Spectral analysis for $\Gamma \backslash \mathbb{H}$

Erez Lapid

$\S 5$ Cuspidal spectrum of $\Gamma \backslash \mathbb{H}$ (February 26, 2009)

Let Γ be the modular group $S L_{2}(\mathbb{Z})$, and the cusp form is defined by

$$
f_{P}(y) \equiv 0
$$

where

$$
f_{P}(y)=\int_{0}^{1} f(x+i y) \mathrm{d} x
$$

The Laplace operator Δ has discrete spectrum on $L_{\text {cusp }}^{2}(\Gamma \backslash \mathbb{H})$. In the last time we modified the invariant integral operators to get compact operators on $L^{2}(\Gamma \backslash \mathbb{H})$, which does not change on cuspidal point-discrete spectrum for Δ.
Lemma. If f is of moderate growth and is Γ_{∞}-invariant, $(\Delta+\lambda) f=0$. Then $f-f_{P}$ is rapidly decreasing. i.e., $f(z)-f_{P}(z) \ll(\operatorname{Im} z)^{-N}$ as $\operatorname{Im} z \rightarrow \infty$ for any N.
Proof. In fact, we show that for f in the image of L, i.e., for

$$
\begin{aligned}
L f(z) & =\int_{\mathbb{H}} k(z, w) f(w) \mathrm{d} \mu(w) \\
& =\int_{\Gamma_{\infty} \backslash \mathbb{H}} \sum_{n \in \mathbb{Z}} k(z, w+n) f(w) \mathrm{d} \mu(w) .
\end{aligned}
$$

And

$$
\begin{aligned}
(L f)_{P}(z) & =\int_{\Gamma_{\infty} \backslash \mathbb{H}} \int_{o}^{1} \sum_{n \in \mathbb{Z}} k(z+x, w+n) f(w) \mathrm{d} \mu(w) \mathrm{d}(x) \\
& =\int_{\Gamma_{\infty} \backslash \mathbb{H}} \int_{\mathbb{R}} k(z, w+x) f(w) \mathrm{d} \mu(w) \mathrm{d}(x) .
\end{aligned}
$$

Then we obtain

$$
L f-(L f)_{P}(z)=\int_{\Gamma_{\infty} \backslash \mathbb{H}}\left(\sum_{n \in \mathbb{Z}} k(z, w+n)-\int_{\mathbb{R}} k(z, w+x) \mathrm{d} x\right) f(w) \mathrm{d} \mu(w)
$$

We showed that

$$
\widehat{K}(z, w) \ll(\operatorname{Im} z \operatorname{Im} w)^{-N}
$$

for $\operatorname{Im} z \gg 1$, where $\widehat{K}(z, w)=\sum_{n \in \mathbb{Z}} k(z, w+n)-\int_{\mathbb{R}} k(z, w+x) \mathrm{d} x$. We also deduced that $\operatorname{Im} w \gg 1$, if $\widehat{K}(z, w) \neq 0$.
Now, as before,

$$
(\operatorname{Im} z)^{n}\left(L f(z)-(L f)_{P}(z)\right)=\int_{\Gamma_{\infty} \backslash \mathbb{H}}(\operatorname{Im} z)^{n} \widehat{K}(z, w)(\operatorname{Im} w)^{n}(\operatorname{Im} w)^{-n} f(w) \mathrm{d} w
$$

is bounded for $n \gg 0$, as $(\operatorname{Im} w)^{-n} f(w)$ is bounded.
In the following we want to study the rest of the spectral decomposition of Δ on $L^{2}(\Gamma \backslash \mathbb{H})$.

Question. How to construct Γ-invariant eigenfunctions of Δ on \mathbb{H} ?
We start with any eigenfunction f and construct the map

$$
z \mapsto \sum_{\gamma \in \Gamma} f(\gamma z) .
$$

If the summation converges, it will be a Γ-invariant eigenfunction with the same eigenvalue of f.
Important case: $f(z)=(\operatorname{Im} z)^{s}, \lambda=s(1-s)$, then $f(z)$ is N-invariant, and so Γ_{∞}-invariant. Def. The Eisenstein series is given by

$$
E(z ; s)=\sum_{\gamma \in \Gamma_{\infty} \backslash \Gamma}(\operatorname{Im} \gamma z)^{s}
$$

where $z \in \mathbb{H}$.
EX. $\Gamma_{\infty} \backslash \Gamma \mapsto(c, d) \in \mathbb{Z}^{2} \backslash\{(0,0)\}, \operatorname{gcd}(c, d)=1$ is well defined, where

$$
\Gamma_{\infty} \backslash \Gamma=\left\{\left(\begin{array}{cc}
1 & n \\
& 1
\end{array}\right): n \in \mathbb{Z}\right\} \backslash\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right): a, b, c, d \in \mathbb{Z}, a d-b c=1\right\}
$$

For any $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma$, we have $\operatorname{Im} \gamma z=\frac{\operatorname{Im} z}{|c z+d|^{2}}$.
Thus

$$
E(z, s)=\sum_{(m, n)=1} \frac{y^{s}}{|m z+n|^{2 s}}=y^{s} \sum_{(m, n)=1} \frac{1}{\left(m^{2} y^{2}+(n+m x)^{2}\right)^{s}}
$$

Properties of the Eisenstein series.

(1) The series converges absolutely and locally uniformly for $\operatorname{Re} s>1$, even

$$
\sum_{(m, n) \in \mathbb{Z}^{2} \backslash\{(0,0)\}} \frac{1}{\left(m^{2} y^{2}+(n+m x)^{2}\right)^{s}}=\sum_{(m, n) \in \mathbb{Z}^{2} \backslash\{(0,0)\}} \frac{1}{Q_{z}(m, n)^{s}}
$$

has the same behavior as $\sum_{(m, n) \in \mathbb{Z}^{2} \backslash\{(0,0)\}} \frac{1}{\left(m^{2}+n^{2}\right)^{s}}$, where $Q_{z}(m, n)=m^{2} y^{2}+(n+m x)^{2}$ is a quadratic form.
(2) We have $\Delta_{z} E(z, s)=\lambda E(z, s)$ for $\lambda=s(1-s)$, and $E(\gamma z, s)=E(z, s)$ for all $\gamma \in \Gamma, z \in \mathbb{H}$.

The Fourier expansion of $E(z, s)$ is given by

$$
E(z, s)=\sum_{r \in \mathbb{Z}}^{2} \text { a } a_{r}(z, s) e(r x),
$$

where $a_{r}(z, s)=(E, e(r x))$ and $e(x)=e^{2 \pi i x}$. Then

$$
\begin{aligned}
a_{r}(z, s) & =\int_{0}^{1} E(z, s) e(r x) \mathrm{d} x=\int_{0}^{1} \sum_{(m, n)=1} \frac{y^{s}}{|m z+n|^{2 s}} e(r x) \mathrm{d} x \\
& =\int_{0}^{1} y^{s} e(r x) \mathrm{d} x+y^{s} \sum_{\substack{(m, n)=1 \\
m \geq 1}} \int_{0}^{1} \frac{e(r x)}{|m z+n|^{2 s}} \mathrm{~d} x \\
& =\int_{0}^{1} y^{s} e(r x) \mathrm{d} x+y^{s} \sum_{m=1}^{\infty} \int_{0}^{1} \frac{1}{m^{2 s}} \sum_{\substack{n \\
(m, n)=1}} \frac{e(r x)}{\left|z+\frac{n}{m}\right|^{2 s}} \mathrm{~d} x \\
& =\int_{0}^{1} y^{s} e(r x) \mathrm{d} x+y^{s} \sum_{m=1}^{\infty} \frac{1}{m^{2 s}} \int_{0}^{1} \sum_{c(\bmod m)}^{*} \sum_{k \in \mathbb{Z}} \frac{e(r x)}{\left|z+\frac{c}{m}+k\right|^{2 s}} \mathrm{~d} x \\
& =\int_{0}^{1} y^{s} e(r x) \mathrm{d} x+y^{s} \sum_{m=1}^{\infty} \frac{1}{m^{2 s}} \sum_{c(\bmod m)}^{*} \int_{\mathbb{R}} \frac{e(r x)}{\left|i y+\frac{c}{m}+x\right|^{2 s}} \mathrm{~d} x \\
& =\int_{0}^{1} y^{s} e(r x) \mathrm{d} x+y^{s} \sum_{m=1}^{\infty} \frac{1}{m^{2 s}} \sum_{c(\bmod m)}^{*} e\left(\frac{r c}{m}\right) \int_{\mathbb{R}} \frac{e(r x)}{|i y+x|^{2 s}} \mathrm{~d} x .
\end{aligned}
$$

Firstly, we get the constant term for $r=0$

$$
y^{s}+y^{s} \sum_{m} \frac{1}{m^{2 s}} \varphi(m) \int_{\mathbb{R}} \frac{\mathrm{d} x}{|i y+x|^{2 s}}=y^{s}+\phi(s) y^{1-s}
$$

where

$$
\phi(s)=\frac{\xi^{*}(2 s-1)}{\xi^{*}(2 s)}
$$

and

$$
\xi^{*}(s)=\pi^{-\frac{s}{2}} \Gamma\left(\frac{s}{2}\right) \sum_{n=1}^{\infty} \frac{1}{n^{s}} .
$$

Finally, we get

$$
E(z, s)=y^{s}+\phi(s) y^{1-s}+\sum_{r} \pi^{s} \frac{|r|^{s-1}}{\Gamma(s)} \zeta^{-1}(2 s) \sum_{d \mid r} d^{1-2 s} W_{s}(r z)
$$

where

$$
W_{s}(r z)=K_{s-1 / 2}(2 \pi n y) e(r x) .
$$

In particular, we can get meromorphic continuation of $E(z, s)$, and functional equation $E(z, s)=\phi(s) E(z, 1-s), \phi(s) \phi(1-s)=1$. Here we used the analytic properties of the constant term, namely, the Riemann zate function. One can turn the table and prove analytic properties of $\phi(s)$ from these of $E(z, s)$.

Selberg had several proofs of analytic continuation of Eisenstein series. Bernstein had a more conceptual version. This and other useful things can be found in the following web:
www.math.uchicago.edu/ ~ mitya/langlands.html

Spectral decomposition.

Just like the Harmonic analysis of $L^{2}(\mathbb{R})=\int_{\mathbb{R}} e^{2 \pi i x} \mathrm{~d} x$, where $e^{2 \pi i x}$ is not in $L^{2}(\mathbb{R})$. One starts with rapidly decreasing functions rather than L^{2}-functions.

To analyze the continuous spectrum of $L^{2}(\Gamma \backslash \mathbb{H})$, we will get $E(z ; s)$ into this picture eventually. We need to study not only continuous families of eigenfunctions (Eisenstein series), but also "wave packets".

We start with $f \in \mathcal{C}_{c}^{\infty}\left(\mathbb{R}_{>0}\right)$, define

$$
E_{f}(z)=\sum_{\gamma \in \Gamma_{\infty} \backslash \Gamma} f(\operatorname{Im} \gamma z) .
$$

Notice that $E_{f}(z)$ is Γ-invariant, but it is not an eigenfunction. For any given z, only finitely many terms in the sum are not zero, because for any given $c>0$, there are only finitely many γ with $\operatorname{Im} \gamma z>c$.

Moreover, $E_{f}(z)$ is compactly supported modulo Γ, i.e., $E_{f}(z)=0$ if $\operatorname{Im} z \gg 1$.
Since

$$
\operatorname{Im} \gamma z \leq \frac{1}{\operatorname{Im} z}, \quad \gamma \notin \Gamma_{\infty}
$$

Thus, $f(\operatorname{Im} \gamma z)=0, \forall \gamma \notin \Gamma_{\infty}$ and also $f(\operatorname{Im} z)=0$.
For any given Γ-invariant φ with moderate growth, we have

$$
\begin{equation*}
\left(E_{f}, \varphi\right)_{\Gamma \backslash \mathbb{H}}=\int_{0}^{\infty} f(y) \overline{\varphi_{P}(y)} \frac{\mathrm{d} y}{y^{2}} \tag{0.1}
\end{equation*}
$$

Indeed,

$$
\begin{aligned}
\left(E_{f}, \varphi\right)_{\Gamma \backslash \mathbb{H}} & =\int_{\Gamma \backslash \mathbb{H}} E_{f}(z) \overline{\varphi(z)} \mathrm{d} \mu(z) \\
& =\int_{\Gamma \backslash \mathbb{H}} \sum_{\gamma \in \Gamma_{\infty} \backslash \Gamma} f(\operatorname{Im} \gamma z) \overline{\varphi(\gamma z)} \mathrm{d} \mu(z) \\
& =\int_{\Gamma_{\infty} \backslash \mathbb{H}} f(\operatorname{Im} z) \overline{\varphi(z)} \mathrm{d} \mu(z) \\
& =\int_{0}^{1} \int_{0}^{\infty} f(y) \overline{\varphi(x+i y)} \frac{\mathrm{d} x \mathrm{~d} y}{y^{2}} . \\
& =\int_{0}^{\infty} f(y) \overline{\varphi_{P}(y)} \frac{\mathrm{d} y}{y^{2}}
\end{aligned}
$$

In particular, E_{f} is orthogonal to all cusp forms (the same thing for $E(z ; s)$).
Question. What is the relation between these E_{f} 's and the Eisenstein series? (via Mellin inversion).

The Mellin transform is defined as follows:

$$
\hat{f}(s)=\int_{0}^{\infty} f(x) x^{-s} \frac{\mathrm{~d} x}{x}
$$

$\hat{f}(s)$ is entire in s and rapidly decreasing in any vertical strips, i.e., $\forall n, a$ and $b,(1+|s|)^{n} \hat{f}(s)$ is bounded on $a \leq \mathfrak{R} s \leq b$.

By Mellin inversion,

$$
f(y)=\frac{1}{2 \pi i} \int_{\mathfrak{R} s=s_{0}} \hat{f}(s) y^{s} \mathrm{~d} s
$$

for any s_{0}.
We turn back to E_{f}, by Mellin Inversion

$$
\begin{aligned}
E_{f}(z) & =\sum_{\gamma \in \Gamma_{\infty} \backslash \Gamma} f(\operatorname{Im} \gamma z) \\
& =\frac{1}{2 \pi i} \sum_{\gamma \in \Gamma_{\infty} \backslash \Gamma} \int_{\mathfrak{R}_{s=s_{0}}} \hat{f}(s)(\operatorname{Im} \gamma z)^{s} \mathrm{~d} s .
\end{aligned}
$$

We can switch sum and integral provided that they converge as a double integral. i.e., for $s_{0}>1$, we have

$$
\begin{aligned}
E_{f}(z) & =\frac{1}{2 \pi i} \int_{\mathfrak{R} s=s_{0}} \hat{f}(s) \sum_{\gamma \in \Gamma_{\infty} \backslash \Gamma}(\operatorname{Im} \gamma z)^{s} \mathrm{~d} s \\
& =\frac{1}{2 \pi i} \int_{\mathfrak{R}_{s=s_{0}}} \hat{f}(s) E(z ; s) \mathrm{d} s .
\end{aligned}
$$

As a matter of fact, we can shift the integral line to $\mathfrak{R} s=1 / 2$ later.
What is $\left(E_{f}, E_{g}\right)_{\Gamma \backslash \mathbb{H}}$?

$$
\begin{aligned}
\left(E_{f}, E_{g}\right)_{\Gamma \backslash \mathbb{H}} & =\left(\frac{1}{2 \pi i} \int_{\mathfrak{R} s=s_{0}} \hat{f}(s) E(z ; s) \mathrm{d} s, E_{g}\right)_{\Gamma \backslash \mathbb{H}} \\
& =\frac{1}{2 \pi i} \int_{\mathfrak{R} s=s_{0}} \hat{f}(s)\left(E(z ; s), E_{g}\right)_{\Gamma \backslash \mathbb{H}} \mathrm{d} s,
\end{aligned}
$$

where the inner product is

$$
\begin{aligned}
\left(E(z ; s), E_{g}\right)_{\Gamma \backslash \mathbb{H}} & =\int_{0}^{\infty} E_{p}(y, s) \overline{g(y)} \frac{\mathrm{d} y}{y^{2}} \\
& =\int_{0}^{\infty}\left(y^{s}+\phi(s) y^{1-s}\right) \overline{g(y)} \frac{\mathrm{d} y}{y^{2}} \\
& =\hat{\bar{g}}(1-s)+\phi(s) \hat{\bar{g}}(s) .
\end{aligned}
$$

Therefore,

$$
\left(E_{f}, E_{g}\right)_{\Gamma \backslash \mathbb{H}}=\frac{1}{2 \pi i} \int_{\mathfrak{R}_{s=s_{0}}} \hat{f}(s)(\hat{\bar{g}}(1-s)+\phi(s) \hat{\bar{g}}(s)) \mathrm{d} s .
$$

Remark.

We just want to get something like

$$
(f, g)_{L^{2}(\mathbb{R})}=\int_{\mathbb{R}^{\mathbb{R}}} \hat{f}(t) \overline{\hat{g}(t)} \mathrm{d} t
$$

Another version of E_{f} : truncation. $E(z ; s)$ is of moderate growth, but not in L^{2} for any s. It is "almostly" on L^{2} for $\mathfrak{R} s=1 / 2$.

Def. Let T be a fixed parameter, the truncation operator is defined by

$$
\Lambda^{T} E(z ; s)=E^{T}(z ; s)= \begin{cases}E(z ; s), & \operatorname{Im} z \leq T \\ E(z ; s)-E_{P}(y), & \operatorname{Im} z>T\end{cases}
$$

where $z \in \mathcal{F}$. Obviously, $E^{T}(z ; s)$ is rapidly decreasing.
Maass-Selberg relations.

$$
\begin{aligned}
\left(\Lambda^{T} E\left(\cdot, s_{1}\right), \overline{\Lambda^{T} E\left(\cdot, s_{2}\right)}\right)_{\mathcal{F}} & =\frac{T^{s_{1}-s_{2}-1}}{s_{1}-s_{2}-1}+\frac{\phi\left(s_{1}\right) T^{s_{2}-s_{1}}}{s_{2}-s_{1}} \\
& +\frac{\phi\left(s_{2}\right) T^{s_{1}-s_{2}}}{s_{1}-s_{2}}+\frac{\phi\left(s_{1}\right) \phi\left(s_{2}\right)}{1-s_{1}-s_{2}} T^{1-s_{1}-s_{2}} .
\end{aligned}
$$

From the Maass-Selberg relation, we have the following consequences:
(1) $E(z ; s)$ and $\phi(s)$ have the same poles;
(2) They are holomorphic for $\mathfrak{R} s=1 / 2$;
(3) There are only finitely many poles for $\mathfrak{R} s=1 / 2$, they are all simple and attained for s real.

Proof of part 3.

We fix $\sigma>1 / 2, s_{0}=\sigma+i \tau$ and want to take $s_{2}=\overline{s_{1}}, s_{1}=s_{0}+i t$. Here t is small. Applying the Maass-Selberg relation, we obtain

$$
\begin{equation*}
\left\|E^{T}\left(\cdot, s_{1}\right)\right\|^{2}=\frac{T^{2 \sigma-1}}{2 \sigma-1}+\operatorname{Im} \frac{\overline{\phi\left(s_{1}\right)} T^{2 i(t+\tau)}}{2 i(t+\tau)}+\frac{T^{1-2 \sigma}}{1-2 \sigma}\left|\phi\left(s_{1}\right)\right|^{2} . \tag{0.2}
\end{equation*}
$$

Then we get

$$
\frac{T^{2 \sigma-1}}{2 \sigma-1}+\operatorname{Im} \frac{\overline{\phi\left(s_{1}\right)} T^{2 i(t+\tau)}}{2 i(t+\tau)} \geq \frac{T^{1-2 \sigma}}{2 \sigma-1}\left|\phi\left(s_{1}\right)\right|^{2}
$$

since the left hand side of $(0.2) \geq 0$.
Suppose that $\phi\left(s_{1}\right)$ has a pole of order $m \geq 1$ at s_{0}. Multiplying $t^{2 m}$ on both sides, we have

$$
\begin{equation*}
\frac{t^{2 m} T^{2 \sigma-1}}{2 \sigma-1}+t^{2 m} \operatorname{Im} \frac{\overline{\phi\left(s_{1}\right)} T^{2 i(t+\tau)}}{2 i(t+\tau)} \geq \frac{T^{1-2 \sigma}}{2 \sigma-1} t^{2 m}\left|\phi\left(s_{1}\right)\right|^{2} \tag{0.3}
\end{equation*}
$$

The first term of the left hand side of (0.3) tends to 0 . The second term of the left hand side of (0.3) tends to 0 unless $m=1$ and $\tau=0$. The right hand side of $(0.3)>0$, as t tends to 0 .

