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§6 Irreducible unitary representations of SL(2, R) (Mar. 19)

Define Ws(Γ) as the space of all smooth functions f on H satisfying
(1) f is automorphic, i.e. f(γz) = f(z), ∀γ ∈ Γ;
(2) f is bounded;
(3) f is cuspidal;

(4) ∆∗f = 1−s2

4 f , where ∆∗ = −y2
(

∂2

∂x2 + ∂2

∂y2

)

.

The map f 7→ ϕf (g) = f(gi) gives an isomorphism from Ws(Γ) to the space of smooth
functions ϕ on G = SL(2, R) satisfying
(1) ϕ(γg) = ϕ(g), ∀γ ∈ Γ;
(2) ϕ is right K-invariant, i.e. ϕ(gκθ) = ϕ(g), ∀κθ ∈ K = SO(2, R);
(3) ϕ is bounded;
(4) ϕ is cuspidal, i.e.

∫ 1

0
ϕ

((

1 x
0 1

)

g

)

dx = 0

for almost all g ∈ G;

(5) ∆ϕ = 1−s2

4 ϕ, where

∆ = −y2

(

∂2

∂x2
+

∂2

∂y2

)

+ y
∂2

∂x∂θ
.

Remark 1. In fact, since ϕ is right K-invariant, we have ∆ϕ = ∆∗ϕ. ∆∗ is self-adjoint with
respect to the Petersson inner product, its eigenvalues are non-negative.

Now we know that both Sk(Γ) and Ws(Γ) are embedded into L2
0(Γ\G), where

L2
0(Γ\G) = {ϕ ∈ L2(Γ\G), ϕ is cuspidal}

is a G-invariant subspace. We have the following theorem.

Theorem 6.1. L2
0(Γ\G) can be decomposed as the direct sum of G-invariant subspaces, i.e.

L2
0(Γ\G) =

⊕

i

H i.

Each H i is an infinite dimensional irreducible unitary representation of G.

In order to prove Theorem 6.1, we need to answer the following questions.
(1) What are the irreducible unitary representations of G = SL(2, R)?
(2) Which of them occur in L2(Γ\G)?

Theorem 6.2. The irreducible unitary representations of G are subsets of the induced represen-
tations (π,H), π = indG

Bχ, where χ : B → C
× is an irreducible one-dimensional representation

of B (quasi-character) given by

χ

((

a ∗
0 a−1

))

= sgn(a)ǫ|a|s, ǫ = 0 or 1.
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The space H consists of functions ϕ on G satisfying

ϕ

((

a ∗
0 a−1

)

g

)

= sgn(a)ǫ|a|s+1ϕ(g)

and
∫

K

|ϕ(κ)|2 dκ < ∞.

π acts on H as right translation, i.e.

π(g)ϕ(h) = ϕ(hg).

Now we recall some facts from Lie theory.

G = SL(2, R) is a Lie group generated by

(

a ∗
0 a−1

)

and κθ =

(

cos θ sin θ
− sin θ cos θ

)

. Denote

by g the Lie algebra of G, which is the 3-dimensional trace zero subspace of Mat2×2(R). Let

gC be the complexification of g. Then g ⊆ gC, and gC is generated by W =

(

0 1
−1 0

)

,

E+ =

(

1 i
i −1

)

and E− =

(

1 −i
−i −1

)

. Let U(gC) be the universal enveloping algebra. The

Casimir element

△ =
1

4

(

W 2 −
E+E−

2
−

E−E+

2

)

is in the center of U(gC). It agrees with the Laplacian operator when acts on smooth functions.
Suppose that (π, V ) is an irreducible unitary representation of G, where V is complex Hilbert

space. For X ∈ g, ϕ ∈ V , the endomorphism

(dπ(X)) (ϕ) =
d

dt

(

π(etX )ϕ
)

∣

∣

∣

∣

t=0

= lim
t→0

1

t

(

π(etX )ϕ − ϕ
)

gives the Lie algebra representation, called the differential of the Lie group representation π.
We call ϕ ∈ V is C1, if dπ(X) is defined, and

g 7→ π(g) (dπ(X)f)

is a continuous function of G. We call ϕ is Ck, if ϕ is C1 and dπ(X)ϕ is Ck−1 for all X ∈ g. We
call ϕ is C∞, if f is Ck for all k ≥ 1. Since △ is in the center of U(gC), △ acts on V as scalar,
i.e.

△ϕ = λϕ, for ϕ ∈ H.

Now we study the induced representation (π,H) in theorem 6.2. It is easy to check that ∆
acts on smooth function in H as scalar λ. The basic idea is to restrict the representation to
a maximal compact subgroup of G and consider the action of gC. Since K = SO(2, R) is a
maximal compact subgroup of G, and K is abelian, all the irreducible unitary representations
of K are one-dimensional, given by

κθ 7−→ einθ, for some n ∈ Z.

Therefore, one has

H =
⊕

n∈Z

Hn,
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where Hn = {ϕ ∈ H : π(κθ)ϕ = einθϕ}.

Remark 2. Since π
(

(−I)2
)

= π(I) = 1, we have π(−I) = (−1)ǫ, ǫ = 0 or 1. For ϕ ∈ Hn,

π(−I)ϕ = π

((

cos π sin π
− sin π cos π

))

ϕ = einπϕ = (−1)ǫϕ.

Thus Hn is a zero space if n 6≡ ǫ(mod2). In fact, one has the following proposition.

Proposition 6.3. Assume that Hn 6= 0. We have
1) dimHn = 1, and Hn is a C∞-vector space.
2) Hn is the eigenspace of dπ(W ) with eigenvalue in.
3) dπ(E±) : Hn → Hn±2, i.e., for 0 6= ϕ ∈ Hn,

dπ(E±)ϕn = (s + 1 ± n)ϕn±2.

Since △ acts on H as multiplication, i.e. △ϕ = λϕ with λ = 1−s2

4 and ϕ ∈ H. By Proposition
6.3, if s satisfies

s + 1 ≡ ǫ mod 2, s + 1 = m for some 0 < m ∈ Z, (6.1)

then Hm is annihilated by dπ(E−), and H−m is annihilated by dπ(E+). Thus we have the
following two gC-invariant subspaces

⊕

n≡ǫ( mod 2)
n≥m

Hn and
⊕

n≡ǫ( mod 2)
n≤−m

Hn.

If s does not satisfy (6.1), we have
⊕

n≡ǫ( mod 2)

Hn

is gC invariant and has no non-trivial gC-invariant subspaces.
Based on the facts above, we can give a classification of the infinitesimal equivalent classes

of irreducible representations of G. And then we consider the relation between infinitesimal
equivalent classes and the equivalent classes of the irreducible unitary representations of G. We
omit the details here, but only give the classification of the irreducible unitary representations.

According theorem 6.2, the irreducible unitary representations of G are given as following.

Case 1. s = it ∈ iR
In this case χ is unitary. Via knowledge in representation theory, a representation induced from
a unitary representation is unitary. Therefore π is unitary.

If s 6= 0, s does not satisfy (6.1). Thus π is an irreducible unitary representation. We denote
it by πit,ǫ and call it principal series. The representation space has decomposition

⊕

n≡ǫ( mod 2)

Hn.

If s = 0 and ǫ = 0, then χ is the trivial character.
If s = 0 and ǫ = 1, then we know m = 1 is a solution of (6.1). π0,1 decomposes as sum of two

irreducible unitary representation of G, i.e.

π0,1 = D+
1

⊕

D−

1 ,
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where D+
1 and D−

1 have representation space
⊕

n≡ǫ

n≥1( mod 2)

Hn and
⊕

n≡ǫ

n≤−1( mod 2)

Hn,

respectively. D+
1 and D−

1 are called the limit of the discrete series.

Case 2. 0 6= s ∈ Z

If 0 6= s ∈ Z and s + 1 ≡ ǫ mod 2, there exists m = s + 1 satisfying (6.1) and πs,ǫ is not unitary.
However, it contains two sub(or quotient) irreducible unitary representations D+

s+1 and D−

s+1 of
which representation spaces are

⊕

n≡ǫ

n≥s+1( mod 2)

Hn and
⊕

n≡ǫ

n≤−(s+1)( mod 2)

Hn,

respectively. Such irreducible unitary representation are called Discrete series. For example,

π1,0 ⊇ D+
2

⊕

D−

2 and π1,0/
(

D+
2

⊕

D−

2

)

= H0,

π−1,0/H0 = D+
2

⊕

D−

2 .

and

π2,1 ⊇ D+
3

⊕

D−

3 and π2,1/
(

D+
3

⊕

D−

3

)

= H1
⊕

H−1,

π−2,1/
(

D+
3

⊕

D−

3

)

= H1
⊕

H−1.

Case 3. −1 < s < 1 and ǫ = 0
In this case, χ is not unitary. However, πs,0 is irreducible unitary representations. These
representations are called complement series.

Proposition 6.4. The above argument gives the irreducible unitary representations as subset
of π = indG

Bχ. They are

(1) the principle series πit,ǫ with t 6= 0;
(2) the complement series πs,0 with ǫ = 0 and −1 < s < 1, s 6= 0;
(3) the discrete series D+

s+1 and D−

s+1, where 0 < s ∈ Z and s + 1 ≡ ǫ mod 2;

(4) the limit of discrete series D+
1 and D−

1 , with ǫ = 1 and s = 0;
(5) the one-dimensional trivial representation 1 with ǫ = 0 and s = 0.

The irreducible unitary representations have a deep relation with the Casimir element(Laplace
operator) ∆. One can use the eigenvalue of ∆ to classify which irreducible representation occurs
in L2(Γ\G).

Ws(Γ) and Sk(Γ) can be embedded in L2
0(Γ\G) =

⊕

i H
i. This implies the discrete series D+

k

and D−

k with ǫ = 0 and the principle or complement series πs,0 where s satisfies

λ =
1 − s2

4
, λ is the eignvalue of ∆∗ on Ws(Γ)

occur in L2
0(Γ\G). Selberg conjectured that the complement series πs,0 (i.e. −1 < s < 1) never

occurs for congruence group Γ0(N), i.e. λ > 1
4 . In fact, he proved the following theorem.
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Theorem 6.5. For Γ = SL2(Z), we have λ = 1−s2

4 ≥ 3π
2 ; for Γ a general congruence subgroup,

we have λ ≥ 3
16 .

Remark 3. The above result was improved to λ > 3
16 by Jacquet - Gelbart in 1976 by method

of the Gelbart-Jacquet lift up to GL3. Shahidi-Kim-Sanark have a better result by lifting up to
GL4 and GL5.
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