Langlands picture of automorphic forms and L-functions
— Lecture series at Shandong University, Mar. 2009

STEPHEN GELBART

§1 Automorphic forms on GL(1) (Mar. 3)

First, we list some references for this lecture as follows, ordered by published time: Tate
(1950) [Ta], Goldstein (1971) [Go], Gelbart (1975) [Ge], Bump (1997) [Bu], Ramakrishnan and
Valenza (1999) [RV], Kulda (2003) [IKu].

Theorem 1.1 (Riemann, 1859). The meromorphic function ((s) = Y. L defined for Re(s) >
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1 extends analytically to all of C and satisfies
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This theorem appears in Riemann’s nine page paper in 1859, which is one in Number theory.
In fact, it shows that a large part of L-functions are just Mellin transform of theta functions. In
1910’s Hecke gave his remarkable work in Number theory, and in 1950, Tate [Ta] gave another
method, i.e. harmonic analysis to get the functional equations of L-functions.

Lemma 1.2. For Re(s) > 1, ((s) is an analytic function.

Proof. For s = o +it and 0 > 09 > 1, we have
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Then by Weierstrass this shows ((s) is holomorphic. O

Theorem 1.3 (Euler). For Re(s) > 1, we have
() = [ -p)" (11)
P

Proof. Let Cp(s) = [] (1 —p~%)~!. We need to show Plim Cp(s) = ((s). Since for Re(s) > 1,
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where ny,no, -+ are those integers none of whose prime factors exceed P. The fundamental

theorem of arithmetic (FTA) says that all the integers up to P are of this form. Thus
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This tends to 0 as P — oo, if Re(s) > 1; thus (1.1) follows. O
Corollary 1 (Euler-Euclid). There exist infinitely many primes.

Proof. Let s =1 in (1.1). It immediately follows from the divergence of the left hand side that
there exists infinitely many primes on the right hand side. O

Corollary 2. For Re(s) > 1, ((s) # 0.
Proof. We have for ¢ = Re(s) > 1
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where my, mo, - -- are the integers all of whose prime factors exceed P. Hence
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if P is large enough. Hence |((s)| > 0. O
Proof of Theorem 1.1. Recall
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T(s) = / oty
0

t
for Re(s) > 1. Then we have
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where §(it) =1 > e~™t Here (it) is the special case of 6(r) = ;> e™*T for Re(r) = 0.
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But we’ll only use and prove later the following special case which is still called the automorphy
of #-function:

We assert

0 <%> = t20(it). (1.3)

Substituting (1.3) to (1.2), we obtain
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Taking s — s/2, we get
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The assertion of the theorem follows immediately from the above equation.

Note that
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we can obtain that the integral in (1.4) converges and thus 7 /2T (%) ¢(s) is analytic on C

except s = 0,1. This says ((s) is non-zero for Re(s

) > 1, Re(s) < 0 and s # —2m,m € Z.

Now all that is left to be done is to establish (1.3). In view of this, we’ll use the following

Poisson summation formula (PSF), for “nice” f,

Z f(a:—i—n): Z e27rikx

n=—oo k=—00
Take
fla)=e
We compute
x—>%x

/ f(ml)e_%ikxlda;l.

(t>0).

eV’ /t oo

e~ (T=u/VD? gy

vVt Jo

Taking y — wiy, we get
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Then by PSF, we have
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Taking z = 0, we obtain
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which establish (1.3).
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