Spectral analysis for $\Gamma \backslash \mathbb{H}$

Erez Lapid

$\S 9$ Application of the Selberg Trace Formula (March 9, 2009)

Last time, we showed Weyl law :

$$
\sharp\left\{t_{j} \leq T\right\}-\int_{-T}^{T} \frac{\phi^{\prime}}{\phi}\left(\frac{1}{2}+i r\right) d r \sim \frac{\operatorname{area}(\Gamma \backslash \mathrm{H})}{4 \pi} T^{2},
$$

where

$$
\int_{-T}^{T} \frac{\phi^{\prime}}{\phi}\left(\frac{1}{2}+i r\right) d r
$$

equals to the number of poles of ϕ with $|\operatorname{Im}| \leq T$. If Γ is a congruence subgroup, then ϕ is a product of $\mathrm{L}(s, \chi)^{ \pm 1}$, where χ is Dirichlet character, and then

$$
\int_{-T}^{T} \frac{\phi^{\prime}}{\phi}\left(\frac{1}{2}+i r\right) d r \ll T \log T
$$

and therefore

$$
\begin{equation*}
\sharp\left\{t_{j} \leq T\right\} \sim \frac{\operatorname{area}(\Gamma \backslash \mathrm{H})}{4 \pi} T^{2} . \tag{0.1}
\end{equation*}
$$

For other Γ we do not expect (0.1), because the number of poles of ϕ with $|\operatorname{Im}| \leq T$ is large than δT^{2}, for some $\delta>0$ and large T (This is supposed to happen for "generic Γ ", but there is no unconditional proof). Then RH is not true for ϕ, i.e. $\operatorname{Re}(\eta)$ will concentrate near $\frac{1}{2}$.

Recall, for $\Gamma=\mathrm{SL}_{2}(z)$, we have

$$
\phi(s)=\frac{\zeta^{*}(2 s-1)}{\zeta^{*}(2 s)}
$$

And $\mathrm{RH} \Rightarrow$ poles of $\phi(s)$ are on $\operatorname{Re}(s)=\frac{1}{4}$ except $s=1$.
For generic $\Gamma, \operatorname{Re}(\eta)$ concentrate near $\frac{1}{2}$, and

$$
\sum_{\eta_{n} \text { pole of } \phi} \frac{\frac{1}{2}-\operatorname{Re}\left(\eta_{n}\right)}{\left|\eta_{n}\right|^{2}}<\infty
$$

If $\eta_{n} \ll \sqrt{n}$, then $\frac{1}{2}-\operatorname{Re} \eta_{n}$ is not bounded away from 0 .
The Weyl law is a consequence of the Selberg trace formula where the test function is localized near 0 .

Today, we will estimate the number of primitive hyperbolic classes, weighted by their length.

Selberg Trace Formula :

$$
\begin{aligned}
& \sum_{j=0}^{\infty} h\left(t_{j}\right)-\frac{1}{4 \pi} \int_{\mathbb{R}} \frac{\phi^{\prime}}{\phi}\left(\frac{1}{2}+i r\right) h(r) \mathrm{d} r \\
= & \frac{\operatorname{area}(\Gamma \backslash \mathbb{H})}{4 \pi} \int_{\mathbb{R}} h(r) r \tanh \pi r \mathrm{~d} r+2 \sum_{P} \sum_{l=1}^{\infty} \frac{g(l \log p)}{p^{\frac{l}{2}}-p^{-\frac{l}{2}}} \log p \\
& + \text { other explict forms. }
\end{aligned}
$$

We would like (following Selberg) a "Prime Number Theorem for primitive hyperbolic classes($=$ closed geodesics). We have showed that $\log p=$ length of closed geodesic. Take

$$
g(x)=\frac{e^{-\frac{x}{2}}+e^{\frac{x}{2}}}{2} q(x),
$$

where q is smooth, even and supported in $|x| \leq \log (X+Y)$, and $q \equiv 1$ for $|x| \leq \log (X)$. Graph of q is

Figure 1

What is $h(t)$?
Firstly, on $\mathfrak{R} s=1 / 2$, we have

$$
h(t)=\int_{-\infty}^{+\infty} g(x) e^{i t x} \mathrm{~d} x=\frac{1}{2} \int_{0}^{\log (X+Y)}\left(e^{x / 2}+e^{-x / 2}\right) e^{i t x} q(x) \mathrm{d} x
$$

We consider the symmetric function having the form

$$
\int_{0}^{+\infty}\left(e^{s x}+e^{(1-s) x}\right) q(x) \mathrm{d} x
$$

since $q(x)$ is even.

Using integration by parts once, we get the trivial bound as follows:

$$
\begin{align*}
\int_{0}^{+\infty} e^{s x} q(x) \mathrm{d} x & =\int_{0}^{+\infty} \frac{e^{s x}}{s} q^{\prime}(x) \mathrm{d} x \\
& \ll \frac{\sqrt{X+Y}}{|s|} \int_{0}^{+\infty}\left|q^{\prime}(x)\right| \mathrm{d} x \\
& =\frac{\sqrt{X+Y}}{|s|} \\
& \ll \frac{\sqrt{X}}{|s|} \tag{0.2}
\end{align*}
$$

If integrate three times by parts, we get the following

$$
\begin{align*}
\int_{0}^{+\infty} \frac{e^{s x}}{s^{3}} q^{\prime \prime \prime}(x) \mathrm{d} x & \leq \frac{1}{|s|^{3}} \sqrt{X}(\log (X+Y)-\log X)^{-3} \\
& \times \int_{0}^{\log (X+Y)-\log X} \phi^{\prime \prime \prime}\left(\frac{t}{\log (X+1)-\log X}\right) \mathrm{d} t \\
& \ll \frac{1}{|s|^{3}} \sqrt{X}(\log (X+Y)-\log X)^{-2} \\
& \ll \frac{1}{|s|^{3}} \sqrt{X} T^{2} \tag{0.3}
\end{align*}
$$

where we set $T=\frac{X}{Y}$. By (0.2) and (0.3), we deduce the bound of $h(t)$

$$
\begin{equation*}
h(t) \ll \frac{\sqrt{X}}{|s|} \min \left\{1, \frac{T^{2}}{|s|^{2}}\right\} . \tag{0.4}
\end{equation*}
$$

Now for $\frac{1}{2}<s \leq 1$, we have

$$
\begin{align*}
\int_{0}^{+\infty} e^{s x} q(x) \mathrm{d} x & \ll \int_{0}^{\log X} e^{s x} \mathrm{~d} x+\int_{\log X}^{\log (X+Y)} e^{s x} q(x) \mathrm{d} x \\
& =\frac{X^{s}}{s}+\int_{\log X}^{\log (X+Y)} e^{s x} \mathrm{~d} x \\
& =\frac{X^{s}}{s}+O\left(\frac{(X+Y)^{s}-X^{s}}{s}\right) \\
& =\frac{X^{s}}{s}+O(Y) \tag{0.5}
\end{align*}
$$

This because

$$
\begin{aligned}
\frac{(X+Y)^{s}-X^{s}}{s} & =\int_{X}^{X+Y} t^{s-1} \mathrm{~d} t \\
& \ll Y(X+Y)^{s-1} \\
& \ll Y X^{s-1} \ll Y
\end{aligned}
$$

On the other hand, we have

$$
\begin{equation*}
\int_{0}^{+\infty} e^{(1-s) x} q(x) \mathrm{d} x \leq \int_{0}^{\log (X+Y)} e^{\frac{1}{2} x} \mathrm{~d} x \ll \sqrt{X} \tag{0.6}
\end{equation*}
$$

For the spectral side, we have

$$
\begin{equation*}
\sum_{\frac{1}{2}<s_{j} \leq 1} h\left(t_{j}\right)+\sum_{t_{j} \in \mathbb{R}} h\left(t_{j}\right)-\frac{1}{4 \pi} \int_{-\infty}^{+\infty} \frac{\phi^{\prime}}{\phi}\left(\frac{1}{2}+i r\right) h(r) \mathrm{d} r . \tag{0.7}
\end{equation*}
$$

Using (0.4), for the second term of (0.7), we obtain

$$
\begin{aligned}
\sum_{t_{j} \in \mathbb{R}} h\left(t_{j}\right) & \leq \sum_{t_{j} \leq T} \frac{\sqrt{X}}{\left|s_{j}\right|}+\sum_{t_{j}>T} \frac{\sqrt{X}}{\left|s_{j}\right|^{3}} T^{2} \\
& \ll \sqrt{X}\left(\sum_{j \leq T^{2}} \frac{1}{\sqrt{j}}+T^{2} \sum_{j>T^{2}} \frac{1}{j^{3 / 2}}\right) \\
& \ll \sqrt{X} T .
\end{aligned}
$$

For the continuous part, using (0.4) again, we get

$$
\begin{align*}
& -\frac{1}{4 \pi} \int_{-\infty}^{+\infty} \frac{\phi^{\prime}}{\phi}\left(\frac{1}{2}+i r\right) h(r) \mathrm{d} r \\
\ll & -\int_{0}^{T} \frac{\sqrt{X}}{1+r} \frac{\phi^{\prime}}{\phi}\left(\frac{1}{2}+i r\right) \mathrm{d} r-\sqrt{X} T^{2} \int_{T}^{+\infty} \frac{\frac{\phi^{\prime}}{\phi}\left(\frac{1}{2}+i r\right)}{r^{3}} \mathrm{~d} r . \tag{0.8}
\end{align*}
$$

We having the following formula

$$
\begin{equation*}
\int_{-t}^{+t} \frac{\phi^{\prime}}{\phi}\left(\frac{1}{2}+i r\right) \mathrm{d} r \ll t^{2} \tag{0.9}
\end{equation*}
$$

For the second term of (0.8), using partial integrating and (0.9), we obtain

$$
\int_{T}^{+\infty} \frac{\int_{0}^{r} \frac{\phi^{\prime}}{\phi}\left(\frac{1}{2}+i t\right) \mathrm{d} t}{r^{4}} \mathrm{~d} r \ll \int_{T}^{+\infty} \frac{\mathrm{d} r}{r^{2}}=\frac{1}{T}
$$

while for the first term, we get

$$
\sqrt{X} \int_{1}^{T} \frac{\int_{1}^{r} \frac{\phi^{\prime}}{\phi}\left(\frac{1}{2}+i t\right) \mathrm{d} t}{r^{2}} \mathrm{~d} r \ll \sqrt{X} T .
$$

From (0.5) and (0.6), we get

$$
\sum_{\frac{1}{2}<s_{j} \leq 1} h\left(t_{j}\right)=\sum_{\frac{1}{2}<s_{j} \leq 1} \frac{x^{s_{j}}}{s_{j}}+O(Y+\sqrt{X}) .
$$

So far, for the test function $g(x)=\left(e^{x / 2}+e^{-x / 2}\right) q(x)$, we have from the spectral side

$$
=\sum_{\frac{1}{2}<s_{j} \leq 1} \frac{x^{s_{j}}}{s_{j}}+O(Y+\sqrt{X} T)
$$

In the geometric side, so only the case $l=1$ matters. We need to compute

$$
\sum_{N P=p} \tanh \left(\frac{\log p}{2}\right) \log p q(\log p)=\sum_{p} \log p q(\log p)+O(Y+\sqrt{X} T)
$$

The identity contribution

$$
\begin{aligned}
\int_{-\infty}^{+\infty} h(t) t \tanh (\pi t) \mathrm{d} t & <\int_{0}^{T} \frac{\sqrt{X}}{t} \mathrm{~d} t+T^{2} \int_{T}^{+\infty} \frac{\sqrt{X} t}{t^{2}} \mathrm{~d} t \\
& \ll \sqrt{X} T
\end{aligned}
$$

And the elliptic, parabolic cases are easy to bound within error term of $O(Y+\sqrt{X} T)$.
All in all, we have

$$
\begin{equation*}
\sum_{P} q(\log p) \log p=\sum_{\frac{1}{2}<s_{j} \leq 1} \frac{X^{s_{j}}}{s_{j}}+O(Y+\sqrt{X} T) \tag{0.10}
\end{equation*}
$$

replace X by $X \pm Y$, and subtract, we get

$$
\begin{aligned}
\sum_{X<p \leq X+Y} q(\log p) \log p & \leq \text { difference LHS }=\text { difference RHS } \\
& =\sum_{\frac{1}{2}<s_{j} \leq 1} \frac{(X+Y)^{s_{j}}-X^{s_{j}}}{s_{j}}+O(Y+\sqrt{X} T) .
\end{aligned}
$$

Going back

$$
\sum_{p \leq X} \log p=\sum_{\frac{1}{2}<s_{j} \leq 1} \frac{X^{s_{j}}}{s_{j}}+O(Y+\sqrt{X} T)
$$

The minimum of the error term $O(\sqrt{X} T=Y)$ is obtained when $Y=X^{3 / 4}$. We have the following:

Theorem (Selberg). For $X \geq 1$,

$$
\begin{equation*}
\sum_{p \leq X} \log p=\sum_{\frac{3}{4}<s_{j} \leq 1} \frac{X^{s_{j}}}{s_{j}}+O\left(X^{3 / 4}\right) \tag{0.11}
\end{equation*}
$$

For any congruence subgroup, we know that $s \leq \frac{3}{4}$ for all $\frac{1}{2} \leq s \neq 1$. Thus

$$
\sum_{p \leq X} \log p=X+O\left(X^{3 / 4}\right)
$$

This is the prime number theory with an error term. The Selberg zeta-function satisfies an analogue of the Riemann hypothesis, at least for $\Gamma=S L_{2}(\mathbb{Z})$. Luo-Sarnak: Can improve (0.11) to $\mathcal{O}\left(X^{\frac{7}{10}+\varepsilon}\right)$ for $\Gamma=S L_{2}(\mathbb{Z})$.

We have following relations: hyperbolic conjugacy classes for $\Gamma=S L_{2}(\mathbb{Z}) \leftrightarrow 1 \neq$ units in orders of quadratic real fields $\mathbb{Q}(\sqrt{d})$ (orders are indexed by $d \equiv 0,1(\bmod 4), d>0$ and not a square. In each order, the group of units is $\cong Z$), with multiplicity $h_{d}=$ class number of the order $\left(\sigma_{c} \sim b c \Leftrightarrow \sigma_{c}=c b\right.$, where $c \in \mathbb{Q}(\sqrt{d})$, Norm $\left.c=1\right) \leftrightarrow$ indefinite binary quadratic form not split over \mathbb{Q}.

The result of Luo-Sarnak had a connection with indefinite binary quadratic forms, since the lengths of closed geodesics on $S L_{2}(\mathbb{Z}) \backslash \mathbb{H}$ are given by $\log \varepsilon_{d}^{2}$ with multiplicity h_{d}, where ε_{d} is the fundamental unit (for non primitived h_{d} is determined by h_{d}, where $d=d_{0} t^{2}$).

As in the ordinary prime number theorem,

$$
\sum_{n \leq x} \Lambda(n) \sim x \Leftrightarrow \pi(x) \sim \operatorname{Li} x
$$

So we got

$$
\sum_{\log \varepsilon_{d} \leq X} h_{d} \log \varepsilon_{d}=X+O\left(X^{\frac{7}{10}+\varepsilon}\right) .
$$

In Sarnak's thesis: last formula is equivalent to

$$
\sum_{\varepsilon_{d}^{2} \leq X} h_{d} \sim \operatorname{Li} X+O\left(X^{\frac{7}{10}+\varepsilon}\right)
$$

and

$$
\sum_{\log \varepsilon_{d} \leq X} h_{d} \log \varepsilon_{d} \sim * X^{3 / 2}
$$

For negative discrimiant d, we have $\sum_{-d \leq X} h_{d} \sim * X^{3 / 2}$.
We do not know much about the distribution of h_{d} by $d \leq X$, For instance, we do not know whether $h_{d}=1$ infinitely often.

Go back to Weyl Law.

$$
\#\left\{t_{j} \leq T\right\}=\frac{\operatorname{area}(\Gamma \backslash \mathrm{H})^{2}}{T}+c T \log T+O(T)
$$

Can we improve the error term?
This is important in order to get bounds on $m(\lambda)$, where $m(\lambda)$ is the multiplicities of eigenvalues, also the dimension of eigenspaces. It is conjectured that $m(\lambda)=1$ for $\Gamma=\mathrm{SL}_{2}(z)$.

We know the following bound for $\varepsilon=1$

$$
\begin{equation*}
m(\lambda) \leq \#\left\{t_{j}:\left|t_{j}-t\right|<\varepsilon\right\} \ll \varepsilon t, \quad \text { where } \lambda=\frac{1}{4}+t^{2} \tag{0.12}
\end{equation*}
$$

Thus

$$
m(\lambda)=O(\sqrt{\lambda})
$$

We want to improve the local bound (0.12). Fix $g, h \in C_{c}^{\infty}(\mathbb{R})$ and

$$
g_{\varepsilon, t}(x)=g\left(\frac{x}{\varepsilon}\right) e^{t x}, \quad h_{\varepsilon, t}(x)=\frac{1}{\varepsilon} h\left(\frac{t-x}{\varepsilon}\right) .
$$

On the spectral side $\geq \frac{1}{\varepsilon} \sum_{\left|t_{j}-t\right|<\varepsilon} 1$.
What about the geometric side?
identity element: will give t.
hyperbolic contribution: trivial bound

$$
\sum_{\substack{P \\ \log P \leq \frac{1}{\varepsilon}}} \frac{g_{\varepsilon, t}(\log P) \log P}{\sqrt{P}}
$$

We need

$$
\sum_{\substack{P \\ \log P \leq \frac{1}{e}}} \frac{\log P}{\sqrt{P}} \leq t
$$

By PNT for closed geodesics, we have

$$
\text { LHS } \gg e^{\frac{1}{2 \varepsilon}} .
$$

Therefore, we can only take

$$
\varepsilon \sim \frac{1}{\log t}
$$

Hence we get

$$
* T^{2}+* T \log T+* T+O\left(\frac{T}{\log T}\right)
$$

Main open problem: improve this i.e.

$$
m(\lambda)=o\left(\frac{\sqrt{\lambda}}{\log \lambda}\right)
$$

References

[1] P. Sarnak, Letter to Zeev Rudnick.

