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Let Γ be the modular group SL2(Z), and the cusp form is defined by

fP (y) ≡ 0,

where

fP (y) =

∫ 1

0

f(x + iy)dx.

The Laplace operator ∆ has discrete spectrum on L2
cusp(Γ\H). In the last time we modified

the invariant integral operators to get compact operators on L2(Γ\H), which does not change

on cuspidal point-discrete spectrum for ∆.

Lemma. If f is of moderate growth and is Γ∞-invariant, (∆ + λ)f = 0. Then f − fP is

rapidly decreasing. i.e., f(z) − fP (z) ≪ (Imz)−N as Imz → ∞ for any N .

Proof. In fact, we show that for f in the image of L, i.e., for

Lf(z) =

∫

H

k(z, w)f(w)dµ(w)

=

∫

Γ∞\H

∑

n∈Z

k(z, w + n)f(w)dµ(w).

And

(Lf)P (z) =

∫

Γ∞\H

∫ 1

o

∑

n∈Z

k(z + x, w + n)f(w)dµ(w)d(x)

=

∫

Γ∞\H

∫

R

k(z, w + x)f(w)dµ(w)d(x).

Then we obtain

Lf − (Lf)P (z) =

∫

Γ∞\H

(∑

n∈Z

k(z, w + n) −

∫

R

k(z, w + x)dx
)
f(w)dµ(w).

We showed that

K̂(z, w) ≪ (ImzImw)−N

for Imz ≫ 1, where K̂(z, w) =
∑

n∈Z
k(z, w + n) −

∫
R

k(z, w + x)dx. We also deduced that

Imw ≫ 1, if K̂(z, w) 6= 0.

Now, as before,

(Imz)n(Lf(z) − (Lf)P (z)) =

∫

Γ∞\H

(Imz)nK̂(z, w)(Imw)n(Imw)−nf(w)dw

is bounded for n ≫ 0, as (Imw)−nf(w) is bounded.

In the following we want to study the rest of the spectral decomposition of ∆ on L2(Γ\H).
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Question. How to construct Γ-invariant eigenfunctions of ∆ on H?

We start with any eigenfunction f and construct the map

z 7→
∑

γ∈Γ

f(γz).

If the summation converges, it will be a Γ-invariant eigenfunction with the same eigenvalue

of f .

Important case: f(z) = (Imz)s, λ = s(1− s), then f(z) is N -invariant, and so Γ∞-invariant.

Def. The Eisenstein series is given by

E(z; s) =
∑

γ∈Γ∞\Γ

(Imγz)s

where z ∈ H.
EX. Γ∞\Γ 7→ (c, d) ∈ Z

2\{(0, 0)}, gcd(c, d) = 1 is well defined, where

Γ∞\Γ =

{(
1 n

1

)
: n ∈ Z

}∖ {(
a b
c d

)
: a, b, c, d ∈ Z, ad − bc = 1

}
.

For any γ =

(
a b
c d

)
∈ Γ, we have Imγz = Imz

|cz+d|2
.

Thus

E(z, s) =
∑

(m,n)=1

ys

|mz + n|2s
= ys

∑

(m,n)=1

1

(m2y2 + (n + mx)2)s
.

Properties of the Eisenstein series.

(1) The series converges absolutely and locally uniformly for Res > 1, even

∑

(m,n)∈Z2\{(0,0)}

1

(m2y2 + (n + mx)2)s
=

∑

(m,n)∈Z2\{(0,0)}

1

Qz(m, n)s

has the same behavior as
∑

(m,n)∈Z2\{(0,0)}
1

(m2+n2)s
, where Qz(m, n) = m2y2 + (n + mx)2 is a

quadratic form.

(2) We have ∆zE(z, s) = λE(z, s) for λ = s(1 − s), and E(γz, s) = E(z, s) for all

γ ∈ Γ, z ∈ H.

The Fourier expansion of E(z, s) is given by

E(z, s) =
∑

r∈Z

ar(z, s)e(rx),
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where ar(z, s) = (E, e(rx)) and e(x) = e2πix. Then

ar(z, s) =

∫ 1

0

E(z, s)e(rx)dx =

∫ 1

0

∑

(m,n)=1

ys

|mz + n|2s
e(rx)dx

=

∫ 1

0

yse(rx)dx + ys
∑

(m,n)=1
m≥1

∫ 1

0

e(rx)

|mz + n|2s
dx

=

∫ 1

0

yse(rx)dx + ys

∞∑

m=1

∫ 1

0

1

m2s

∑

n

(m,n)=1

e(rx)

|z + n
m
|2s

dx

=

∫ 1

0

yse(rx)dx + ys
∞∑

m=1

1

m2s

∫ 1

0

∗∑

c(modm)

∑

k∈Z

e(rx)

|z + c
m

+ k|2s
dx

=

∫ 1

0

yse(rx)dx + ys

∞∑

m=1

1

m2s

∗∑

c(modm)

∫

R

e(rx)

|iy + c
m

+ x|2s
dx

=

∫ 1

0

yse(rx)dx + ys
∞∑

m=1

1

m2s

∗∑

c(modm)

e
(rc

m

) ∫

R

e(rx)

|iy + x|2s
dx.

Firstly,we get the constant term for r = 0

ys + ys
∑

m

1

m2s
ϕ(m)

∫

R

dx

|iy + x|2s
= ys + φ(s)y1−s,

where

φ(s) =
ξ∗(2s − 1)

ξ∗(2s)

and

ξ∗(s) = π− s

2 Γ(
s

2
)

∞∑

n=1

1

ns
.

Finally, we get

E(z, s) = ys + φ(s)y1−s +
∑

r

πs |r|
s−1

Γ(s)
ζ−1(2s)

∑

d|r

d1−2sWs(rz),

where
Ws(rz) = Ks−1/2(2πny)e(rx).

In particular, we can get meromorphic continuation of E(z, s), and functional equation

E(z, s) = φ(s)E(z, 1 − s), φ(s)φ(1 − s) = 1. Here we used the analytic properties of the

constant term, namely, the Riemann zate function. One can turn the table and prove analytic

properties of φ(s) from these of E(z, s).

Selberg had several proofs of analytic continuation of Eisenstein series. Bernstein had a

more conceptual version. This and other useful things can be found in the following web:

www.math.uchicago.edu/∼ mitya/langlands.html
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Spectral decomposition.

Just like the Harmonic analysis of L2(R) =
∫

R
e2πixdx, where e2πix is not in L2(R). One

starts with rapidly decreasing functions rather than L2-functions.

To analyze the continuous spectrum of L2(Γ\H), we will get E(z; s) into this picture

eventually. We need to study not only continuous families of eigenfunctions (Eisenstein

series), but also ”wave packets”.

We start with f ∈ C∞
c (R>0), define

Ef (z) =
∑

γ∈Γ∞\Γ

f(Imγz).

Notice that Ef(z) is Γ-invariant, but it is not an eigenfunction. For any given z, only

finitely many terms in the sum are not zero, because for any given c > 0, there are only

finitely many γ with Imγz > c.

Moreover, Ef(z) is compactly supported modulo Γ, i.e., Ef (z) = 0 if Imz ≫ 1.

Since

Imγz ≤
1

Imz
, γ 6∈ Γ∞,

Thus, f(Imγz) = 0, ∀ γ 6∈ Γ∞ and also f(Imz) = 0.

For any given Γ-invariant ϕ with moderate growth, we have

(Ef , ϕ)Γ\H =

∫ ∞

0

f(y)ϕP (y)
dy

y2
. (0.1)

Indeed,

(Ef , ϕ)Γ\H =

∫

Γ\H

Ef (z)ϕ(z) dµ(z)

=

∫

Γ\H

∑

γ∈Γ∞\Γ

f(Imγz)ϕ(γz) dµ(z)

=

∫

Γ∞\H

f(Imz)ϕ(z) dµ(z)

=

∫ 1

0

∫ ∞

0

f(y)ϕ(x + iy)
dxdy

y2
.

=

∫ ∞

0

f(y)ϕP (y)
dy

y2

In particular, Ef is orthogonal to all cusp forms (the same thing for E(z; s)).

Question. What is the relation between these Ef ’s and the Eisenstein series? (via Mellin

inversion).

The Mellin transform is defined as follows:

f̂(s) =

∫ ∞

0

f(x)x−s dx

x
.
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f̂(s) is entire in s and rapidly decreasing in any vertical strips, i.e., ∀ n, a and b, (1+|s|)nf̂(s)

is bounded on a ≤ Rs ≤ b.
By Mellin inversion,

f(y) =
1

2πi

∫

Rs=s0

f̂(s)ysds

for any s0.

We turn back to Ef , by Mellin Inversion

Ef (z) =
∑

γ∈Γ∞\Γ

f(Imγz)

=
1

2πi

∑

γ∈Γ∞\Γ

∫

Rs=s0

f̂(s)(Imγz)sds.

We can switch sum and integral provided that they converge as a double integral. i.e., for

s0 > 1, we have

Ef(z) =
1

2πi

∫

Rs=s0

f̂(s)
∑

γ∈Γ∞\Γ

(Imγz)sds

=
1

2πi

∫

Rs=s0

f̂(s)E(z; s)ds.

As a matter of fact, we can shift the integral line to Rs = 1/2 later.

What is (Ef , Eg)Γ\H?

(Ef , Eg)Γ\H =

(
1

2πi

∫

Rs=s0

f̂(s)E(z; s)ds, Eg

)

Γ\H

=
1

2πi

∫

Rs=s0

f̂(s)
(
E(z; s), Eg

)
Γ\H

ds,

where the inner product is

(E(z; s), Eg)Γ\H
=

∫ ∞

0

Ep(y, s)g(y)
dy

y2

=

∫ ∞

0

(ys + φ(s)y1−s)g(y)
dy

y2

= ĝ(1 − s) + φ(s)ĝ(s).

Therefore,

(Ef , Eg)Γ\H =
1

2πi

∫

Rs=s0

f̂(s)
(
ĝ(1 − s) + φ(s)ĝ(s)

)
ds.

Remark.
We just want to get something like

(f, g)L2(R) =

∫

R

f̂(t) ĝ(t) dt.
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Another version of Ef : truncation. E(z; s) is of moderate growth, but not in L2 for any

s. It is ”almostly” on L2 for Rs = 1/2.

Def. Let T be a fixed parameter, the truncation operator is defined by

ΛT E(z; s) = ET (z; s) =

{
E(z; s), Imz ≤ T,
E(z; s) − EP (y), Imz > T,

where z ∈ F . Obviously, ET (z; s) is rapidly decreasing.

Maass-Selberg relations.

(
ΛTE(·, s1), ΛT E(·, s2)

)

F
=

T s1−s2−1

s1 − s2 − 1
+

φ(s1)T
s2−s1

s2 − s1

+
φ(s2)T

s1−s2

s1 − s2
+

φ(s1)φ(s2)

1 − s1 − s2
T 1−s1−s2.

From the Maass-Selberg relation, we have the following consequences:

(1) E(z; s) and φ(s) have the same poles;

(2) They are holomorphic for Rs = 1/2;

(3) There are only finitely many poles for Rs = 1/2, they are all simple and attained for s

real.

Proof of part 3.

We fix σ > 1/2, s0 = σ + iτ and want to take s2 = s̄1, s1 = s0 + it. Here t is small.

Applying the Maass-Selberg relation, we obtain

‖ ET (·, s1) ‖
2=

T 2σ−1

2σ − 1
+ Im

φ(s1)T
2i(t+τ)

2i(t + τ)
+

T 1−2σ

1 − 2σ
|φ(s1)|

2. (0.2)

Then we get

T 2σ−1

2σ − 1
+ Im

φ(s1)T
2i(t+τ)

2i(t + τ)
≥

T 1−2σ

2σ − 1
|φ(s1)|

2,

since the left hand side of (0.2) ≥ 0.

Suppose that φ(s1) has a pole of order m ≥ 1 at s0. Multiplying t2m on both sides, we

have

t2mT 2σ−1

2σ − 1
+ t2mIm

φ(s1)T
2i(t+τ)

2i(t + τ)
≥

T 1−2σ

2σ − 1
t2m|φ(s1)|

2. (0.3)

The first term of the left hand side of (0.3) tends to 0. The second term of the left hand side

of (0.3) tends to 0 unless m = 1 and τ = 0. The right hand side of (0.3) > 0, as t tends to 0.
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