
Spectral analysis for Γ\H

Erez Lapid

§9 Application of the Selberg Trace Formula (March 9, 2009)

Last time, we showed Weyl law :

♯{tj ≤ T} −
∫ T

−T

φ′

φ
(
1

2
+ ir)dr ∼ area(Γ\H)

4π
T 2,

where
∫ T

−T

φ′

φ
(
1

2
+ ir)dr

equals to the number of poles of φ with |Im| ≤ T . If Γ is a congruence subgroup, then φ is

a product of L(s, χ)±1, where χ is Dirichlet character, and then

∫ T

−T

φ′

φ
(
1

2
+ ir)dr ≪ T log T,

and therefore

♯{tj ≤ T} ∼ area(Γ\H)

4π
T 2. (0.1)

For other Γ we do not expect (0.1), because the number of poles of φ with |Im| ≤ T is

large than δT 2, for some δ > 0 and large T ( This is supposed to happen for ”generic Γ”,

but there is no unconditional proof). Then RH is not true for φ, i.e. Re(η) will concentrate

near 1
2
.

Recall, for Γ = SL2(z), we have

φ(s) =
ζ∗(2s − 1)

ζ∗(2s)
.

And RH ⇒ poles of φ(s) are on Re(s) = 1
4

except s = 1.

For generic Γ, Re(η) concentrate near 1
2
, and

∑

ηn pole of φ

1
2
− Re(ηn)

|ηn|2
< ∞.

If ηn ≪ √
n, then 1

2
− Reηn is not bounded away from 0.

The Weyl law is a consequence of the Selberg trace formula where the test function is

localized near 0.

Today, we will estimate the number of primitive hyperbolic classes, weighted by their

length.
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Selberg Trace Formula :

∞
∑

j=0

h(tj) −
1

4π

∫

R

φ′

φ
(
1

2
+ ir)h(r)dr

=
area(Γ\H)

4π

∫

R

h(r)r tanh πrdr + 2
∑

P

∞
∑

l=1

g(l log p)

p
l
2 − p−

l
2

log p

+ other explict forms.

We would like (following Selberg) a ”Prime Number Theorem for primitive hyperbolic

classes(= closed geodesics). We have showed that log p = length of closed geodesic. Take

g(x) =
e−

x
2 + e

x
2

2
q(x),

where q is smooth, even and supported in |x| ≤ log(X + Y ), and q ≡ 1 for |x| ≤ log(X).

Graph of q is

Figure 1

What is h(t)?

Firstly, on Rs = 1/2, we have

h(t) =

∫ +∞

−∞

g(x)eitxdx =
1

2

∫ log(X+Y )

0

(ex/2 + e−x/2)eitxq(x)dx.

We consider the symmetric function having the form

∫ +∞

0

(esx + e(1−s)x)q(x)dx,

since q(x) is even.
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Using integration by parts once, we get the trivial bound as follows:

∫ +∞

0

esxq(x)dx =

∫ +∞

0

esx

s
q′(x)dx

≪
√

X + Y

|s|

∫ +∞

0

|q′(x)|dx

=

√
X + Y

|s|

≪
√

X

|s| . (0.2)

If integrate three times by parts, we get the following

∫ +∞

0

esx

s3
q′′′(x)dx ≤ 1

|s|3
√

X (log(X + Y ) − log X)−3

×
∫ log(X+Y )−log X

0

φ′′′
( t

log(X + 1) − log X

)

dt

≪ 1

|s|3
√

X (log(X + Y ) − log X)−2

≪ 1

|s|3
√

XT 2, (0.3)

where we set T = X
Y

. By (0.2) and (0.3), we deduce the bound of h(t)

h(t) ≪
√

X

|s| min

{

1,
T 2

|s|2
}

. (0.4)

Now for 1
2

< s ≤ 1, we have

∫ +∞

0

esxq(x)dx ≪
∫ log X

0

esxdx +

∫ log(X+Y )

log X

esxq(x)dx

=
Xs

s
+

∫ log(X+Y )

log X

esxdx

=
Xs

s
+ O

((X + Y )s − Xs

s

)

=
Xs

s
+ O(Y ). (0.5)
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This because

(X + Y )s − Xs

s
=

∫ X+Y

X

ts−1dt

≪ Y (X + Y )s−1

≪ Y Xs−1 ≪ Y.

On the other hand, we have

∫ +∞

0

e(1−s)xq(x)dx ≤
∫ log(X+Y )

0

e
1
2
xdx ≪

√
X. (0.6)

For the spectral side, we have

∑

1
2
<sj≤1

h(tj) +
∑

tj∈R

h(tj) −
1

4π

∫ +∞

−∞

φ′

φ
(
1

2
+ ir)h(r)dr. (0.7)

Using (0.4), for the second term of (0.7), we obtain

∑

tj∈R

h(tj) ≤
∑

tj≤T

√
X

|sj|
+
∑

tj>T

√
X

|sj|3
T 2

≪
√

X
(

∑

j≤T 2

1√
j

+ T 2
∑

j>T 2

1

j3/2

)

≪
√

XT.

For the continuous part, using (0.4) again, we get

− 1

4π

∫ +∞

−∞

φ′

φ
(
1

2
+ ir)h(r)dr

≪ −
∫ T

0

√
X

1 + r

φ′

φ
(
1

2
+ ir)dr −

√
XT 2

∫ +∞

T

φ′

φ
(1

2
+ ir)

r3
dr. (0.8)

We having the following formula

∫ +t

−t

φ′

φ
(
1

2
+ ir)dr ≪ t2. (0.9)

For the second term of (0.8), using partial integrating and (0.9), we obtain

∫ +∞

T

∫ r

0
φ′

φ
(1

2
+ it)dt

r4
dr ≪

∫ +∞

T

dr

r2
=

1

T
,

while for the first term, we get

√
X

∫ T

1

∫ r

1
φ′

φ
(1

2
+ it)dt

r2
dr ≪

√
XT.

4



From (0.5) and (0.6), we get

∑

1
2
<sj≤1

h(tj) =
∑

1
2
<sj≤1

xsj

sj
+ O(Y +

√
X).

So far, for the test function g(x) = (ex/2 + e−x/2)q(x), we have from the spectral side

=
∑

1
2
<sj≤1

xsj

sj

+ O(Y +
√

XT ).

In the geometric side, so only the case l = 1 matters. We need to compute

∑

NP=p

tanh
( log p

2

)

log p q(log p) =
∑

p

log pq(log p) + O(Y +
√

XT ).

The identity contribution

∫ +∞

−∞

h(t)t tanh(πt)dt <

∫ T

0

√
X

t
dt + T 2

∫ +∞

T

√
Xt

t2
dt

≪
√

XT.

And the elliptic, parabolic cases are easy to bound within error term of O(Y +
√

XT ).

All in all, we have

∑

P

q(log p) log p =
∑

1
2
<sj≤1

Xsj

sj
+ O(Y +

√
XT ), (0.10)

replace X by X ± Y , and subtract, we get
∑

X<p≤X+Y

q(log p) log p ≤ difference LHS = difference RHS

=
∑

1
2
<sj≤1

(X + Y )sj − Xsj

sj
+ O(Y +

√
XT ).

Going back
∑

p≤X

log p =
∑

1
2
<sj≤1

Xsj

sj
+ O(Y +

√
XT )

The minimum of the error term O(
√

XT = Y ) is obtained when Y = X3/4. We have the

following:

Theorem (Selberg). For X ≥ 1 ,

∑

p≤X

log p =
∑

3
4
<sj≤1

Xsj

sj

+ O(X3/4). (0.11)
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For any congruence subgroup, we know that s ≤ 3
4

for all 1
2
≤ s 6= 1. Thus

∑

p≤X

log p = X + O(X3/4).

This is the prime number theory with an error term. The Selberg zeta-function satisfies an

analogue of the Riemann hypothesis, at least for Γ = SL2(Z). Luo-Sarnak: Can improve

(0.11) to O(X
7
10

+ε) for Γ = SL2(Z).

We have following relations: hyperbolic conjugacy classes for Γ = SL2(Z) ↔ 1 6= units in

orders of quadratic real fields Q(
√

d) (orders are indexed by d ≡ 0, 1(mod4), d > 0 and not

a square. In each order, the group of units is ∼= Z ), with multiplicity hd = class number of

the order (σc ∼ bc ⇔ σc = cb, where c ∈ Q(
√

d), Norm c = 1) ↔ indefinite binary quadratic

form not split over Q.

The result of Luo-Sarnak had a connection with indefinite binary quadratic forms, since

the lengths of closed geodesics on SL2(Z)\H are given by log ε2
d with multiplicity hd, where

εd is the fundamental unit (for non primitived hd is determined by hd, where d = d0t
2).

As in the ordinary prime number theorem,

∑

n≤x

Λ(n) ∼ x ⇔ π(x) ∼ Lix.

So we got
∑

log εd≤X

hd log εd = X + O(X
7
10

+ε).

In Sarnak’s thesis: last formula is equivalent to

∑

ε2
d
≤X

hd ∼ LiX + O(X
7
10

+ε),

and
∑

log εd≤X

hd log εd ∼ ∗X3/2.

For negative discrimiant d, we have
∑

−d≤X hd ∼ ∗X3/2.

We do not know much about the distribution of hd by d ≤ X, For instance, we do not

know whether hd = 1 infinitely often.

Go back to Weyl Law.

#{tj ≤ T} =
area(Γ\H)

T

2

+ cT log T + O(T ).

Can we improve the error term?

This is important in order to get bounds on m(λ), where m(λ) is the multiplicities of eigen-

values, also the dimension of eigenspaces. It is conjectured that m(λ) = 1 for Γ = SL2(z).
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We know the following bound for ε = 1

m(λ) ≤ #{tj : |tj − t| < ε} ≪ εt, where λ =
1

4
+ t2. (0.12)

Thus

m(λ) = O(
√

λ).

We want to improve the local bound (0.12). Fix g, h ∈ C∞
c (R) and

gε,t(x) = g(
x

ε
)etx, hε,t(x) =

1

ε
h(

t − x

ε
).

On the spectral side ≥ 1
ε

∑

|tj−t|<ε 1.

What about the geometric side?

identity element: will give t.

hyperbolic contribution: trivial bound

∑

P

log P≤ 1
ε

gε,t(log P ) log P√
P

We need
∑

P

log P≤ 1
e

log P√
P

≤ t.

By PNT for closed geodesics, we have

LHS ≫ e
1
2ε .

Therefore, we can only take

ε ∼ 1

log t
.

Hence we get

∗T 2 + ∗T log T + ∗T + O(
T

log T
).

Main open problem: improve this i.e.

m(λ) = o

( √
λ

log λ

)

.
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