Spectral analysis for I'\H
Erez Lapid

§5 Cuspidal spectrum of I'\H (February 26, 2009)

Let I be the modular group SLs(Z), and the cusp form is defined by
fr(y) =0

_ /lf(x+z'y)dx

The Laplace operator A has discrete spectrum on L

where

2usp(D\H). In the last time we modified

the invariant integral operators to get compact operators on L?(I'\H), which does not change
on cuspidal point-discrete spectrum for A.

Lemma. If f is of moderate growth and is U« -invariant, (A + AN)f = 0. Then f — fp is
rapidly decreasing. i.e., f(z) — fp(z) < (Imz)™ as Imz — oo for any N.

Proof. In fact, we show that for f in the image of L, i.e., for

Lf@)=:4fi%ﬂ0f@®du@w

:/F \HZk(z,w+n)f(w)dM(w)-

nel

And
:/F \H/ Zk(z+x,w+n)f(w)du(w)d($)

=/’ /ka+wimmm«w.
Too\H JR
Then we obtain

Lf—(Lf)p(z) = /1“00\1}}1 <2k(z,w +n)— /Rk(z,w + x)dzx)f(w)d,u(w).
We showed that R
K(z,w) < (ImzImw)™
for Imz > 1, where K(z,w) = 3.
Imw > 1, if K(z,w) # 0.

Now, as before,

(Tmz2)"(Lf(2) = (Lf)p(2)) = /F \H(ImZ)"fAf (2, w)(Imw)" (Tmw) ™ f (w)dw

ez k(z,w +n) fR z,w + z)dz. We also deduced that

is bounded for n > 0, as (Imw) ™" f(w) is bounded.

In the following we want to study the rest of the spectral decomposition of A on L?(T"\H).
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Question. How to construct I'-invariant eigenfunctions of A on H?
We start with any eigenfunction f and construct the map

2 Zf(yz).

~yel’
If the summation converges, it will be a ['-invariant eigenfunction with the same eigenvalue
of f.

Important case: f(z) = (Imz)*, A = s(1 —s), then f(z) is N-invariant, and so ' -invariant.
Def. The Eisenstein series is given by

E(z;s) = Z (Im~yz)*

YEL o \I'

where z € HL.
EX. T \I' — (c,d) € Z*\{(0,0)}, ged(c,d) = 1 is well defined, where

roo\r:{<1 g‘) :nEZ}\{(C Z) :a,b,c,dEZ,ad—bc:l}.

Forany7:<z Z) € I, we have Imyz = =

IS

|cz+d|? "

Thus

y 1
E(z,s) = Y .
(2:9) (mzn):zl |mz + n|? Y (mzn):zl (m2y? + (n + mx)?)*

Properties of the Eisenstein series.
(1) The series converges absolutely and locally uniformly for Res > 1, even

1 1
Z (m2y2 + (n + mx)2)s Z Q.(m,n)s

(m,n)eZ>\{(0,0)} (m,n)eZ2\{(0,0)}

has the same behavior as } 7, <2\ (0.0 5> where Q- (m,n) = m?*y? + (n+max)?is a

1
b (m?+n?
quadratic form.

(2) We have A,E(z,s) = AE(z,s) for A = s(1 — s), and E(yz,s) = E(z,s) for all

vyel, ze H.

The Fourier expansion of E(z, s) is given by

E(z,s) = Z a,(z,s)e(rz),
rEZz



where a,(z,s) = (E,e(rx)) and e(x) = €™, Then

1
B( —
/0 (z,8)e(rz)dx = / Z |mz+n|28 e(rz)dx

1
:/0 yle(rz)der + y° Z / Z Z\z+ +k‘2sdx

c¢(modm) k€EZ
1
= yle(rz)de + y° / ——dx
/0 Z C(n%; |Zy + —I— z|28
e(rz)
= yle(re)dz +y
[ > z A

where
(25 -1)
o(5) = oo
and
(o) =)y~
2 vt ns

Finally, we get

E(z,8) = y*+ ¢(s)y* ™ + Z ¢1(2s) Z d'"EW,(rz),
d|r
where
Wi(rz) = Ke_1/2(2mny)e(rz).

In particular, we can get meromorphic continuation of E(z,s), and functional equation
E(z,8) = ¢(s)E(z,1 — s), ¢(s)d(1 — s) = 1. Here we used the analytic properties of the
constant term, namely, the Riemann zate function. One can turn the table and prove analytic
properties of ¢(s) from these of E(z, s).

Selberg had several proofs of analytic continuation of Eisenstein series. Bernstein had a
more conceptual version. This and other useful things can be found in the following web:

www.math.uchicago.edu/~ mitya/langlands.html
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Spectral decomposition.
Just like the Harmonic analysis of L*(R) = [, e*™*dx, where ¢*™ is not in L?*(R). One

starts with rapidly decreasing functions rather than L2-functions.

To analyze the continuous spectrum of L?(T'\H), we will get E(z; s) into this picture
eventually. We need to study not only continuous families of eigenfunctions (Eisenstein
series), but also ”wave packets”.

We start with f € C2° (Rs), define
Er(z)= > f(Imyz),
YEL\I

Notice that Ef(z) is I-invariant, but it is not an eigenfunction. For any given z, only
finitely many terms in the sum are not zero, because for any given ¢ > 0, there are only
finitely many v with Imvyz > c.

Moreover, Ef(z) is compactly supported modulo T', i.e., E¢(z) = 0 if Imz > 1.

Since

1
Imyz< —, 7¢T,
Imz
Thus, f(Imyz) =0,V v ¢ 'y and also f(Imz) = 0.
For any given I'-invariant ¢ with moderate growth, we have

(@) = /  wer®) % (0.1)

Indeed,

= [ [ s .

_/ dy
0 y?

f@)er(y)

In particular, Ey is orthogonal to all cusp forms (the same thing for E(z; s)).

Question. What is the relation between these E;’s and the Eisenstein series? (via Mellin
inversion).

The Mellin transform is defined as follows:

for= [ T
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f(s) is entire in s and rapidly decreasing in any vertical strips, i.e., V n, a and b, (14 |s|)"f(s)
is bounded on a < Rs < b.
By Mellin inversion,

fly) = —— /% F(s)yds

- 27

for any sg.
We turn back to E, by Mellin Inversion

Ep(z)= > f(lmyz)

YEL\I'
1 £ s
=5 Z / f(s)(Imyz)*ds.
Y€l oo \I' Rs=s0

We can switch sum and integral provided that they converge as a double integral. i.e., for
so > 1, we have

i) = — /% i) S (Imyz)ds

2
YEL o \I'
! () E(z: s)d
= — S VAR S.
271 Ms=s0 ’

As a matter of fact, we can shift the integral line to PRs = 1/2 later.

What is (Ef, Eg)F\H?

(Ef, Eg)r\u = ( ! / f(s)E(z; s)ds, Eg)
Rs=s0 I\H

2ri

1

=i ) F(s)(B(z 9), EQ)F\HdS’

where the inner product is

(B 9). B = [ Bl )00

Therefore,

Remark.
We just want to get something like




Another version of E; : truncation. E(z; s) is of moderate growth, but not in L? for any

s. It is 7almostly” on L? for Rs = 1/2.
Def. Let T be a fixed parameter, the truncation operator is defined by

E(z; s), Imz <T,

ATE(z; 8) = ET(z; s) = { E(z; s) — Ep(y), Imz>T,

where z € F. Obviously, E7(z; s) is rapidly decreasing.

Maass-Selberg relations.

S Ts1—s2—1 Te—s
(ATE(_7 s1), ATE(, 32))f T s — sy 1 + ¢(z:)— $1
G A ICIC)

Tl—S]—SQ'
S1 — S92 1-— S1 — S

From the Maass-Selberg relation, we have the following consequences:

(1) E(z; s) and ¢(s) have the same poles;

(2) They are holomorphic for Rs = 1/2;

(3) There are only finitely many poles for RRs = 1/2, they are all simple and attained for s
real.

Proof of part 3.
We fix ¢ > 1/2, s = 0 + i7 and want to take sy = $1, s; = so + it. Here t is small.
Applying the Maass-Selberg relation, we obtain

T20-1 ¢(81)T2i(t+7) T1-20

ETY(. 2_ I 2 0.2
Then we get
T20-1 ¢(81)T2i(t+7) T1-20
I > 2
2o —1 TGy 2 el

since the left hand side of (0.2) > 0.

Suppose that ¢(s1) has a pole of order m > 1 at sq. Multiplying t*™ on both sides, we
have
$2m20—1 mT2i(t+7) T1-20
—— + "M > ¢ 2, 0.3
o1 Ty 2ot el (03)

The first term of the left hand side of (0.3) tends to 0. The second term of the left hand side
of (0.3) tends to 0 unless m = 1 and 7 = 0. The right hand side of (0.3) > 0, as ¢ tends to 0.



