - bc = 1 \text{ and } N \mid c \right\} \end{split}$$

イロン イヨン イヨン イヨン

æ

Motivation and statement of results Power sums of Hecke's eigenvalues Elliott-Tenenbaum's method Rankin's method and proof of Theorem 1 \mathscr{B} -free numbers and proof of Theorem 1

Definitions of modular forms, 2

• Cusp forms

Let f be a holomorphic function defined in \mathbb{H} . We say that f is a modular form of weight k and of level N, if

$$f\left(\frac{az+b}{cz+d}\right) = (cz+d)^k f(z)$$

for all

$$egin{pmatrix} a & b \ c & d \end{pmatrix} \in {\sf \Gamma}_0({\sf N}) \quad {\sf and} \quad z \in {\mathbb H}.$$

・ロン ・回と ・ヨン・

Motivation and statement of results Power sums of Hecke's eigenvalues Elliott-Tenenbaum's method Rankin's method and proof of Theorem 3 *B*-free numbers and proof of Theorem 1

Definitions of modular forms, 2

• Cusp forms

Let f be a holomorphic function defined in \mathbb{H} . We say that f is a modular form of weight k and of level N, if

$$f\left(\frac{az+b}{cz+d}\right) = (cz+d)^k f(z)$$

for all

$$egin{pmatrix} a & b \ c & d \end{pmatrix} \in \Gamma_0(N) \quad ext{and} \quad z \in \mathbb{H}.$$

Further if $(\Im m z)^{k/2} f(z)$ is bounded, we say that f is a cusp form. Denote by $S_k(N)$ the set of all cusp forms of weight k and of level N.

・ロン ・回 と ・ ヨ と ・ ヨ と

Motivation and statement of results Power sums of Hecke's eigenvalues Elliott-Tenenbaum's method Rankin's method and proof of Theorem 1 \mathscr{B} -free numbers and proof of Theorem 1

Definitions of modular forms, 3

• Petersson inner product

$$\langle f,g\rangle := \int_{D_0(N)} f(z)\overline{g(z)}y^k \frac{\mathrm{d}x\mathrm{d}y}{y^2} \quad (f,g\in S_k(N)),$$

where $D_0(N)$ is a fundamental domain of $\Gamma_0(N)$. $S_k(N)$ equipped with $\langle \cdot, \cdot \rangle$ is a finite dimensional Hilbert space.

・ロト ・日本 ・モート ・モート

Motivation and statement of results Power sums of Hecke's eigenvalues Elliott-Tenenbaum's method Rankin's method and proof of Theorem 3 *B*-free numbers and proof of Theorem 1

Definitions of modular forms, 3

• Petersson inner product

$$\langle f,g\rangle := \int_{D_0(N)} f(z)\overline{g(z)}y^k \frac{\mathrm{d}x\mathrm{d}y}{y^2} \quad (f,g\in S_k(N)),$$

where $D_0(N)$ is a fundamental domain of $\Gamma_0(N)$. $S_k(N)$ equipped with $\langle \cdot, \cdot \rangle$ is a finite dimensional Hilbert space.

• Decomposition of $S_k(N)$ Let $S_k^{\flat}(N)$ be the linear subspace of $S_k(N)$ spanned by all forms of type f(dz), where $d \mid N$ and $f \in S_k(N')$ for some N' < N such that $dN' \mid N$.

イロト イポト イヨト イヨト

Motivation and statement of results Power sums of Hecke's eigenvalues Elliott-Tenenbaum's method Rankin's method and proof of Theorem 3 *B*-free numbers and proof of Theorem 1

Definitions of modular forms, 3

• Petersson inner product

$$\langle f,g\rangle := \int_{D_0(N)} f(z)\overline{g(z)}y^k \frac{\mathrm{d}x\mathrm{d}y}{y^2} \quad (f,g\in S_k(N)),$$

where $D_0(N)$ is a fundamental domain of $\Gamma_0(N)$. $S_k(N)$ equipped with $\langle \cdot, \cdot \rangle$ is a finite dimensional Hilbert space.

- Decomposition of S_k(N)
 Let S^b_k(N) be the linear subspace of S_k(N) spanned by all forms of type f(dz), where d | N and f ∈ S_k(N') for some N' < N such that dN' | N.</p>
 - Let $S_k^{\sharp}(N)$ be the linear subspace of $S_k(N)$ orthogonal to $S_k^{\flat}(N)$ with respect to the Petersson inner product.

▲□ ▶ ▲ □ ▶ ▲ □ ▶ - □ □

Motivation and statement of results Power sums of Hecke's eigenvalues Elliott-Tenenbaum's method Rankin's method and proof of Theorem 1 *B*-free numbers and proof of Theorem 1

Definitions of modular forms, 4

۲

Hecke's operators
$$T_n : S_k(N) \to S_k(N)$$

 $f \mapsto (T_n f)(z) := \frac{1}{n} \sum_{\substack{ad=n \ (a,N)=1}} a^k \sum_{0 \leqslant b < d} f\left(\frac{az+b}{d}\right)$

・ロン ・回 と ・ ヨン ・ ヨン

æ

Motivation and statement of results Power sums of Hecke's eigenvalues Elliott-Tenenbaum's method Rankin's method and proof of Theorem 3 \mathscr{B} -free numbers and proof of Theorem 1

Definitions of modular forms, 4

• Hecke's operators
$$T_n: S_k(N) \to S_k(N)$$

$$f \mapsto (T_n f)(z) := \frac{1}{n} \sum_{\substack{ad=n \\ (a,N)=1}} a^k \sum_{0 \leq b < d} f\left(\frac{az+b}{d}\right)$$

Newforms

 $f \in S_k(N)$ is called *Hecke eigencuspform*, if $T_n f = c_n f$ for (n, N) = 1. The Hecke eigencuspforms in $S_k^{\sharp}(N)$ are called *newforms* (*primitive forms*). The set of all newforms, denoted by $H_k^*(N)$, constitutes a base of $S_k^{\sharp}(N)$. We have

$$|\mathrm{H}_{k}^{*}(N)| = \frac{k-1}{12}\varphi(N) + O\big((kN)^{2/3}\big),$$

where $\varphi(N)$ is the Euler function.

Motivation and statement of results Power sums of Hecke's eigenvalues Elliott-Tenenbaum's method Rankin's method and proof of Theorem 3 B-free numbers and proof of Theorem 1

Basic properties of modular forms, 1

• Fourier development of $f \in H_k^*(N)$ at ∞

$$f(z) = \sum_{n=1}^{\infty} \lambda_f(n) n^{(k-1)/2} e^{2\pi i n z}$$
 (Sm $z > 0$),

where $\lambda_f(n)$ has the following properties:

- 4 同 2 4 日 2 4 日 2

Motivation and statement of results Power sums of Hecke's eigenvalues Elliott-Tenenbaum's method Rankin's method and proof of Theorem 3 B-free numbers and proof of Theorem 1

Basic properties of modular forms, 1

• Fourier development of $f \in H_k^*(N)$ at ∞

$$f(z) = \sum_{n=1}^{\infty} \lambda_f(n) n^{(k-1)/2} e^{2\pi i n z}$$
 (Sm $z > 0$),

where $\lambda_f(n)$ has the following properties: (a) $\lambda_f(1) = 1$,

・ロト ・日本 ・モート ・モート

Motivation and statement of results Power sums of Hecke's eigenvalues Elliott-Tenenbaum's method Rankin's method and proof of Theorem 1 &free numbers and proof of Theorem 1

Basic properties of modular forms, 1

• Fourier development of $f \in H_k^*(N)$ at ∞

$$f(z) = \sum_{n=1}^{\infty} \lambda_f(n) n^{(k-1)/2} e^{2\pi i n z}$$
 (Sm $z > 0$),

where $\lambda_f(n)$ has the following properties:

$$egin{array}{lll} ({\sf a}) \ \lambda_f(1) = 1, \ ({\sf b}) \ \lambda_f(n) \in \mathbb{R} \ (n \geqslant 1), \end{array}$$

- 4 同 2 4 日 2 4 日 2

Motivation and statement of results Power sums of Hecke's eigenvalues Elliott-Tenenbaum's method Rankin's method and proof of Theorem 1 &free numbers and proof of Theorem 1

Basic properties of modular forms, 1

• Fourier development of $f \in H_k^*(N)$ at ∞

$$f(z) = \sum_{n=1}^{\infty} \lambda_f(n) n^{(k-1)/2} e^{2\pi i n z}$$
 (Sm $z > 0$),

where $\lambda_f(n)$ has the following properties:

(a)
$$\lambda_f(1) = 1$$
,
(b) $\lambda_f(n) \in \mathbb{R} \ (n \ge 1)$,
(c) $T_n f = \lambda_f(n) n^{(k-1)/2} f$ for any $n \ge 1$,

・ロン ・回と ・ヨン・

Motivation and statement of results Power sums of Hecke's eigenvalues Elliott-Tenenbaum's method Rankin's method and proof of Theorem 1 &free numbers and proof of Theorem 1

Basic properties of modular forms, 1

• Fourier development of $f \in \mathrm{H}^*_k(N)$ at ∞

$$f(z) = \sum_{n=1}^{\infty} \lambda_f(n) n^{(k-1)/2} e^{2\pi i n z}$$
 (Sm $z > 0$),

where $\lambda_f(n)$ has the following properties:

(a)
$$\lambda_f(1) = 1$$
,
(b) $\lambda_f(n) \in \mathbb{R} \ (n \ge 1)$,
(c) $T_n f = \lambda_f(n) n^{(k-1)/2} f$ for any $n \ge 1$,
(d) for all integers $m \ge 1$ and $n \ge 1$,

$$\lambda_f(m)\lambda_f(n) = \sum_{\substack{d \mid (m,n) \ (d,N)=1}} \lambda_f\left(\frac{mn}{d^2}\right)$$

・ロン ・回 と ・ ヨン ・ ヨン

Basic properties of modular forms, 1bis

Remark 0.

(a) For any $p \nmid N$, we have $\lambda_f(p)^2 = 1 + \lambda_f(p^2)$. Thus at least one of $\lambda_f(p)$ or $\lambda_f(p^2)$ must be bounded away from zero.

イロン イヨン イヨン イヨン

Basic properties of modular forms, 1bis

Remark 0.

(a) For any $p \nmid N$, we have $\lambda_f(p)^2 = 1 + \lambda_f(p^2)$. Thus at least one of $\lambda_f(p)$ or $\lambda_f(p^2)$ must be bounded away from zero.

(b) Let $\pi = \otimes \pi_p$ be an irreducible unitary cuspidal representation of $GL_m(\mathbb{A}_{\mathbb{Q}})$. For $\Re s > 1$, define

$$\mathcal{L}(s,\pi) = \prod_{p < \infty} \prod_{1 \leq j \leq d} \left(1 - \alpha_{\pi}(p,j)p^{-s} \right)^{-1} = \sum_{n \geq 1} \lambda_{\pi}(n)n^{-s},$$

where $\alpha_{\pi}(p, j) \in \mathbb{C}$ such that $\alpha_{\pi}(p, 1) \cdots \alpha_{\pi}(p, d) = 1$. Yan QU (Ph. D thesis, 2008): For any prime p such that π_p is unramified,

$$|\lambda_{\pi}(p)| + \cdots + |\lambda_{\pi}(p^d)| \ge 1/d.$$

Motivation and statement of results Power sums of Hecke's eigenvalues Elliott-Tenenbaum's method Rankin's method and proof of Theorem 3 *B*-free numbers and proof of Theorem 1

Basic properties of modular forms, 2

• Deligne's inequality

Deligne (1974): If $f \in \mathrm{H}_k^*(N)$, then

 $|\lambda_f(n)| \leq d(n) \quad (n \geq 1)$

where d(n) is the divisor function.

イロン イヨン イヨン イヨン

Basic properties of modular forms, 2

• Deligne's inequality

Deligne (1974): If $f \in \mathrm{H}_k^*(N)$, then

 $|\lambda_f(n)| \leq d(n) \quad (n \geq 1)$

where d(n) is the divisor function.

• Sato-Tate's conjecture

For all $f \in \mathrm{H}_{k}^{*}(N)$ and $-2 \leqslant \alpha \leqslant \beta \leqslant 2$, we have

$$|\{p \leq x : \alpha \leq \lambda_f(p) \leq \beta\}| \sim \frac{x}{\log x} \int_{\alpha}^{\beta} \frac{\sqrt{4-t^2}}{2\pi} \mathrm{d}t.$$

as $x \to \infty$.

イロト イポト イヨト イヨト

Motivation and statement of results Power sums of Hecke's eigenvalues Elliott-Tenenbaum's method Rankin's method and proof of Theorem 3 B-free numbers and proof of Theorem 1

Basic properties of modular forms, 3

• Serre's result (1981) : If $f \in \mathrm{H}^*_k(N)$, then

$$\begin{split} |\{p \leq x : \lambda_f(p) = 0\}| \ll x(\log x)^{-1-\delta} \quad (x \geq 2, \ 0 < \delta < \frac{1}{2}) \\ |\{n \leq x : \lambda_f(n) \neq 0\}| \sim \alpha x \qquad (x \to \infty, \ 0 < \alpha \stackrel{?}{=} 1) \end{split}$$

イロト イヨト イヨト イヨト

Basic properties of modular forms, 3

• Serre's result (1981) : If
$$f \in H_k^*(N)$$
, then
 $|\{p \leq x : \lambda_f(p) = 0\}| \ll x(\log x)^{-1-\delta} \quad (x \ge 2, 0 < \delta < \frac{1}{2})$
 $|\{n \leq x : \lambda_f(n) \ne 0\}| \sim \alpha x \qquad (x \to \infty, 0 < \alpha \stackrel{?}{=} 1)$

• Ramanujan's Δ -function and τ -function

$$\Delta(z) := e^{2\pi i z} \prod_{n=1}^{\infty} (1 - e^{2\pi i n z})^{24} =: \sum_{n=1}^{\infty} \tau(n) e^{2\pi i n z} \in S_{12}(1)$$

- 4 同 2 4 日 2 4 日 2

Basic properties of modular forms, 3

• Serre's result (1981) : If
$$f \in \mathrm{H}_{k}^{*}(N)$$
, then
 $|\{p \leq x : \lambda_{f}(p) = 0\}| \ll x(\log x)^{-1-\delta} \quad (x \geq 2, \ 0 < \delta < \frac{1}{2})$
 $|\{n \leq x : \lambda_{f}(n) \neq 0\}| \sim \alpha x \qquad (x \to \infty, \ 0 < \alpha \stackrel{?}{=} 1)$

• Ramanujan's Δ -function and τ -function

$$\Delta(z) := e^{2\pi i z} \prod_{n=1}^{\infty} (1 - e^{2\pi i n z})^{24} =: \sum_{n=1}^{\infty} \tau(n) e^{2\pi i n z} \in S_{12}(1)$$

• Ramanujan's conjecture (proved by Deligne, 1974)

$$| au(n)| \leqslant d(n)n^{11/2} \quad (n \geqslant 1)$$

イロト イポト イヨト イヨト

Basic properties of modular forms, 3

• Serre's result (1981) : If
$$f \in \mathrm{H}_{k}^{*}(N)$$
, then
 $|\{p \leq x : \lambda_{f}(p) = 0\}| \ll x(\log x)^{-1-\delta} \quad (x \geq 2, \ 0 < \delta < \frac{1}{2})$
 $|\{n \leq x : \lambda_{f}(n) \neq 0\}| \sim \alpha x \qquad (x \to \infty, \ 0 < \alpha \stackrel{?}{=} 1)$

• Ramanujan's Δ -function and τ -function

$$\Delta(z) := e^{2\pi i z} \prod_{n=1}^{\infty} (1 - e^{2\pi i n z})^{24} =: \sum_{n=1}^{\infty} \tau(n) e^{2\pi i n z} \in S_{12}(1)$$

• Ramanujan's conjecture (proved by Deligne, 1974)

$$|\tau(n)| \leqslant d(n)n^{11/2} \quad (n \geqslant 1)$$

• Lehmer's conjecture (open) : $\tau(n) \neq 0$ $(n \ge 1)$

Table of contents

Modular forms

- 2 Motivation and statement of results
- 3 Power sums of Hecke's eigenvalues
- ④ Elliott-Tenenbaum's method
- 5 Rankin's method and proof of Theorem 3
- $\fbox{6}$ \mathscr{B} -free numbers and proof of Theorem 1

イロト イポト イヨト イヨト

Nonvanishing of Hecke's eigenvalues

• Nonvanishing of $\lambda_f(n)$

Kowalski, Robert & Wu (2007) : For any $f \in \mathrm{H}^*_k(N)$ and any $\varepsilon > 0$, we have

$$\sum_{\substack{x < n \leqslant x + y \\ \lambda_f(n) \neq 0}} 1 \gg_{f,\varepsilon} y$$

for $x \ge x_0(f,\varepsilon)$ and $y \ge x^{7/17+\varepsilon}$.

<ロ> (日) (日) (日) (日) (日)

Nonvanishing of Hecke's eigenvalues

• Nonvanishing of $\lambda_f(n)$

Kowalski, Robert & Wu (2007) : For any $f \in \mathrm{H}^*_k(N)$ and any $\varepsilon > 0$, we have

$$\sum_{\substack{x < n \leqslant x + y \\ \lambda_f(n) \neq 0}} 1 \gg_{f,\varepsilon} y$$

for $x \ge x_0(f,\varepsilon)$ and $y \ge x^{7/17+\varepsilon}$. In particular

$$\sum_{\substack{n\leqslant x\\\lambda_f(n)\neq 0}}1\gg_f x$$

for $x \ge x_0(f)$.

・ロン ・回と ・ヨン ・ヨン

Sign changes of Hecke's eigenvalues

• Sign changes of $\lambda_f(n)$

イロト イヨト イヨト イヨト
Sign changes of Hecke's eigenvalues

• Sign changes of $\lambda_f(n)$

Question 1 :

Which is the asymptotic comportment of

$$\mathscr{N}_{f}^{\pm}(x) := \sum_{\substack{n \leqslant x, (n,N)=1 \\ \lambda_{f}(n) \gtrless 0}} 1$$

as $x \to \infty$?

イロト イヨト イヨト イヨト

Moment method

Classical method

By Cauchy-Schwarz' inequality, we can write

$$\begin{split} \Big(\sum_{n \leqslant x, \, \lambda_f(n) \gtrless 0} |\lambda_f(n)|\Big)^2 &\leqslant \Big(\sum_{n \leqslant x, \, \lambda_f(n) \gtrless 0} 1\Big) \Big(\sum_{n \leqslant x} \lambda_f(n)^2\Big) \\ &= \mathscr{N}_f^{\pm}(x) \sum_{n \leqslant x} \lambda_f(n)^2, \end{split}$$

which implies

$$\mathcal{N}_{f}^{\pm}(x) \geq \frac{\left(\sum_{\substack{n \leq x, \lambda_{f}(n) \geq 0}} |\lambda_{f}(n)|\right)^{2}}{\sum_{\substack{n \leq x}} \lambda_{f}(n)^{2}}$$

First result on $\mathscr{N}_{f}^{\pm}(x)$

• Kohnen, Lau & Shparlinski (2006) :

$$\sum_{\substack{n \leqslant x, \, \lambda_f(n) \gtrless 0 \\ n \leqslant x}} |\lambda_f(n)| = \frac{1}{2} \sum_{n \leqslant x} \left(|\lambda_f(n)| \pm \lambda_f(n) \right) \gg_f \frac{x}{(\log x)^7},$$
$$\sum_{n \leqslant x} \lambda_f(n)^2 \leqslant \sum_{n \leqslant x} \tau(n)^2 \ll x (\log x)^3,$$

which imply

$$\mathscr{N}_{f}^{\pm}(x) \gg_{f} \frac{x}{(\log x)^{17}} \qquad (x \ge (kN)^{\mathcal{A}}). \tag{1}$$

イロン イヨン イヨン イヨン

æ

First result on $\mathcal{N}_f^{\pm}(x)$

• Kohnen, Lau & Shparlinski (2006) :

$$\sum_{\substack{n \leqslant x, \, \lambda_f(n) \gtrless 0 \\ n \leqslant x}} |\lambda_f(n)| = \frac{1}{2} \sum_{n \leqslant x} \left(|\lambda_f(n)| \pm \lambda_f(n) \right) \gg_f \frac{x}{(\log x)^7},$$
$$\sum_{n \leqslant x} \lambda_f(n)^2 \leqslant \sum_{n \leqslant x} \tau(n)^2 \ll x (\log x)^3,$$

which imply

$$\mathcal{N}_{f}^{\pm}(x) \gg_{f} \frac{x}{(\log x)^{17}} \qquad (x \ge (kN)^{\mathcal{A}}). \tag{1}$$

Remark 1. M. R. Murty (1983) :

$$\sum_{p \leqslant x, \lambda_f(p) \gtrless \pm 1.13} 1 \gg_f \frac{x}{\log x} \qquad (x \geqslant x_0(f)).$$

Result in short intervals

• Kohnen, Lau & Shparlinski (2006) :

There are absolute constants $\vartheta < 1$ and A > 0 such that

$$\mathscr{N}_{f}^{\pm}(x+x^{\vartheta}) - \mathscr{N}_{f}^{\pm}(x) > 0$$
⁽²⁾

for any $f \in \mathrm{H}^*_k(N)$ and all $x \ge (kN)^A$.

イロト イヨト イヨト イヨト

Result in short intervals

• Kohnen, Lau & Shparlinski (2006) :

There are absolute constants $\vartheta < 1$ and A > 0 such that

$$\mathscr{N}_{f}^{\pm}(x+x^{\vartheta}) - \mathscr{N}_{f}^{\pm}(x) > 0$$
⁽²⁾

for any $f \in \mathrm{H}^*_k(N)$ and all $x \ge (kN)^A$.

Remark 2. (a) A direct consequence of (2) is that $\lambda_f(n)$ has a sign-change in a short interval $[x, x + x^{\vartheta}]$ for $x \ge (kN)^A$.

イロト イポト イヨト イヨト

Result in short intervals

• Kohnen, Lau & Shparlinski (2006) :

There are absolute constants $\vartheta < 1$ and A > 0 such that

$$\mathscr{N}_{f}^{\pm}(x+x^{\vartheta}) - \mathscr{N}_{f}^{\pm}(x) > 0$$
⁽²⁾

for any $f \in \mathrm{H}_{k}^{*}(N)$ and all $x \ge (kN)^{A}$.

Remark 2. (a) A direct consequence of (2) is that $\lambda_f(n)$ has a sign-change in a short interval $[x, x + x^{\vartheta}]$ for $x \ge (kN)^A$. (b) No explicit value of ϑ is evaluated. (In fact their proof gives $\vartheta = 1 - \delta$, where $\delta > 0$ is very small.)

イロン イヨン イヨン イヨン

Result in short intervals

• Kohnen, Lau & Shparlinski (2006) :

There are absolute constants $\vartheta < 1$ and A > 0 such that

$$\mathscr{N}_{f}^{\pm}(x+x^{\vartheta}) - \mathscr{N}_{f}^{\pm}(x) > 0$$
⁽²⁾

for any $f \in \mathrm{H}^*_k(N)$ and all $x \ge (kN)^A$.

Remark 2. (a) A direct consequence of (2) is that $\lambda_f(n)$ has a sign-change in a short interval $[x, x + x^{\vartheta}]$ for $x \ge (kN)^A$. (b) No explicit value of ϑ is evaluated. (In fact their proof gives $\vartheta = 1 - \delta$, where $\delta > 0$ is very small.)

Question 2 :

How small ϑ can be ?

イロト イヨト イヨト イヨト

Our results, 1

イロン イヨン イヨン イヨン

æ

Our results, 1

Theorem 1. (Lau & Wu, 2008)

For all $f \in \mathrm{H}_k^*(N)$, we have

 $\mathcal{N}_{f}^{\pm}(x) \gg_{f} x$

for $x \ge x_0(f)$.

イロン 不同と 不同と 不同と

æ

Our results, 1

Theorem 1. (Lau & Wu, 2008)

For all $f \in \mathrm{H}_k^*(N)$, we have

 $\mathcal{N}_f^{\pm}(x) \gg_f x$

for $x \ge x_0(f)$.

Remark 3.

(a) Theorem 1 improves (1) of Kohnen, Lau & Shparlinski, and is optimal in order of magnitude.

イロン イヨン イヨン イヨン

Our results, 1

Theorem 1. (Lau & Wu, 2008)

For all $f \in \mathrm{H}_k^*(N)$, we have

 $\mathcal{N}_f^{\pm}(x) \gg_f x$

for $x \ge x_0(f)$.

Remark 3.

(a) Theorem 1 improves (1) of Kohnen, Lau & Shparlinski, and is optimal in order of magnitude.

(b) Our method (\mathscr{B} -free number method) is completely different from that of Kohnen, Lau & Shparlinski (power sum method), and very simple.

(ロ) (同) (E) (E) (E)

Our results, 2

イロン イヨン イヨン イヨン

æ

Our results, 2

Theorem 2. (Lau & Wu, 2008)

There are an absolute constant C > 0 and a constant $x_0(k)$ such that for all $f \in H_k^*(N)$ and any $\varepsilon > 0$ we have

$$\mathscr{N}_{f}^{\pm}(x+\mathit{CN}^{1/2+arepsilon}x^{1/2})-\mathscr{N}_{f}^{\pm}(x)\gg_{arepsilon}(\mathit{N}x)^{1/4-arepsilon}$$

for $x \ge N^2 x_0(k)$, where the implied constant depends only on ε .

・ロン ・回と ・ヨン・

Our results, 2

Theorem 2. (Lau & Wu, 2008)

There are an absolute constant C > 0 and a constant $x_0(k)$ such that for all $f \in H_k^*(N)$ and any $\varepsilon > 0$ we have

$$\mathscr{N}_{f}^{\pm}(x+\mathit{CN}^{1/2+arepsilon}x^{1/2})-\mathscr{N}_{f}^{\pm}(x)\gg_{arepsilon}(\mathit{N}x)^{1/4-arepsilon}$$

for $x \ge N^2 x_0(k)$, where the implied constant depends only on ε .

Remark 4.

・ロン ・回と ・ヨン ・ヨン

Our results, 2

Theorem 2. (Lau & Wu, 2008)

There are an absolute constant C > 0 and a constant $x_0(k)$ such that for all $f \in H_k^*(N)$ and any $\varepsilon > 0$ we have

$$\mathscr{N}_{f}^{\pm}(x+\mathit{CN}^{1/2+arepsilon}x^{1/2})-\mathscr{N}_{f}^{\pm}(x)\gg_{arepsilon}(\mathit{N}x)^{1/4-arepsilon}$$

for $x \ge N^2 x_0(k)$, where the implied constant depends only on ε .

Remark 4.

(a) Theorem 2 improves (2) of Kohnen, Lau & Sharplinski.

イロン 不同と 不同と 不同と

Our results, 2

Theorem 2. (Lau & Wu, 2008)

There are an absolute constant C > 0 and a constant $x_0(k)$ such that for all $f \in H_k^*(N)$ and any $\varepsilon > 0$ we have

$$\mathscr{N}_{f}^{\pm}(x+\mathit{CN}^{1/2+arepsilon}x^{1/2})-\mathscr{N}_{f}^{\pm}(x)\gg_{arepsilon}(\mathit{N}x)^{1/4-arepsilon}$$

for $x \ge N^2 x_0(k)$, where the implied constant depends only on ε .

Remark 4.

(a) Theorem 2 improves (2) of Kohnen, Lau & Sharplinski.

(b) Our method (Heath-Brown & Tsang's method) is different from that of Kohnen, Lau & Shparlinski (*B*-free number method).

・ロト ・回ト ・ヨト ・ヨト

Our results, 2

Theorem 2. (Lau & Wu, 2008)

There are an absolute constant C > 0 and a constant $x_0(k)$ such that for all $f \in H_k^*(N)$ and any $\varepsilon > 0$ we have

$$\mathscr{N}_{f}^{\pm}(x+\mathit{CN}^{1/2+arepsilon}x^{1/2})-\mathscr{N}_{f}^{\pm}(x)\gg_{arepsilon}(\mathit{N}x)^{1/4-arepsilon}$$

for $x \ge N^2 x_0(k)$, where the implied constant depends only on ε .

Remark 4.

(a) Theorem 2 improves (2) of Kohnen, Lau & Sharplinski.
(b) Our method (Heath-Brown & Tsang's method) is different from that of Kohnen, Lau & Shparlinski (*B*-free number method).
(c) Wu & Zhai (2009) : 1/2 could be reduced to 3/8 "partially".

Table of contents

Modular forms

- 2 Motivation and statement of results
- 3 Power sums of Hecke's eigenvalues
- 4 Elliott-Tenenbaum's method
- 5 Rankin's method and proof of Theorem 3
- $\fbox{6}$ \mathscr{B} -free numbers and proof of Theorem 1

イロト イポト イヨト イヨト

Rankin's power sums and his results

Notation

$$S_f^*(x;r) := \sum_{n \leqslant x} |\lambda_f(n)|^{2r}.$$

• Rankin's result (1985) For $f \in H_k^*(N)$, $r \ge 0$ and $x \ge x_0(f, r)$, we have $x(\log x)^{\delta_r^{\mp}} \ll S_f^*(x; r) \ll x(\log x)^{\delta_r^{\pm}} \quad (r \in \mathcal{R}^{\mp}),$

where

$$egin{aligned} \mathcal{R}^- &:= [0,1] \cup [2,\infty), \qquad \delta^-_r &:= 2^{r-1}-1, \ \mathcal{R}^+ &:= [1,2], \qquad \qquad \delta^+_r &:= 2^r (2^r + 3^{2-r})/10 - 1. \end{aligned}$$

イロト イポト イヨト イヨト

Tenenbaum's result

• Tenenbaum's result (2007)

Let τ be Ramanujan's function, $\lambda_{\tau}(n) = \tau(n)n^{-11/2}$. Then

$$S_{\tau}^{*}(x; \frac{1}{2}) = \sum_{n \leqslant x} |\lambda_{\tau}(n)| \ll x (\log x)^{\rho_{1/2}^{+}}$$
(3)

where

$$\rho_{1/2}^{+} := \frac{102 + 7\sqrt{21}}{210} \left(\frac{6 - \sqrt{21}}{5}\right)^{1/2} + \frac{102 - 7\sqrt{21}}{210} \left(\frac{6 + \sqrt{21}}{5}\right)^{1/2} - \frac{33}{35}.$$

Remark 5.

(a) Tenenbaum's $\rho_{1/2}^+ \approx -0.11$ improves Rankin's $\delta_{1/2}^+ \approx -0.06$. (b) His method can be easily generalized for obtaining upper bound of $S_f^*(x; r)$ for all $f \in H_k^*(N)$ and r > 0 and does not give lower bound of $S_f^*(x; r)$.

Our results

Theorem 3. (Wu, 2008)

For any $f \in \mathrm{H}_k^*(N)$, we have

$$x(\log x)^{\rho_r^{\mp}} \ll_{f,r} S_f^*(x;r) \ll_{f,r} x(\log x)^{\rho_r^{\pm}} \quad (r \in \mathscr{R}^{\mp})$$

for $x \ge x_0(f, r)$, where

$$\mathscr{R}^- := [0,1] \cup [2,3] \cup [4,\infty), \qquad \mathscr{R}^+ := [1,2] \cup [3,4],$$

and

$$\begin{split} \rho_r^- &:= \frac{3^{r-1}-1}{2}, \\ \rho_r^+ &:= \frac{102+7\sqrt{21}}{210} \left(\frac{6-\sqrt{21}}{5}\right)^r + \frac{102-7\sqrt{21}}{210} \left(\frac{6+\sqrt{21}}{5}\right)^r + \frac{4^r}{35} - 1. \end{split}$$

Jie WU

Remarks

(a) Iwaniec asked the question about what best can one do on

$$S_f^*(x; \frac{1}{2}) := \sum_{n \leqslant x} |\lambda_f(n)| ?$$

(AIM, workshop on GL₃, problem session, November 2008, USA)

イロト イヨト イヨト イヨト

Remarks

(a) Iwaniec asked the question about what best can one do on

$$S_f^*(x; \frac{1}{2}) := \sum_{n \leqslant x} |\lambda_f(n)| ?$$

(AIM, workshop on GL_3 , problem session, November 2008, USA) (b) Rankin (1985) : Assuming Sato-Tate' conjecture, then

$$S^*_f(x;r) \sim C_r(f) x (\log x)^{ heta_r} \quad (x \to \infty),$$

where $C_r(f)$ is a positive constant depending on f, r and

$$\theta_r := \frac{4^r \Gamma(r+1/2)}{\sqrt{\pi} \Gamma(r+2)} - 1.$$

イロン イヨン イヨン イヨン

Remarks

(a) Iwaniec asked the question about what best can one do on

$$S_f^*(x; \frac{1}{2}) := \sum_{n \leqslant x} |\lambda_f(n)| ?$$

(AIM, workshop on *GL*₃, problem session, November 2008, USA)(b) Rankin (1985) : Assuming Sato-Tate' conjecture, then

$$S^*_f(x;r) \sim C_r(f) x (\log x)^{ heta_r} \quad (x \to \infty),$$

where $C_r(f)$ is a positive constant depending on f, r and

$$\theta_r := \frac{4^r \Gamma(r+1/2)}{\sqrt{\pi} \Gamma(r+2)} - 1.$$

Comparison : $\delta_{1/2}^- \approx -0.292, \ \rho_{1/2}^- \approx -0.211, \ \theta_{1/2} \approx -0.151.$

Remarks

(a) Iwaniec asked the question about what best can one do on

$$S_f^*(x; \frac{1}{2}) := \sum_{n \leqslant x} |\lambda_f(n)| ?$$

(AIM, workshop on *GL*₃, problem session, November 2008, USA)(b) Rankin (1985) : Assuming Sato-Tate' conjecture, then

$$S^*_f(x;r) \sim C_r(f) x (\log x)^{ heta_r} \quad (x \to \infty),$$

where $C_r(f)$ is a positive constant depending on f, r and

$$\theta_r := \frac{4^r \Gamma(r+1/2)}{\sqrt{\pi} \Gamma(r+2)} - 1.$$

Comparison : $\delta_{1/2}^- \approx -0.292, \ \rho_{1/2}^- \approx -0.211, \ \theta_{1/2} \approx -0.151.$

Application of Theorem 3

Corollary 1. (Wu, 2008)

For all $f \in \mathrm{H}^*_k(N)$ and $x \geqslant x_0(f)$, we have

$$\mathscr{N}_{f}^{\pm}(x) \gg_{f} \frac{x}{(\log x)^{1-1/\sqrt{3}}}$$

イロン スポン イヨン イヨン

Application of Theorem 3

Corollary 1. (Wu, 2008)

For all $f \in \mathrm{H}^*_k(N)$ and $x \geqslant x_0(f)$, we have

$$\mathcal{N}_f^{\pm}(x) \gg_f \frac{x}{(\log x)^{1-1/\sqrt{3}}}$$

Remark 6.

(a) Corollary 1 is non trivial with respect to Murty's result above.

イロン イヨン イヨン イヨン

Application of Theorem 3

Corollary 1. (Wu, 2008)

For all $f \in \mathrm{H}^*_k(N)$ and $x \geqslant x_0(f)$, we have

$$\mathcal{N}_f^{\pm}(x) \gg_f \frac{x}{(\log x)^{1-1/\sqrt{3}}}$$

Remark 6.

(a) Corollary 1 is non trivial with respect to Murty's result above. (b) Assuming Sato-Tate's conjecture, the exponent $1 - \frac{1}{\sqrt{2}} \approx 0.422$ aculd be improved to $2 - \frac{16}{(2-)} \approx 0.202$

 $1-1/\sqrt{3} pprox 0.422$ could be improved to $2-16/(3\pi) pprox 0.302$.

・ロン ・回 と ・ ヨ と ・ ヨ と

Table of contents

Modular forms

- 2 Motivation and statement of results
- 3 Power sums of Hecke's eigenvalues
- Elliott-Tenenbaum's method
- 5 Rankin's method and proof of Theorem 3
- $\fbox{6}$ \mathscr{B} -free numbers and proof of Theorem 1

イロト イポト イヨト イヨト

Mean-value theorem

Theorem A. (Tenenbaum, 2007)

Let $g:\mathbb{N}\to\mathbb{R}^+$ be a multiplicative function such that

$$\lim_{x\to\infty}\frac{1}{x}\sum_{n\leqslant x}g(n)^2 \text{ (exists)}, \quad \sum_p\frac{g(p)^4}{p^2}<\infty, \quad \sum_{p\leqslant x}g(p)\log p\ll x.$$

Then for $x \ge 1$ we have

$$\sum_{n\leqslant x}g(n)\ll x\exp\bigg\{-\sum_{p\leqslant x}\frac{(g(p)-1)^2}{2p}\bigg\}.$$

イロン 不同と 不同と 不同と

Begining of the proof of (3)

Theorem A is applicable to $g(n) = |\lambda_{\tau}(n)| = |\tau(n)|n^{-11/2}$, since

$$\sum_{n \leqslant x} \lambda_{\tau}(n)^2 = C_f x + O(x^{3/5}) \quad (\text{Rankin-Selberg}),$$
$$|\lambda_{\tau}(n)| \leqslant d(n) \quad (\text{Deligne}).$$

Thus for $x \ge 1$,

$$\sum_{n \leqslant x} |\lambda_{\tau}(n)| \ll x \exp\left\{-\sum_{p \leqslant x} \frac{(|\lambda_{\tau}(p)| - 1)^2}{2p}\right\}$$
$$\ll x \exp\left\{-\log_2 x + \frac{1}{2} \sum_{p \leqslant x} \frac{|\lambda_{\tau}(p)|}{p}\right\}$$

イロン 不同と 不同と 不同と

A optimilisation problem, 1

Question 3 :

Suppose that as $x \to \infty$,

$$\sum_{p\leqslant x}\frac{\lambda_{\tau}(p)^{2j}}{p}=m_j\log_2 x+O(1) \qquad (1\leqslant j\leqslant 4).$$

where

$$m_1 = 1, \quad m_2 = 2, \quad m_3 = 5, \quad m_4 = 14.$$

Find the best possible upper bound for

$$\sum_{p\leqslant x}\frac{|\lambda_{\tau}(p)|}{p}$$

・ロン ・回 と ・ ヨ と ・ ヨ と

Э

A optimilisation problem, 2

Answer (Tenenbaum, 2007) :

$$\sum_{p \leqslant x} \frac{|\lambda_{\tau}(p)|}{p} \leqslant (a\alpha + b\beta + 2\gamma) \log_2 x + O(1).$$

where

$$a = \sqrt{\frac{6 - \sqrt{21}}{5}}, \qquad b = \sqrt{\frac{6 + \sqrt{21}}{5}},$$

and

$$\alpha = \frac{102 + 7\sqrt{21}}{210}, \qquad \beta = \frac{102 - 7\sqrt{21}}{210}, \qquad \gamma = \frac{1}{35}.$$

イロン イヨン イヨン イヨン

æ

Table of contents

Modular forms

- 2 Motivation and statement of results
- 3 Power sums of Hecke's eigenvalues
- ④ Elliott-Tenenbaum's method
- 5 Rankin's method and proof of Theorem 3
- $\fbox{6}$ \mathscr{B} -free numbers and proof of Theorem 1

イロト イポト イヨト イヨト

Rankin's method, 1

• Rankin's idea (1985)

Find "optimal" multiplicative functions $\lambda_{f,r}^{\pm}(n)$ such that

$$\lambda^{\mp}_{f,r}(p^{
u}) \leqslant |\lambda_f(p^{
u})|^{2r} \leqslant \lambda^{\pm}_{f,r}(p^{
u}) \quad (r \in \mathscr{R}^{\mp})$$

for all p and $\nu \ge 1$, and their associated Dirichlet series

$$\Lambda_{f,r}^{\pm}(s) := \sum_{n=1}^{\infty} \lambda_{f,r}^{\pm}(n) n^{-s}$$

in the half-plane $\Re e \, s \geqslant 1$ is "controlled" by

$$F_j(s):=\sum_{n=1}^\infty \lambda_f(n)^{2j}n^{-s} \quad (j=1,\ldots,4).$$

Then tauberian theorems give Theorem 3.
Rankin's method, 2

• Construction of $\lambda_{f,r}^{\pm}(n)$

$$\lambda_{f,r}^{\mp}(p^{\nu}) := \begin{cases} \sum_{0 \leqslant j \leqslant 4} 2^{2(r-j)} a_j^{\mp} \lambda_f(p)^{2j} & \text{if } \nu = 1 \text{ and } r > 0 \\\\ 0 & \text{if } \nu \geqslant 2 \text{ and } r \in \mathscr{R}^{\mp} \\\\ |\lambda_f(p^{\nu})|^{2r} & \text{if } \nu \geqslant 2 \text{ and } r \in \mathscr{R}^{\pm} \end{cases}$$

where $(a_1^{\mp},\ldots,a_4^{\mp})\in \mathbb{R}^4$ will be choosen optimally,

$$a_0^- := 0$$
 and $a_0^+ := 1 - a_1^+ - a_2^+ - a_3^+ - a_4^+$.

イロン スポン イヨン イヨン

Rankin's method, 3

• Dirichlet series $F_j(s)$

Gelbart & Jacquet (1978) : $L(s, \text{sym}^2 f)$ and $L(s, \text{sym}^4 f)$ are invertible for $\Re e s \ge 1$ (holomorphic for $\Re e s \ge 1$ and nonzero for $\Re e s = 1$).

Kim & Shahidi (2002) : $L(s, \text{sym}^6 f)$ and $L(s, \text{sym}^8 f)$ are invertible for $\Re e s \ge 1$.

Lemma 1 :

For j = 1, 2, 3, 4 and $\Re e s > 1$, we have

$$F_j(s) = \zeta(s)^{m_j} G_j(s),$$

where $m_1 = 1$, $m_2 = 2$, $m_3 = 5$, $m_4 = 14$ and the $G_j(s)$ are invertible for $\Re e s \ge 1$.

Rankin's method, 4

• Dirichlet series associated to $\lambda_{f,r}^{\pm}(n)$

Lemma 2 :

For r > 0 and $\Re e s > 1$, we have

$$\Lambda_{f,r}^{\pm}(s) := \sum_{n=1}^{\infty} \frac{\lambda_{f,r}^{\pm}(n)}{n^{s}} = \zeta(s)^{\rho_{r}^{\pm}+1} H_{f,r}^{\pm}(s)$$

where

$$p_r^{\pm} := 2^{2r-8} (2^8 a_0^{\pm} + 2^6 a_1^{\pm} + 2^4 \cdot 2a_2^{\pm} + 2^2 \cdot 5a_3^{\pm} + 14a_4^{\pm}) - 1$$

Jie WU

and $H_{f,r}^{\pm}(s)$ is invertible for $\Re e s \ge 1$.

・ロン ・回と ・ヨン・

Э

Rankin's method, 5

• How to choose $(a_1^{\mp}, \ldots, a_4^{\mp}) \in \mathbb{R}^4$ optimally ?

・ロン ・回と ・ヨン・

3

Rankin's method, 5

- How to choose $(a_1^{\mp},\ldots,a_4^{\mp})\in \mathbb{R}^4$ optimally ?
 - Firstly we must have

$$\lambda_{f,r}^{\mp}(\pmb{p})\leqslant|\lambda_f(\pmb{p})|^{2r}\leqslant\lambda_{f,r}^{\pm}(\pmb{p})\quad(r\in\mathscr{R}^{\mp})$$

for all p.

・ロン ・回 と ・ ヨ と ・ ヨ と

3

Rankin's method, 5

- How to choose $(a_1^{\mp},\ldots,a_4^{\mp})\in \mathbb{R}^4$ optimally ?
 - Firstly we must have

$$\lambda_{f,r}^{\mp}(\pmb{p})\leqslant|\lambda_f(\pmb{p})|^{2r}\leqslant\lambda_{f,r}^{\pm}(\pmb{p})\quad(r\in\mathscr{R}^{\mp})$$

for all p.

• Secondly the exponent

$$\rho_r^{\pm} := 2^{2r-8} (2^8 a_0^{\pm} + 2^6 a_1^{\pm} + 2^4 \cdot 2a_2^{\pm} + 2^2 \cdot 5a_3^{\pm} + 14a_4^{\pm}) - 1$$

must be maximal/minimal according to $r \in \mathscr{R}^{\mp}$.

イロン イヨン イヨン イヨン

Rankin's method, 5

- How to choose $(a_1^{\mp},\ldots,a_4^{\mp})\in \mathbb{R}^4$ optimally ?
 - Firstly we must have

$$\lambda_{f,r}^{\mp}(p) \leqslant |\lambda_f(p)|^{2r} \leqslant \lambda_{f,r}^{\pm}(p) \quad (r \in \mathscr{R}^{\mp})$$

for all p.

• Secondly the exponent

$$\rho_r^{\pm} := 2^{2r-8} (2^8 a_0^{\pm} + 2^6 a_1^{\pm} + 2^4 \cdot 2a_2^{\pm} + 2^2 \cdot 5a_3^{\pm} + 14a_4^{\pm}) - 1$$

must be maximal/minimal according to $r \in \mathscr{R}^{\mp}$.

• How to realize ?

Theorical analyse + formal calculation via Maple.

・ 回 と ・ ヨ と ・ ヨ と

Rankin's method, 6

• Theorical analyse

Jie WU Power sums of Hecke's eigenvalues and their sign changes

イロン イヨン イヨン イヨン

æ

Rankin's method, 6

• Theorical analyse

Set $t := (|\lambda_f(p)|/2)^2$. Then $0 \le t \le 1$ (Deligne's inequality). Our problem can be reformulated as follows : Find polynomial

$$g^{\mp}_r(t) := \sum_{0 \leqslant j \leqslant 4} a^{\mp}_j t^j$$

such that

$$g^{\mp}_r(t)\leqslant t^r\leqslant g^{\pm}_r(t) \ \ \ (0\leqslant t\leqslant 1, \ r\in \mathscr{R}^{\mp})$$

and the exponent

$$\rho_r^{\pm} := 2^{2r-8} (2^8 a_0^{\pm} + 2^6 a_1^{\pm} + 2^4 \cdot 2a_2^{\pm} + 2^2 \cdot 5a_3^{\pm} + 14a_4^{\pm}) - 1$$

must be maximal/minimal according to $r \in \mathscr{R}^{\mp}$.

Table of contents

Modular forms

- 2 Motivation and statement of results
- 3 Power sums of Hecke's eigenvalues
- ④ Elliott-Tenenbaum's method
- 5 Rankin's method and proof of Theorem 3
- 6 B-free numbers and proof of Theorem 1

イロト イポト イヨト イヨト

Erdős' B-free numbers notion

B-free numbers

Let $\mathscr{B} = \{1 < b_1 < b_2 < \cdots \}$ be an increasing sequence of integers such that

$$\sum_{i=1}^{\infty} \frac{1}{b_i} < \infty \qquad \text{and} \qquad (b_i, b_j) = 1 \quad (i \neq j). \tag{4}$$

・ロト ・回ト ・ヨト ・ヨト

Erdős' B-free numbers notion

B-free numbers

Let $\mathscr{B} = \{1 < b_1 < b_2 < \cdots \}$ be an increasing sequence of integers such that

$$\sum_{i=1}^{\infty} \frac{1}{b_i} < \infty \qquad \text{and} \qquad (b_i, b_j) = 1 \quad (i \neq j). \tag{4}$$

Let $\mathscr{A} = \mathscr{A}(\mathscr{B}) := \{a_i\}_{i \ge 1}$ (with increasing order) be the sequence of all \mathscr{B} -free numbers, i.e. the integers indivisible by any element in \mathscr{B} .

・ロン ・回と ・ヨン・

Erdős' B-free numbers notion

B-free numbers

Let $\mathscr{B} = \{1 < b_1 < b_2 < \cdots \}$ be an increasing sequence of integers such that

$$\sum_{i=1}^{\infty} \frac{1}{b_i} < \infty \qquad \text{and} \qquad (b_i, b_j) = 1 \quad (i \neq j). \tag{4}$$

Let $\mathscr{A} = \mathscr{A}(\mathscr{B}) := \{a_i\}_{i \ge 1}$ (with increasing order) be the sequence of all \mathscr{B} -free numbers, i.e. the integers indivisible by any element in \mathscr{B} . Then \mathscr{A} is of positive density

$$\lim_{x\to\infty}\frac{|\mathscr{A}\cap[1,x]|}{x}=\prod_{i=1}^{\infty}\left(1-\frac{1}{b_i}\right)>0.$$

イロン 不同と 不同と 不同と

Construction of a special *B*-free numbers

• Serre's estimate (1981)

If $f \in \mathrm{H}^*_k(N)$, then for all $x \ge 2$ and any $\delta < \frac{1}{2}$,

$$|\{p \leqslant x : \lambda_f(p) = 0\}| \ll_{f,\delta} \frac{x}{(\log x)^{1+\delta}}.$$
 (5)

イロン イヨン イヨン イヨン

Construction of a special *B*-free numbers

• Serre's estimate (1981)

If $f \in \mathrm{H}^*_k(N)$, then for all $x \ge 2$ and any $\delta < \frac{1}{2}$,

$$|\{p \leqslant x : \lambda_f(p) = 0\}| \ll_{f,\delta} \frac{x}{(\log x)^{1+\delta}}.$$
 (5)

 Kohnen, Iwaniec & Sengupta's rseult (2007) There is a prime p' ≪ kN^{1/2} such that p' ∤ N and λ_f(p') < 0.

イロト イポト イヨト イヨト

Construction of a special *B*-free numbers

• Serre's estimate (1981)

If $f \in \mathrm{H}^*_k(N)$, then for all $x \ge 2$ and any $\delta < \frac{1}{2}$,

$$|\{p \leq x : \lambda_f(p) = 0\}| \ll_{f,\delta} \frac{x}{(\log x)^{1+\delta}}.$$
 (5)

- Kohnen, Iwaniec & Sengupta's rseult (2007) There is a prime p' ≪ kN^{1/2} such that p' ∤ N and λ_f(p') < 0.
- A special sequence \mathscr{B}_{f}

$$\mathscr{B}_f = \{p : \lambda_f(p) = 0\} \cup \{p : p \mid N\} \cup \{p'\}$$

 $\cup \{p^2 : p \nmid p'N \text{ and } \lambda_f(p) \neq 0\}.$

Serre's (5) implies that \mathscr{B}_f satisfies (4).

ロト イポト イヨト イヨト

End of the proof of Theorem 1

• Special \mathscr{B}_{f} -free numbers

Let $\mathscr{A}_f = \mathscr{A}_f(\mathscr{B}_f)$ be the sequence of all \mathscr{B}_f -free numbers. Then \mathscr{A}_f is of positive density and $\lambda_f(a) \neq 0$ for all $a \in \mathscr{A}_f$.

・ロン ・回と ・ヨン・

End of the proof of Theorem 1

• Special \mathscr{B}_{f} -free numbers

Let $\mathscr{A}_f = \mathscr{A}_f(\mathscr{B}_f)$ be the sequence of all \mathscr{B}_f -free numbers. Then \mathscr{A}_f is of positive density and $\lambda_f(a) \neq 0$ for all $a \in \mathscr{A}_f$.

• End of the proof of Theorem 1

We partition

$$\mathscr{A}_f = \mathscr{A}_f^+ \cup \mathscr{A}_f^-,$$

where $\mathscr{A}_{f}^{\pm} := \{ a \in \mathscr{A}_{f} : \lambda_{f}(a) \geq 0 \}$. Consider

$$\mathscr{N}^{\pm} := \mathscr{A}_{f}^{\pm} \cup \{ \mathsf{a}\mathsf{p}' : \mathsf{a} \in \mathscr{A}_{f}^{\mp} \}.$$

Clearly $\lambda_f(a) \gtrless 0$ and (a, N) = 1 for all $a \in \mathscr{N}^\pm$ and

 $\mathscr{N}_{f}^{\pm}(x) \geqslant \left| \mathscr{N}^{\pm} \cap [1, x] \right| \geqslant \left| \mathscr{A}_{f} \cap [1, x/p'] \right| \qquad (x \geqslant 1).$

・ 同 ト ・ ヨ ト ・ ヨ ト