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Definitions of modular forms, 1

Notation

k := even integer

N := squarefree integer

H := {z ∈ C : =m z > 0}

Γ0(N) :=

{(
a b
c d

)
: ad − bc = 1 and N | c

}
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Definitions of modular forms, 2

Cusp forms

Let f be a holomorphic function defined in H. We say that f
is a modular form of weight k and of level N, if

f

(
az + b

cz + d

)
= (cz + d)k f (z)

for all (
a b
c d

)
∈ Γ0(N) and z ∈ H.

Further if (=m z)k/2f (z) is bounded, we say that f is a cusp
form. Denote by Sk(N) the set of all cusp forms of weight k
and of level N.
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Definitions of modular forms, 3

Petersson inner product

〈f , g〉 :=

∫
D0(N)

f (z)g(z)yk dxdy

y2
(f , g ∈ Sk(N)),

where D0(N) is a fundamental domain of Γ0(N). Sk(N)
equipped with 〈·, ·〉 is a finite dimensional Hilbert space.

Decomposition of Sk(N)

Let S [k(N) be the linear subspace of Sk(N) spanned by all
forms of type f (dz), where d | N and f ∈ Sk(N ′) for some
N ′ < N such that dN ′ | N.

Let S ]k(N) be the linear subspace of Sk(N) orthogonal to
S [k(N) with respect to the Petersson inner product.
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Definitions of modular forms, 4

Hecke’s operators Tn : Sk(N)→ Sk(N)

f 7→ (Tnf )(z) :=
1

n

∑
ad=n

(a,N)=1

ak
∑

06b<d

f

(
az + b

d

)

Newforms

f ∈ Sk(N) is called Hecke eigencuspform, if Tnf = cnf for

(n,N) = 1. The Hecke eigencuspforms in S ]k(N) are called
newforms (primitive forms). The set of all newforms, denoted

by H∗k(N), constitutes a base of S ]k(N). We have

|H∗k(N)| =
k − 1

12
ϕ(N) + O

(
(kN)2/3

)
,

where ϕ(N) is the Euler function.
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Basic properties of modular forms, 1

Fourier development of f ∈ H∗k(N) at ∞

f (z) =
∞∑

n=1

λf (n)n(k−1)/2e2πinz (=m z > 0),

where λf (n) has the following properties:

(a) λf (1) = 1,

(b) λf (n) ∈ R (n > 1),

(c) Tnf = λf (n)n(k−1)/2f for any n > 1,

(d) for all integers m > 1 and n > 1,

λf (m)λf (n) =
∑

d |(m,n)
(d ,N)=1

λf

(mn

d2

)
.
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Basic properties of modular forms, 1bis

Remark 0.

(a) For any p - N, we have λf (p)2 = 1 + λf (p2). Thus at least one
of λf (p) or λf (p2) must be bounded away from zero.

(b) Let π = ⊗πp be an irreducible unitary cuspidal representation
of GLm(AQ). For <s > 1, define

L(s, π) =
∏

p<∞

∏
16j6d

(
1− απ(p, j)p−s

)−1
=
∑
n>1

λπ(n)n−s ,

where απ(p, j) ∈ C such that απ(p, 1) · · ·απ(p, d) = 1.
Yan QU (Ph. D thesis, 2008): For any prime p such that πp is
unramified,

|λπ(p)|+ · · ·+ |λπ(pd)| > 1/d .
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Basic properties of modular forms, 2

Deligne’s inequality

Deligne (1974): If f ∈ H∗k(N), then

|λf (n)| 6 d(n) (n > 1)

where d(n) is the divisor function.

Sato-Tate’s conjecture

For all f ∈ H∗k(N) and −2 6 α 6 β 6 2, we have

|{p 6 x : α 6 λf (p) 6 β}| ∼ x

log x

∫ β

α

√
4− t2

2π
dt.

as x →∞.
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Basic properties of modular forms, 3

Serre’s result (1981) : If f ∈ H∗k(N), then

|{p 6 x : λf (p) = 0}| � x(log x)−1−δ (x > 2, 0 < δ < 1
2 )

|{n 6 x : λf (n) 6= 0}| ∼ αx (x →∞, 0 < α
?
= 1)

Ramanujan’s ∆-function and τ -function

∆(z) := e2πiz
∞∏

n=1

(1− e2πinz)24 =:
∞∑

n=1

τ(n)e2πinz ∈ S12(1)

Ramanujan’s conjecture (proved by Deligne, 1974)

|τ(n)| 6 d(n)n11/2 (n > 1)

Lehmer’s conjecture (open) : τ(n) 6= 0 (n > 1)
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Nonvanishing of Hecke’s eigenvalues

Nonvanishing of λf (n)

Kowalski, Robert & Wu (2007) : For any f ∈ H∗k(N) and any
ε > 0, we have ∑

x<n6x+y
λf (n)6=0

1�f ,ε y

for x > x0(f , ε) and y > x7/17+ε.

In particular∑
n6x

λf (n) 6=0

1�f x

for x > x0(f ).
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Sign changes of Hecke’s eigenvalues

Sign changes of λf (n)

Question 1 :

Which is the asymptotic comportment of

N ±
f (x) :=

∑
n6x , (n,N)=1
λf (n)≷ 0

1

as x →∞ ?
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Moment method

Classical method

By Cauchy-Schwarz’ inequality, we can write( ∑
n6x , λf (n)≷ 0

|λf (n)|
)2

6
( ∑

n6x , λf (n)≷ 0

1
)(∑

n6x

λf (n)2
)

= N ±
f (x)

∑
n6x

λf (n)2,

which implies

N ±
f (x) >

( ∑
n6x , λf (n)≷ 0

|λf (n)|
)2

∑
n6x

λf (n)2
·

Jie WU Power sums of Hecke’s eigenvalues and their sign changes



Modular forms
Motivation and statement of results
Power sums of Hecke’s eigenvalues

Elliott-Tenenbaum’s method
Rankin’s method and proof of Theorem 3
B-free numbers and proof of Theorem 1

First result on N ±
f (x)

Kohnen, Lau & Shparlinski (2006) :∑
n6x , λf (n)≷ 0

|λf (n)| =
1

2

∑
n6x

(
|λf (n)| ± λf (n)

)
�f

x

(log x)7
,

∑
n6x

λf (n)2 6
∑
n6x

τ(n)2 � x(log x)3,

which imply

N ±
f (x)�f

x

(log x)17

(
x > (kN)A

)
. (1)

Remark 1. M. R. Murty (1983) :∑
p6x , λf (p)≷±1.13

1�f
x

log x
(x > x0(f )).
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Result in short intervals

Kohnen, Lau & Shparlinski (2006) :

There are absolute constants ϑ < 1 and A > 0 such that

N ±
f (x + xϑ)−N ±

f (x) > 0 (2)

for any f ∈ H∗k(N) and all x > (kN)A.

Remark 2. (a) A direct consequence of (2) is that λf (n) has
a sign-change in a short interval [x , x + xϑ] for x > (kN)A.
(b) No explicit value of ϑ is evaluated. (In fact their proof
gives ϑ = 1− δ, where δ > 0 is very small.)

Question 2 :

How small ϑ can be ?
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Our results, 1

Theorem 1. (Lau & Wu, 2008)

For all f ∈ H∗k(N), we have

N ±
f (x)�f x

for x > x0(f ).

Remark 3.

(a) Theorem 1 improves (1) of Kohnen, Lau & Shparlinski, and is
optimal in order of magnitude.

(b) Our method (B-free number method) is completely different
from that of Kohnen, Lau & Shparlinski (power sum method), and
very simple.
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Our results, 2

Theorem 2. (Lau & Wu, 2008)

There are an absolute constant C > 0 and a constant x0(k) such
that for all f ∈ H∗k(N) and any ε > 0 we have

N ±
f (x + CN1/2+εx1/2)−N ±

f (x)�ε (Nx)1/4−ε,

for x > N2x0(k), where the implied constant depends only on ε.

Remark 4.

(a) Theorem 2 improves (2) of Kohnen, Lau & Sharplinski.

(b) Our method (Heath-Brown & Tsang’s method) is different
from that of Kohnen, Lau & Shparlinski (B-free number method).

(c) Wu & Zhai (2009) : 1/2 could be reduced to 3/8 “partially”.
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Rankin’s power sums and his results

Notation
S∗f (x ; r) :=

∑
n6x

|λf (n)|2r .

Rankin’s result (1985)

For f ∈ H∗k(N), r > 0 and x > x0(f , r), we have

x(log x)δ
∓
r � S∗f (x ; r)� x(log x)δ

±
r (r ∈ R∓),

where

R− := [0, 1] ∪ [2,∞), δ−r := 2r−1 − 1,

R+ := [1, 2], δ+
r := 2r (2r + 32−r )/10− 1.
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Tenenbaum’s result

Tenenbaum’s result (2007)

Let τ be Ramanujan’s function, λτ (n) = τ(n)n−11/2. Then

S∗τ (x ; 1
2 ) =

∑
n6x

|λτ (n)| � x(log x)
ρ+

1/2 (3)

where

ρ+
1/2 := 102+7

√
21

210

(
6−
√

21
5

)1/2
+ 102−7

√
21

210

(
6+
√

21
5

)1/2 − 33
35 .

Remark 5.
(a) Tenenbaum’s ρ+

1/2≈−0.11 improves Rankin’s δ+
1/2≈−0.06.

(b) His method can be easily generalized for obtaining upper
bound of S∗f (x ; r) for all f ∈ H∗k(N) and r > 0 and does not
give lower bound of S∗f (x ; r).
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Our results

Theorem 3. (Wu, 2008)

For any f ∈ H∗k(N), we have

x(log x)ρ
∓
r �f ,r S∗f (x ; r)�f ,r x(log x)ρ

±
r (r ∈ R∓)

for x > x0(f , r), where

R− := [0, 1] ∪ [2, 3] ∪ [4,∞), R+ := [1, 2] ∪ [3, 4],

and

ρ−r := 3r−1−1
2 ,

ρ+
r := 102+7

√
21

210

(
6−
√

21
5

)r
+ 102−7

√
21

210

(
6+
√

21
5

)r
+ 4r

35 − 1.
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Remarks

(a) Iwaniec asked the question about what best can one do on

S∗f (x ; 1
2 ) :=

∑
n6x

|λf (n)| ?

(AIM, workshop on GL3, problem session, November 2008, USA)

(b) Rankin (1985) : Assuming Sato-Tate’ conjecture, then

S∗f (x ; r) ∼ Cr (f )x(log x)θr (x →∞),

where Cr (f ) is a positive constant depending on f , r and

θr :=
4r Γ(r + 1/2)√
πΓ(r + 2)

− 1.

Comparison : δ−1/2 ≈ −0.292, ρ−1/2 ≈ −0.211, θ1/2 ≈ −0.151.
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Application of Theorem 3

Corollary 1. (Wu, 2008)

For all f ∈ H∗k(N) and x > x0(f ), we have

N ±
f (x)�f

x

(log x)1−1/
√

3
·

Remark 6.

(a) Corollary 1 is non trivial with respect to Murty’s result above.

(b) Assuming Sato-Tate’s conjecture, the exponent
1− 1/

√
3 ≈ 0.422 could be improved to 2− 16/(3π) ≈ 0.302.
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Mean-value theorem

Theorem A. (Tenenbaum, 2007)

Let g : N→ R+ be a multiplicative function such that

lim
x→∞

1

x

∑
n6x

g(n)2 (exists),
∑
p

g(p)4

p2
<∞,

∑
p6x

g(p) log p � x .

Then for x > 1 we have∑
n6x

g(n)� x exp

{
−
∑
p6x

(g(p)− 1)2

2p

}
.
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Begining of the proof of (3)

Theorem A is applicable to g(n) = |λτ (n)| = |τ(n)|n−11/2, since∑
n6x

λτ (n)2 = Cf x + O(x3/5) (Rankin-Selberg),

|λτ (n)| 6 d(n) (Deligne).

Thus for x > 1,∑
n6x

|λτ (n)| � x exp

{
−
∑
p6x

(|λτ (p)| − 1)2

2p

}

� x exp

{
− log2 x +

1

2

∑
p6x

|λτ (p)|
p

}
.
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A optimilisation problem, 1

Question 3 :

Suppose that as x →∞,

∑
p6x

λτ (p)2j

p
= mj log2 x + O(1) (1 6 j 6 4),

where
m1 = 1, m2 = 2, m3 = 5, m4 = 14.

Find the best possible upper bound for∑
p6x

|λτ (p)|
p
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A optimilisation problem, 2

Answer (Tenenbaum, 2007) :∑
p6x

|λτ (p)|
p

6 (aα + bβ + 2γ) log2 x + O(1),

where

a =

√
6−
√

21

5
, b =

√
6 +
√

21

5
,

and

α =
102 + 7

√
21

210
, β =

102− 7
√

21

210
, γ =

1

35
.
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Rankin’s method, 1

Rankin’s idea (1985)

Find “optimal” multiplicative functions λ±f ,r (n) such that

λ∓f ,r (pν) 6 |λf (pν)|2r 6 λ±f ,r (pν) (r ∈ R∓)

for all p and ν > 1, and their associated Dirichlet series

Λ±f ,r (s) :=
∞∑

n=1

λ±f ,r (n)n−s

in the half-plane <e s > 1 is “controlled” by

Fj(s) :=
∞∑

n=1

λf (n)2jn−s (j = 1, . . . , 4).

Then tauberian theorems give Theorem 3.
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Rankin’s method, 2

Construction of λ±f ,r (n)

λ∓f ,r (pν) :=



∑
06j64

22(r−j)a∓j λf (p)2j if ν = 1 and r > 0

0 if ν > 2 and r ∈ R∓

|λf (pν)|2r if ν > 2 and r ∈ R±

where (a∓1 , . . . , a
∓
4 ) ∈ R4 will be choosen optimally,

a−0 := 0 and a+
0 := 1− a+

1 − a+
2 − a+

3 − a+
4 .
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Rankin’s method, 3

Dirichlet series Fj(s)

Gelbart & Jacquet (1978) : L(s, sym2f ) and L(s, sym4f ) are
invertible for <e s > 1 (holomorphic for <e s > 1 and nonzero
for <e s = 1).

Kim & Shahidi (2002) : L(s, sym6f ) and L(s, sym8f ) are
invertible for <e s > 1.

Lemma 1 :

For j = 1, 2, 3, 4 and <e s > 1, we have

Fj(s) = ζ(s)mj Gj(s),

where m1 = 1, m2 = 2, m3 = 5, m4 = 14 and the Gj(s) are
invertible for <e s > 1.
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Rankin’s method, 4

Dirichlet series associated to λ±f ,r (n)

Lemma 2 :

For r > 0 and <e s > 1, we have

Λ±f ,r (s) :=
∞∑

n=1

λ±f ,r (n)

ns
= ζ(s)ρ

±
r +1H±f ,r (s),

where

ρ±r := 22r−8(28a±0 + 26a±1 + 24 · 2a±2 + 22 · 5a±3 + 14a±4 )− 1

and H±f ,r (s) is invertible for <e s > 1.
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Rankin’s method, 5

How to choose (a∓1 , . . . , a
∓
4 ) ∈ R4 optimally ?

• Firstly we must have

λ∓f ,r (p) 6 |λf (p)|2r 6 λ±f ,r (p) (r ∈ R∓)

for all p.

• Secondly the exponent

ρ±r := 22r−8(28a±0 + 26a±1 + 24 · 2a±2 + 22 · 5a±3 + 14a±4 )− 1

must be maximal/minimal according to r ∈ R∓.

How to realize ?

Theorical analyse + formal calculation via Maple.
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Rankin’s method, 6

Theorical analyse

Set t := (|λf (p)|/2)2. Then 0 6 t 6 1 (Deligne’s inequality).
Our problem can be reformulated as follows : Find polynomial

g∓r (t) :=
∑

06j64

a∓j t j

such that

g∓r (t) 6 tr 6 g±r (t) (0 6 t 6 1, r ∈ R∓)

and the exponent

ρ±r := 22r−8(28a±0 + 26a±1 + 24 · 2a±2 + 22 · 5a±3 + 14a±4 )− 1

must be maximal/minimal according to r ∈ R∓.
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Erdős’ B-free numbers notion

B-free numbers

Let B = {1 < b1 < b2 < · · · } be an increasing sequence of
integers such that

∞∑
i=1

1

bi
<∞ and (bi , bj) = 1 (i 6= j). (4)

Let A = A (B) := {ai}i>1 (with increasing order) be the
sequence of all B-free numbers, i.e. the integers indivisible by
any element in B. Then A is of positive density

lim
x→∞

|A ∩ [1, x ]|
x

=
∞∏
i=1

(
1− 1

bi

)
> 0.
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Construction of a special B-free numbers

Serre’s estimate (1981)

If f ∈ H∗k(N), then for all x > 2 and any δ < 1
2 ,

|{p 6 x : λf (p) = 0}| �f ,δ
x

(log x)1+δ
. (5)

Kohnen, Iwaniec & Sengupta’s rseult (2007)

There is a prime p′ � kN1/2 such that p′ - N and λf (p′) < 0.

A special sequence Bf

Bf = {p : λf (p) = 0} ∪ {p : p | N} ∪ {p′}
∪ {p2 : p - p′N and λf (p) 6= 0}.

Serre’s (5) implies that Bf satisfies (4).
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End of the proof of Theorem 1

Special Bf -free numbers

Let Af = Af (Bf ) be the sequence of all Bf -free numbers.
Then Af is of positive density and λf (a) 6= 0 for all a ∈ Af .

End of the proof of Theorem 1

We partition
Af = A +

f ∪A −f ,

where A ±f := {a ∈ Af : λf (a) ≷ 0}. Consider

N ± := A ±f ∪ {ap
′ : a ∈ A ∓f }.

Clearly λf (a) ≷ 0 and (a,N) = 1 for all a ∈ N ± and

N ±
f (x) >

∣∣N ± ∩ [1, x ]
∣∣ > ∣∣Af ∩ [1, x/p′]

∣∣ (x > 1).
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