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LECTURES ON THE ARTHUR–SELBERG TRACE FORMULA

STEVE GELBART

MSRI, Spring 1995

These are Notes prepared for nine lectures given at the Mathematical Sciences
Research Institute, MSRI, Berkeley during the period January–March 1995. It is a
pleasant duty to record here my gratitude to MSRI, and its staff, for making possible
this 1994–95 Special Year in Automorphic Forms, and for providing such a setting
for work.

The purpose of these Notes is to describe the contents of Arthur’s earlier, foun-
dational papers on the trace formula. In keeping with the introductory nature of
the lectures, we have sometimes illustrated the ideas of Arthur’s general theory by
applying them in detail to the case of GL(2); we have also included a few lectures
on the “simple trace formula” (and its applications), and on Jacquet’s relative trace
formula.

The TEX preparation of these Notes I owe to Wendy McKay, who patiently and
professionally transformed my messy scrawl into something readable; her expertise,
and good cheer under the pressure of weekly deadlines, is something I shall not soon
forget.

I wish to thank the auditors of these lectures for their interest, and , J. Bernstein,
D. Goldberg, E. Lapid, C. Rader, S. Rallis, A. Reznikov, and D. Soudry, for their
helpful suggestions and explanations. Finally, I wish to thank J. Arthur, H. Jacquet,
and J. Rogawski for many tutorials on these and related topics over the past year; I
hope they do not mind seeing some of their comments reappear in these Notes.
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2 STEVE GELBART

Lecture I. Introduction to the Trace Formula

The ultimate purpose of the trace formula is to better understand the structure
of automorphic forms on a general reductive group G. In particular, one wants
to understand the decomposition of the right regular representation R0(g) of G(A)
in the space of cusp forms L2

0(G(F ) \ G(A)). The original idea of the (Selberg)
trace formula—roughly speaking—was to describe the trace of the integral operator
R0(f) =

∫
G(A) f(g)R0(g)dg for f in C∞

c (G(A)); this Selberg succeeded to do for certain
special G. On the other hand, Arthur’s trace formula is valid for arbitrary G, and
asserts the equality of two different sums of distributions on G, namely:

∑

o∈O

JT
o (f) =

∑

χ∈X

JT
χ (f).(0.1)

Here the left side of (0.1) is summed over certain equivalence classes in the group
of rational points G(F ); it is called the geometric side of the trace formula. On the
right side of (0.1), the sum is over certain “cuspidal data” χ = {(M,σ)} of G; this is
the spectral side of the trace formula (one of whose terms is trR0(f)).

Our purpose in these lectures is to describe and develop this formula in complete
detail, but mostly in the context of GL(2). We also wish to describe some refinements
of (0.1) necessary for applications to automorphic forms. The basic references are
Arthur’s original papers [A1]–[A10]. Earlier expositions of the GL(2) trace formula,
such as [Ge] and [GJ], will be referred to occasionally; but as they mostly predate
Arthur’s general development of the trace formula, their point of view will largely be
ignored, and their arguments not reproduced here.

1. Some history. “The” trace formula was introduced by Selberg, in the context
of a semi-simple Lie group G and discrete subgroup Γ, in his famous 1956 paper [Se].
In that paper Selberg first of all described a general formula in the case of compact
quotient Γ \ G (see the next section below for a brief description). Secondly, he
treated in detail certain special non-compact quotient cases such as SL2(Z) \SL2(R);
here Selberg analytically continued Eisenstein Series E(z, s) in order to handle the
continuous spectrum of L2(Γ \ G), and derived a formula for the trace of R(f) in
the space of cusp forms. In both the case of compact and non-compact quotient,
Selberg was motivated by applications to geometry and number theory (lengths of
geodesics in the Riemann surface in the case of compact quotient, traces of Hecke
operators in case of non-compact quotient, etc.). But despite the obvious desirability
of generalizing these results in the case of non-compact quotient, the obstacles—such
as analytically continuing the Eisenstein series in higher rank—were formidable. A
big breakthrough came in the 1960’s when Langlands developed a theory of Eisen-
stein series valid for any reductive group G, and used it to describe the continuous
spectrum of L2(G(F ) \G(A)) (cf. [La 1]). As an outgrowth of this theory, Langlands
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was led to his amazing conjectures about automorphic forms and their L-functions,
i.e., the “Langlands program”, with its cornerstone the principle of functoriality of
automorphic forms. A typical result in this program is the following:

Theorem 1 ([JL]). Let D be a division quaternion algebra over a number field F
and G′ = D∗. Then to each automorphic cuspidal representation σ of G′ (i.e., an
irreducible G′(A)-submodule of L2(Z(A)G′(F )\G′(A)) of dimension greater than one)
there exists a corresponding automorphic cuspidal representation π = π(σ) of G(A) =
GL2(A) (an irreducible G(A)-submodule of the space of cusp forms L2

0(Z(A)G(F ) \
G(A)) with the property that for each place v in F unramified for D (i.e. where
G′(Fv) ≃ GL2(Fv)), σv ≃ πv.

Interestingly enough, this correspondence (the well-known Jacquet–Langlands cor-
respondence) can be proved using any one of the three basic tools of the theory of
automorphic forms: the theory of automorphic L-functions, the theory of theta-series
liftings, or the trace formula (for both G′ and G = GL2, essentially as developed by
Selberg). However, in this case at least, the trace formula approach gives the strongest
payoff, namely a characterization of the image of the correspondence σ → π(σ): a
cuspidal representation π of G(A) is of the form π(σ) for some σ on a given G′

D

if and only if for each ramified prime v, πv is a square integrable (discrete series)
representation of Gv = GL2(Fv).

Subsequently, a (“twisted”) trace formula for GL2 was developed by Saito-Shintani
and Langlands to prove another important instance of functoriality, namely base
change (with spectacular applications to Artin’s conjecture for Galois representations,
and hence ultimately to Wiles’ proof of Fermat . . . ). Thus the need to generalize
the trace formula to a general reductive group G was clear, and this is precisely what
Arthur did in his papers between the early 1970’s and late 1980’s.

2. The Case of Compact Quotient. In order to motivate Arthur’s work, let us
explain how the form (2) takes in the case of compact quotient. Thus G is a semi-
simple group over (the number field) F , with G(F )\G(A) compact. In particular, G is
anisotropic, without unipotent elements. With R(g) the right regular representation
in L2(G(F ) \G(A)) and f in C∞

c (G(A)), a straightforward computation gives

(R(f)φ)(x) =
∫

G(A)
f(y)φ(xy) dy =

∫

G(A)
f(x−1y)φ(y) dy =

∫

G(F )\G(A)
(
∑

γ∈G(F )

f(x−1γy))φ(y) dy,

i.e., R(f) is an integral operator on φ in L2(G(F ) \G(A)), with kernel

Kf(x, y) =
∑

γ∈G(F )

f(x−1γy).

Since G(F ) \G(A) is compact, it is then a well known theorem (cf. [GGPS], Chapter
I), that R(f) is of trace class, and that

trR(f) =
∫

G(F )\G(A)
Kf (x, x) dx,
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the integral of the kernel over the “diagonal subgroup” G(F ) \ G(A)∆. In this case,
the (Selberg) trace formula amounts to a calculation of traceR(f) using two different
expressions for this kernel. On the one hand, we can write

Kf(x, y) =
∑

o∈O

Ko(x, y)

where O denotes the set of conjugacy classes in G(F ), and

Ko(x, y) =
∑

γ∈o={γ0}

f(x−1γy) =
∑

δ∈Gγ0
(F )\G(F )

f(x−1δ−1γ0δx)

where Gγ0
(F ) is the centralizer of γ0 in G(F ). Then

Jo(f) =
∫

G(F )\G(A)
Kf (x, x) dx =

∫

G(F )\G(A)

∑

δ∈Gγ0
(F )\G(F )

f(x−1δ−1γ0δx) dx =

∫

Gγ0
(F )\G(A)

f(x−1γ0x) dx = meas(Gγ0
(F ) \Gγ0

(A))
∫

Gγ0
(A)\G(A)

f((x−1γ0x) dx,

and thus

trR(f) =
∑

o∈O

Jo(f) =
∑

{γ}

meas(Gγ(F ) \Gγ(A))
∫

Gγ(A)\G(A)
f((x−1γx) dx.

On the other hand, the compactness of G(F ) \ G(A) also implies a discrete decom-
position R(g) =

∑
π mππ(g) where π runs through the irreducible “automorphic”

representations of G(A), and mπ < ∞ is the multiplicity of π in R. Equivalently,
L2(G(F ) \G(A)) =

∑
Lπ where Lπ is the invariant subspace realizing the mπ copies

of π, and R(f) =
∑
Rπ(f) where each Rπ(f) is an integral operator in Lπ with kernel

Kπ(x, y) =
∑

φ an ON basis forLπ

(R(f)φ)(x)φ(y).

Thus we also have

trR(f) =
∑

χ∈{(G,π)}

Jχ(f),

where

Jχ(f) =
∫

G(F )\G(A)
Kπ(x, x) dx.

The power of the trace formula derives from the fact that this equality
∑

Jo(f) =
∑

Jχ(f),(2.1)

namely

∑

{γ}

mγ

∫

Gγ(A)\G(A)
f(x−1γx) dx =

∑

π

∫

G(F )\G(A)
(
∑

φ

(R(f)φ)(x)φ(x)) dx

relates two completely different kinds of data, geometric and spectral (the latter of
which we rarely know much about, but very much want to!).
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3. Difficulties in the Non-Compact Case. Arthur’s great contribution was to
figure out how to overcome all the obstacles that present themselves in generalizing
(2.1) from the compact to the non-compact quotient setting. Some of the principal
problems in the non-compact setting are these:

(a) Although R(f) is still an integral operator, with kernel

Kf(x, y) =
∑

γ

f(x−1γy),

this kernel is no longer integrable over the diagonal; and
(b) The regular representation R(g) no longer decomposes discretely, Eisenstein

series are required to describe the continuous spectrum, and R(f) is of course no
longer of trace class. Nevertheless, Arthur derives a formula (0.1) which still relates
“geometric” and “spectral” distributions attached to G—and has powerful applica-
tions to number theory (even if neither side of (0.1) represents a formula for trR(f)!).
For example, in this formula,

JT
o (f) =

∫

Z(A)G(F )\G(A)
KT

o (x, x) dx,

where KT
o is a modification of the kernel

Ko(x, x) =
∑

γ∈o

f(x−1γx)

which can be integrated over the diagonal. To see why this modification is really
needed, and what it accomplishes, let us look at the example of G = GL(2), and o

the hyperbolic conjugacy class

o = {δ−1
(

α
0

0
1

)
δ : δ ∈M(F ) \G(F )},

where M = {
(
a 0
0 b

)
}. In this case,

Jo(f) =
∫

Z(A)G(F )\G(A)
Ko(x, x) dx

(where Z is the center of scalar matrices). A formal computation then shows

Jo(f) =
∫

Z(A)G(F )\G(A)

∑

δ∈M(F )\G(F )

f(x−1δ−1
(

α
0

0
1

)
δx) dx

=
∫

Z(A)G(F )\G(A)
f(x−1

(
α
0

0
1

)
x) dx

=
∫

M(A)\G(A)
(
∫

Z(A)M(F )\M(A)
dy)f(x−1

(
α
0

0
1

)
x) dx,

i.e.,

Jo(f) = m(Z(A)M(F ) \M(A))Ff (
(

α
0

0
1

)
),

with Ff (
(

α
0

0
1

)
) the nice “orbital integral”

∫
M(A)\G(A) f(x−1

(
α
0

0
1

)
x) dx of a compactly

supported function f in C∞
c (Z(A)\G(A)). Thus Jo(f) is infinite for the simple reason

that

m(Z(A)M(F ) \M(A)) = m(F ∗ \ A
∗) = ∞.
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To compensate for this, Arthur “modifies” Ko to KT
o , using a truncation parameter

T = (T1, T2) in the Lie algebra of M . As we shall see, this modification operator (in
this case) “truncates” F ∗ \ A∗ to a finite interval of length T2 − T1, but turns Ff into
a “weighted” orbital integral! In general, for an arbitrary G, it will turn out that
Ko will be integrable “over the diagonal” only when o intersects no proper parabolic
subgroup P of G. Of course for anisotropic G this always happens, but in general
one really needs to modify Ko (as in the above example), prove that the modified
kernels KT

o are indeed integrable, and then evaluate them (as generalized weighted
orbital integrals).

What about the spectral side? Here it turns out that L2(Z(A)G(F ) \ G(A)) =∑
χ∈X L

2
χ, where each L2

χ is a G(A)-invariant (not necessary discretely decomposable)
submodule indexed by certain cuspidal data X = {(M,σ)}, where M is a Levi sub-
group of a parabolic P ⊂ G, and σ is a cuspidal automorphic representation of M(A).
Thus we have K(x, y) =

∑
Kχ(x, y), the spectral decomposition of Kf(x, y) corre-

sponding to (0.1). Here it also turns out that Kχ(x, y) will not be integrable over the
diagonal, unless the cuspidal data (M,σ) = (G, π) (i.e. P = G). Thus we again need
to deal with modified KT

χ (which are integrable . . . ), eventually arriving at the trace
formula (0.1) by integrating the equality

∑

o

KT
o (x, y) =

∑

χ

KT
χ (x, y)(3.1)

over the diagonal.

Remarks. (1) The expressions on either side of (3.1) no longer (generally) represent
the kernel Kf(x, y) =

∑
f(x−1γy), and hence (0.1) is no longer a real trace formula at

all. Nevertheless, what is true is the following. Let X(G) be the subset of cuspidal data
χ = (M,σ) ∈ X with M = G. Then

∑
χ∈X(G)Kχ(x, y) is the kernel of R(f) restricted

to L2
0(Z(A)G(F ) \G(A)), it is integrable over the diagonal, and (0.1) asserts that

trR0(f) =
∑

χ∈X(G)

Jχ(f) =
∑

o

JT
o (f) −

∑

X\X(G)

JT
χ (f),(3.2)

i.e., Arthur’s trace formula may be viewed as a trace formula after all.

(2) In most applications of the trace formula to automorphic forms we want to com-
pare the formula for one group with the trace formula for another. In that case the
form of (0.1) is no less useful than (3.2).

4. Possible Applications. We have already mentioned the applications to quater-
nion algebras and base change, both of which we plan to discuss (at the level of GL(2),
not GL(n) - which is the subject matter of [AC], using the more difficult GL(n) trace
formulas). We also plan to discuss (i) Jacquet’s relative trace formula, where the idea
is to integrate the (different expressions for the) kernel over interesting non-diagonal
subgroups of G × G; and (ii) applications of the simple trace formula such as to
the embedding of a (local) discrete series representation of GL2(Fv) into a (global)
cuspidal representation of GL2(A). In all these applications, one needs to further re-
fine Arthur’s first form of the trace formula. This is because (as already hinted) the
“truncation” i.e., modification process used to make Ko or Kχ integrable introduces
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various defects into the distributions JT
o (f) and JT

χ (f). For example, they may no
longer be invariant distributions (invariant under conjugation by G(A)), or factoriz-
able as the product of local distributions over G(Fv). Thus one needs to replace and
rearrange the sums of distributions appearing in (0.1) by still more complicated but
ultimately more practical expressions.
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Lecture II. Arthur’s Modified Kernels I: The Geometric Terms

Our purpose here is to develop the geometric side of Arthur’s first form of the trace
formula ∑

o∈O

JT
o (f) =

∑

χ∈X

JT
χ (f),

for the group G = GL(2). In particular, we must introduce the modified kernels
kT

o (x, f), and prove they are integrable.
N.B. The treatment of the trace formula in [Ge] and [GJ] largely ignored the

integrability of these modified kernels.

1. The Definition of Ko. In the case of compact quotient, the geometric side of
the trace formula is summed over ordinary G(F )-conjugacy classes o in G(F ) (or
in Z(F )\G(F ), where Z is the center of G). For arbitrary G, it turns out to be
best to make the following definition: γ1 and γ2 in Z(F )\G(F ) are called equivalent ,
or “conjugate”, if their semi-simple components are G(F ) conjugate in the usual
sense. That is, γ1 ∼ γ2 means, with the Jordan decompositions γi = γs

i γ
u
i (i = 1, 2),

that γs
1 is G(F )-conjugate to γs

2. For each such equivalence class o, and for f ∈
C∞

c (Z(A)\G(A)), set

Ko(x, y) =
∑

γ∈o

f(x−1γy),

and let O denote the collection of all such classes o in Z(A)\G(A).
Note that if γ is elliptic, i.e. if γ is not conjugate inG(F ) to an element of any proper

parabolic subgroup P (F ), then it is automatically semi-simple. (Its eigenvalues do
not lie in F , and hence are distinct.) Thus our new notion of conjugacy reduces to
ordinary conjugacy.

On the other hand, suppose γ is G(F )-conjugate to an element p in a proper
parabolic subgroup P (F ). For GL(2), this means P is the Borel subgroup B ={(

a
0

x
b

)}
, so modulo Z(F ),

p = pspu with ps =
(

α
0

0
1

)
, and pu =

(
1
0

y
1

)
.

Case (a): α = 1. In this case, the class o containing γ consists of two ordinary
unipotent conjugacy classes in Z(F )\G(F ): the trivial class {1}, and the ordinary

conjugacy class of any non-trivial unipotent element
(

1
0

x0

1

)
(since

(
α
0

0
1

)
already con-

jugates
(

1
0

x0

1

)
to
(

1
0

αx0

1

)
).

Case (b): α 6= 1. In this case, o is an ordinary hyperbolic conjugacy class of the
form

oα =
{
δ−1

(
α
0

0
1

)
δ | δ ∈M(F )\G(F )

}
.
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Note that M(F ) is just the centralizer G(α
0

0
1

)(F ), and that
(

α
0

x
1

)
also belongs to oα

(since
(

α
0

x
1

)
=
(

1
0

y
1

)−1(α
0

0
1

)(
1
0

y
1

)−1
where y = x/(α− 1) ).

2. The Integrability of Elliptic Ko. As suggested in Lecture I, it is a general
phenomenon that for an elliptic class o, the kernel Ko(x, y) is integrable over the
diagonal subset Z(A)G(F )\G(A). We now prove this for G = GL(2), following the
general arguments of [A1]. The crucial step is a lemma which first requires some
preliminary notions to be recalled.

According to the Iwasawa decomposition for G, we have

G(A) = N(A)M(A)K,(2.1)

where N is the standard unipotent subgroup {
(

1
0

y
1

)
}, and K is the standard maximal

compact subgroup
∏
Kν of G(A). If we denote by aM the Lie algebra of M = {

(
a
0

0
b

)
},

i.e. ,
aM = Hom(X(M),R) ≈ R

2,

then we can define the familiar function

HM : M(A) → aM by HM

(
a
0

0
b

)
= (log |a|

A
, log |b|

A
),

and extend it to G(A) by way of the decomposition 2.1, i.e. if g = nak in G(A), then

HM(g) = HM(a).

Lemma 2.1 ( see [A1, p 362] ). Suppose Ω is a subset of G(A) which is compact
modulo Z(A). Then there exists a number dΩ > 0 with the following property: if
γ ∈ G(F ) is such that

g−1γng ∈ Ω

for some n ∈ N(A) and g ∈ G(A) with αH(g) > dΩ, then γ ∈ B(F ).

Assuming this Lemma (for the moment), let us quickly dispose of the integrability
of Ko. For this, and for other purposes later on, we also need to recall the notion of
a Siegel domain, together with an explicit integration formula for its volume.

First we refine the Iwasawa decomposition 2.1 by writing, for each g in G(A),

g = znhtmk(2.2)

where z ∈ Z(A), n ∈ N(A), k ∈ K,

ht =
(

et

0
0

e−t

)
,

with et an idele equal to 1 at every finite place and the real number et at each infinite
place, and

m =
(

a
0

0
1

)
,

with a ∈ A1 = {a ∈ A× | |a|
A

= 1}. The corresponding integration formula, for f on
Z(A)\G(A), is

∫

Z(A)\G(A)
f(g) dg =

∫ ∫ ∫ ∫ ∞

−∞
f(natk)e−2t dt d×a dn dk.(2.3)



10 STEVE GELBART

Now for each compact subset C1 ofN(A), compact subset C2 of A1, and real number
c (not necessarily positive), let Sc denote the set of points g in G(A) of the form (2.2)
with n ∈ C1, a ∈ C2 and t > c/2. Such a set is called a Siegel set . Note that

Sc ⊂ { g ∈ G(A) | H(g) > c }.
Fact 1 (see [Go, Thm 9]). For any c1, c2,

Sc1 ∩ γSc2 6= ∅
for only finitely many γ in G(F ) modulo B(F ).

Fact 2 (see [Go, p 16]). If Sc is sufficiently large (i.e. C1 and C2 are sufficiently large,
and c is sufficiently small), then

G(A) = G(F ) · Sc.(2.4)

In other words, Sc is essentially a fundamental domain for G(F ) acting on G(A);
more precisely, Fact 2 says only that certain Sc contain a fundamental domain.
Henceforth, we always assume that Sc is so chosen that 2.4 holds, and we refer to
such a Sc as a Siegel domain.

Remark. From the above, it is clear that

Z(A)G(F )\G(A)

has finite volume. In fact, by 2.3 and 2.4,
∫

Z(A)G(F )\G(A)
dg ≤

∫

Z(A)\Sc

dg =
∫ ∫ ∫ (∫ ∞

c
e−2t dt

)
d×a dn dk,

with the outer three integrals over compact domains.

Proposition 2.2. If o is elliptic, then

x 7→ Ko(x, x) =
∑

γ∈o

f(x−1γx)

is absolutely integrable over Z(A)G(F )\G(A), and its integral is

Jo(f) = m(Z(A)G(F )\G(A))
∫

Gγ(A)\G(A)
f(x−1γx) dx.

Proof. It suffices to prove the integrability assertion, since the ensuing formula for
Jo(f) follows just as in the case of compact quotient.

First note that for x lying in any fixed set Ω1, which is compact modulo Z(A), the
sum defining Ko(x, x) is actually finite and hence Ko defines a nice, smooth function
on Z(A)G(F )\G(A). Indeed, f(x−1γx) 6= 0 implies x−1γx ∈ Ωf = support of f .
Thus γ itself must lie in a compact set modulo Z(A), namely Ω1ΩfΩ

−1
1 , and such a

set can contain only finitely many γ in Z(F )\G(F ).
On the other hand, if γ is elliptic, then f(x−1γx) 6= 0 implies (by Lemma 2.1) that

αH(g) < dΩf
. I.e., the support of

Kell(x, x) =
∑

γ elliptic

f(x−1γx)
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lies in the “doubly truncated” Siegel set

Sc
d = Z(A)C1{ht}C2K with c < 2t < dΩf

.

Equivalently, the support of Kell is compact modulo Z(A), and the integrability is
clear.

Remark. The argument above actually proves that the full elliptic contribution is
absolutely integrable, i.e. , that

∫
|Kell(x, x)| dx <∞.

Thus, by the Lebesgue dominated convergence theorem, it follows that
∑

o elliptic

∫
|Ko(x, x)| dx <∞,

and hence that the sum ∑

o elliptic

Jo(f)

converges absolutely.

It remains now to prove Lemma 2.1. It might be tempting to do so for GL(2)
by simply trying to multiply out some 2 × 2 matrices (as we did in [Ge, p 201]).
However, this more quickly than not leads to an incomplete proof (as happened in
fact in [Ge]), whereas the approach of [A1, p 362] works simply and generally, as we
shall show below.

Proof of Lemma 2.1. Let
ρ : G→ Gℓ(V )

denote the adjoint representation of G on the space of trace zero 2× 2 matrices over
F ; its highest weight vector is Λ = α, the unique simple root of G with respect to
the torus M . Fix a basis {e0, e1, e2} of V such that

ρ(a)ej = aΛ−jαej for a ∈M (j = 0, 1, 2)

ρ(n)e0 = e0 for n ∈ N and

ρ(w)e0 = e2

For ξ in V (A), define

‖ ξ ‖ =
∏

ν

‖ ξν ‖ν ,

where, for finite ν, ‖ ξν ‖ν = maxj{|ξj
ν|ν} (where (ξj

ν) denote the coordinates of ξν
with respect to the basis {ej}), and for infinite ν, ‖ ξν ‖ν is defined by the Hilbert
space structure that makes {ej} into an orthonormal basis. (To make sense out of the
infinite product, we restrict ξ to be “primitive”, i.e. , ‖ ξν ‖ν = 1 for all but finitely
many ν.)

To prove the Lemma, suppose that

g−1γng ∈ Ω(∗)
with n ∈ N(A) and Ω compact modulo Z(A). Write g = n1ak, so that (∗) implies

a−1n−1
1 γnn1a ∈ KΩK.



12 STEVE GELBART

Because the map g 7→ ρ(g)e0 is continuous, and ρ is trivial on Z(A), it follows that
∥∥∥ ρ(a−1n−1

1 γnn1a) · e0

∥∥∥ ≤ e2d0

for some d0 > 0. So suppose that γ does not belong to B(F ). Then by Bruhat’s
decomposition,

γ = b0wn0

for some b0 in B(F ) and n0 in N(F ). But for any b ∈ B(A) and g ∈ G(A), our
assumptions on ρ and e0 imply

‖ ρ(gb) · e0 ‖ = eαH(b) ‖ ρ(g) · e0 ‖.

Thus (with γ = b0wn0) we compute that

∥∥∥ ρ((a−1n−1
1 b0w)(n0nn1a)) · e0

∥∥∥ = eαH(a)
∥∥∥ ρ(a−1n−1

1 b0) · e2

∥∥∥

= e2αH(a) ‖ ρ(n∗) · e2 ‖
≥ e2αH(a) ‖ e2 ‖ = e2αH(g)

(since H(g) = H(a), ρ(a) e2 = a−α e2, and ‖ ρ(n) e2 ‖ ≥ ‖ e2 ‖ for any n in N(A)).
Thus the Lemma is proved for dΩ > d0.

3. The Definition of KT

o (x,y). For o the (unique non-trivial) unipotent class in
Z(F )\G(F ), we saw in Lecture I that Ko(x, y) is not integrable over the diagonal.
A somewhat less trivial computation (see Lecture III) shows that the hyperbolic
Ko(x, y) are also not integrable. So let us finally introduce the required modifications
of these kernels.

For P = B, let τ̂B denote the characteristic function of the positive Weyl chamber

aB
+ = { (r1, r2) ∈ aB = aM | r1 − r2 > 0 },

i.e. , the cone in R2 where α(r1, r2) = r1 − r2 is positive. Then define, for any o ∈ O

and T = (T1, T2) in aB
+,

kT
o (x, f) = Ko(x, x) −

∑

δ∈B(F )\G(F )

KB,o(δx, δx) τ̂B(H(δx) − T )(3.1)

where

KB,o(x, y) =
∑

γ∈o∩Z(F )\M(F )

∫

N(A)
f(x−1γny) dn.

This is Arthur’s modified kernel kT
o (x, f).

Note that if o is elliptic, then o ∩M(F ) = ∅. In this case KB,o ≡ 0, and

kT
o (x, f) = Ko(x, x).
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In general, the term subtracted in 3.1 from Ko(x, x) is the “correction term at ∞”
which ends up making kT

o (x, f) integrable. Before proving this is so, let us note the in-
ductive nature of the definition of kT

o (thereby making more plausible the appearance
of KB,o). Set

KB(x, y) =
∑

o

KB,o(x, y)(3.2)

≡
∑

γ∈Z(F )\M(F )

∫

N(A)
f(x−1γny) dn.

Then KB(x, y) is just the kernel of R(f) acting in L2(Z(A)N(A)B(F )\G(A)) in place
of L2(Z(A)G(F )\G(A). Indeed for ϕ in L2(Z(A)N(A)B(F )\G(A)),

R(f)ϕ(x) =
∫

Z(A)\G(A)
f(x−1y)ϕ(y) dy

=
∫

Z(A)N(A)B(F )\G(A)

(
∑

Z(F )\M(F )

∫

N(A)
f(x−1γny) dn

)
ϕ(y) dy,(3.3)

as claimed. In general, for an arbitrary G, the definition of kT
o (x, f) takes into account

all the proper parabolics P of G, subtracting off from Ko(x, x) not just one term (for
the minimal parabolic B), but the sum

∑

P⊂G

(−1)dimAP /Z
∑

δ∈P (F )\G(F )

KP,o(δx, δx) τ̂P (H(δx) − T ),(3.4)

where

KP (x, y) =
∑

o∈O

KP,o(x, y)

is the kernel of RP (f) in L2(Z(A)NP (A)MP (F )\G(A)). (Here AP is the maximal
split torus in MP , the Levi component of P = MPNP , and RP is the right regular
representation of G(A) in L2(Z(A)NP (A)MP (F )\G(A)).)

Remark. Observe that

kT
o (x, f) = Ko(x, x).

for x in a compact (modulo Z(A)) set Ω (how large depends on T). Indeed, for x
in an appropriate such set Ω, τ̂B(H(δx) − T ) is identically zero∗. Thus x is indeed
a modification of Ko(x, x) only “near infinity” (and in higher rank, more than one
parabolic is needed to effect these modifications near infinity . . . ).

∗Proof: Fix c and T such that α(T ) > c. Fact 1 of Section 2 implies that in Sc, τ̂B(H(δx)−T ) 6= 0
only for finitely many classes δi in B(F )\G(F ). Then for each such class, τ̂B(H(δix) − T ) = 0 on
the compact set ΩTi in Sc where c < H(δix) < α(T ). Thus τ̂B(H(δx) − T ) is identically zero on
ΩT = ∩ni=1Ω

T
i .
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4. The Integrability of kT
o (x, f). Henceforth, let us assume that o is unipotent or

hyperbolic. To prove that kT
o (x, f) is integrable over Z(A)G(F )\G(A), it suffices to

show that it is integrable over a Siegel domain Sc. So pick any T ∈ aB
+, and write

Sc = BT ∪ B̃T ,

where

BT = { g ∈ Sc | αH(g) > α(T ) > 0 },

and B̃T is its complement in Sc. Clearly kT
o (x, f) is integrable over B̃T , since

c < αH(g) ≤ α(T ).

Thus it suffices to prove that kT
o (x, f) is integrable over BT . (N.B. In general, the

partition of a Siegel domain requires more non-trivial “reduction theory” than is
evident in the case of GL(2); this is what leads to the “geometric” combinatorial
lemmas in §6 of [A2].)

Lemma 4.1. There exists a constant c0 such that αH(wn) ≤ c0 for all n ∈ N(A);
moreover, if γ in G(F ) satisfies the inequality

αH(γx) > c0

for some x in G(A) with αH(x) > c0, it must follow that γ ∈ B(F ).

As the proof is similar to that of the crucial Lemma 2.1 in §2 of this Lecture, we
leave the details to the reader (see [A1, pp 334–335]).

Now fix T in aB
+ such that α(T ) > c0. Then for x in BT , Lemma 4.1 implies that

τ̂B(H(δx) − T ) 6= 0

(if and) only if δ ∈ B(F ). Thus (for such x),
∑

γ∈o

f(x−1γx) =
∑

δ∈B(F )\G(F )

∑

γ∈o

f(x−1δ−1γδx)τ̂B(H(δx) − T ),

and hence

kT
o (x, f) =

∑

δ∈B(F )\G(F )

{
∑

γ∈o

f(x−1δ−1γδx)

−
∫

N(A)

∑

µ∈M(F )∩o

f(x−1δ−1µnδx) dn

}
τ̂B(H(δx) − T )

Next fix T such that α(T ) > max{c0, dΩf
}, with dΩf

as in Lemma 2.1. Then by
Lemma 2.1, we may replace the sum here over γ ∈ o by a sum over

B(F ) ∩ o = N(F ) ·M(F ) ∩ o

(This last equality holds since the class of γ in B(F ) is determined by its semi-simple
part, i.e. its M(F )-part.) Thus we get



LECTURE II. ARTHUR’S MODIFIED KERNELS I: THE GEOMETRIC TERMS 15

kT
o (x, f) =

∑

δ∈B(F )\G(F )

∑

µ∈M(F )∩o

{
∑

ν∈N(F )

f(x−1δ−1µνδx)

−
∫

N(A)
f(x−1δ−1µnδx) dn

}
τ̂B(H(δx) − T )(4.1)

=
∑

δ

∑

µ

∑

ν∈N(F )−{1}

F̂δx,µ(ν) τ̂B(H(δx) − T )

where

Fx,µ(n) = f(x−1µnx)

defines a Schwartz-Bruhat function on N(A) ≈ A with Fourier transform

F̂x,µ(ν) =
∫

N(A)
f(x−1µnx)ψN (nν) dn

(Here ψN (
(

1
0

x
1

)
) = ψ(x) for some fixed non-trivial character on F\A, and we have

applied the Poisson summation formula to Fδx,µ.) Finally we are ready to prove

Proposition 4.2. For any o ∈ O, kT
o (x, f) is absolutely integrable over

Z(A)G(F )\G(A).

Proof. We may assume o is not elliptic. By the above arguments, it suffices to check
the integrability over BT , with α(T ) > max{c0, dΩf

} as above. As in that domain
formula (4.1) holds, we conclude

∫ ∣∣∣kT
o (x, f)

∣∣∣ dx ≤(4.2)
∫

Z(A)B(F )\G(A)

∑

µ∈M(F )∩o

∑

ν∈N(F )−{1}

∣∣∣F̂x,µ(ν)
∣∣∣ τ̂B(H(x) − T ) dx.

Note that for any µ =
(

α
0

0
1

)
in M(F )∩ o, ν =

(
1
0

w
1

)
in N(F )−{1}, and x = znhtmk,

F̂x,µ(ν) =
∫

A

f
(
x−1

(
α
0

0
1

)(
1
0

y
1

)
x
)
ψ(yw) dy

= e2tF̂k∗,µ(e
2tν)

with k∗ = (h−1
t nht)mk. (Here e2tν =

(
1
0

e2tw
1

)
, and we confuse N(F ) with F .) Note

also that the variable x in (4.2) runs through a Siegel set. Thus k∗ runs through a
compact set, and we have, for any N > 0

∑

ν 6=1

F̂k∗,µ(e
2tν) ≤ cN(e−2t)N

Applying Iwasawa’s decomposition (2.3) to (4.2), we then conclude that
∫ ∣∣∣kT

o (x, f)
∣∣∣ dx ≤ C

∫

N(F )\N(A)

∫

F×\A1

∫

K

(∫ ∞

α(T )
e−2tN dt

)
dk d×a dn <∞

as required.
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Summing up, we have

Theorem 4.3. For α(T ) sufficiently large,
∑

o∈O

∫

Z(A)G(F )\G(A)

∣∣∣kT
o (x, f)

∣∣∣ dx <∞.

Hence the left side
∑

o∈O J
T
o (f) of (1) of Lecture I is defined and absolutely con-

vergent.
Indeed, it suffices to remark that for a given f ∈ C∞

c (Z(A)\G(A)), kT
o (x, f) is

identically zero except for finitely many hyperbolic o. This is clear from the defining

equation (3.1), and the fact that x−1δ−1
(

α
0

0
1

)
δx and x−1δ−1

(
α
0

0
1

)
nδx can belong to

the fixed compact mod Z(A) set Ωf for only finitely many α; to see this, observe
that conjugating by δx preserves eigenvalues. Thus the sum over o in O in Theorem
4.3 is infinite only over the elliptic classes, where we already know the relevant sum∑∫ |Ko(x, f)| dx is finite (see the Remark after the proof of Proposition 2.2).

Concluding Remarks. (a) The terms JT
o (f) are indeed generalizations of the

orbital integrals appearing on the geometric side of Selberg’s compact quotient trace
formula. Indeed, for o elliptic (which is automatic for G anisotropic), JT

o (f) reduces
to a multiple of the usual orbital integral

∫
Gγ(A)\G(A) f(x−1γx) dx.

We have seen—for GL(2)—that the kernel Ko(x, x) is already integrable on Sc if o is
an elliptic class (as opposed to hyperbolic or unipotent). For general G, the proper
distinction is between those o which never intersect any proper parabolic subgroup
subgroup P of G and those that do. Indeed Arthur does not talk about “elliptic” o

at all, but rather defines a modified kernel

kT
o (x, f)

for any o, and proves that kT
o (x, f) is integrable. But of course—as we have al-

ready observed—kT
o (x, f) = Ko(x, x) precisely when o is elliptic in this sense (that it

intersects no proper P . . . ).
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Lecture III. Arthur’s Modified Kernels II: The Spectral Terms

In order to describe the right hand side of Arthur’s trace formula, we need first

to recall the spectral expansion of the kernel

Kf(x, y) =
∑

χ∈X

Kχ(x, y).

1. The Spectral Kernels Kχ. Henceforth, by a “Levi subgroup M of G” we

understand the Levi component of a parabolic subgroup P of G; for any such M ,

we have

M1(A) = {m ∈M(A) : |λ(m)|A = 1 ∀λ ∈ X(M)F}.
In general, the decomposition of

L2(Z(A)G(F )\G(A))

into right G(A)-invariant subspaces is determined by spectral data χ = {(M, r)} ∈
X, where the pair (M, r) consists of a Levi subgroup M of G and a cuspidal repre-

sentation r of Z(A)\M(A); the class {(M, r)} derives from the equivalence relation

(M, r) ∼ (M ′, r)

if and only if M is conjugate to M ′ by a Weyl group element w, and r′ = rw on
Z(A)\M1(A). Then to each such cuspidal datum χ = {(M, r)} is associated a

subspace L2
χ, such that

L2(Z(A)G(F )\G(A)) =
⊕

χ

L2
χ,

and the corresponding decomposition of kernels

Kf(x, y) =
∑

χ

Kχ(x, y)

is explicitly describable in terms of Eisenstein series.

For G = GL(2), cuspidal data comes in two possible forms:

Case (i): M = G, r = a cuspidal representation π of Z(A)\G(A). In this case,

L2
χ = Lπ, the irreducible subrepresentation of L2

0(Z(A)G(F )\G(A)) realizing π,
and

(1.1) Kχ(x, y) = Kπ(x, y) =
∑

{φ}= o.n. basis of Lπ

R(f)φ(x)φ(y)

17

http://arXiv.org/abs/math/9505206v1
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Case (ii): M =

{(
a1 0
0 a2

)}
, r

(
a1 0
0 a2

)
= µ

(
a1

a2

)
with µ a character of F x\A1

(identified with the pair (M,µ−1 ). In this case,

(1.2) Kχ(x, y) = Kµ(x, y) =
∑

{φµ}

∫ ∞

−∞
E(x, ρ(µ, it)(f)φµ, it, µ)E(y, φµ, it, µ) dt.

where {φµ} runs through an ON basis for the induced representation space

Ind
G(A)
B(A) µ

(
a1

a2

)
= ρ(µ, o),

consisting of functions φ : G(A) −→ C such that

φ

((
a1 x
0 a2

)
g

)
= µ

(
a1

a2

) ∣∣a1

a2

∣∣1/2
A
φ(g)

for all

(
a1 x
0 a2

)
in B(A), and

∫
K
|φ(k)|2 dk < ∞; ρ(µ, s) denotes the induced

representation space Ind
G(A)
B(A) µ

(
a1

a2

) ∣∣a1

a2

∣∣s
A
, and E(g, φµ, s, µ) is the Eisenstein series

∑

γ∈B(F )\G(F )

φsµ(γg)

attached to the function

φsµ(g) = φµ(g)e
sα(H(g))

in ρ(µ, s).

Remarks. (i) The series defining E(g, φµ, s, µ) converges only for Re(s) > 1/2,

but E(g) itself has a meromorphic continuation to all of C, with a possible pole at
s = 1/2. These and other facts from the theory of Eisenstein series we shall simply

assume, referring the reader to [GJ] for more details.

(ii) If µ2 ≡ 1, then (and only then) Kχ(x, y) has an additional “discrete” term,
namely

(1.3) (R(f)µ)(x)µ(y) =

∫

Z(A)\G(A)

f(g)µ(det g) dg µ(detx)µ(det y).

(this comes from the residue of the corresponding Eisenstein series at s = 1/2 . . . ).

(iii) Above, Kχ(x, y) represents the kernel of R(f) acting in the space L2
χ, which

(for any χ = {(M,µ)}) consists of all ϕ(g) which are orthogonal to the space of
cusp forms L2

0(Z(A)G(F )\G(A)), and such that for almost every x in G(A), the

projection of the function

ϕxN (m) =

∫

N(F )\N(A)

ϕ(nmx) dn,
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onto the space L2(Z(A)M(F )\M1(A)) transforms under Z(A)\M1(A) as a sum or

representations r, where (M, r) is a pair in χ.
The beauty of this description is that it generalizes to a general reductive group

G, as we shall now describe.

For any fixed parabolic P = MPNP in a reductive G, one may describe a de-

composition

(1.4) L2(Z(A)NP (A)MP (F )\G(A)) = L2(P ) =
⊕

χ∈X

L2(P )χ,

where L2(P )χ consists of those ϕ in L2(Z(A)NP (A)MP (F )\G(A)) with the fol-

lowing property: for each standard parabolic subgroup B of G, with B ⊂ P , and
almost every x in G(A), the projection of the function

m −→ ϕB,x(m) =

∫

NB(F )\NB(A)

ϕ(nmx) dn

onto the space of cusp forms in L2(Z(A)MB(F )\M1
B(A)) transforms under M1

B(A)

as a sum of representations rB, in which (MB, rB) is a pair in χ. If there is no such
pair in χ, ϕB,x will be orthogonal to the space of cusp forms on Z(A)MB(F )\M1

B(A)

(as happens above for G = GL(2), P = G = B, and χ = {(M,µ)}).
Remark. For any fixed χ in X, let Pχ be the set of standard parabolics B, where
(MB, rB) belongs to χ. Then from the theory of Eisenstein series it follows

L2(Z(A)NP (A)MP (F )\G(A))χ

will be zero unless there is a group in Pχ contained in P .

Let us return now to the decomposition

(1.4) L2(Z(A)NP (A)MP (F )\G(A)) = L2(P ) =
⊕

χ∈X

L2(P )χ,

described above. If we let KP,χ(x, y) denote the integral kernel of the restriction

of RP (f) to L2(P )χ, then one can still—in general—write down a formula for
KP,χ(x, y) in terms of Eisenstein series. Clearly

(1.5)
∑

o∈O

KP,o(x, y) =
∑

χ∈X

KP,χ(x, y),

as each side equals the integral kernel of RP (f) (see §3 of Lecture II, where we

computed the “geometric” expression for the kernel KP , for G = GL(2) and P =
Borel).

Summing Up. We have

Kf(x, y) =
∑

χ∈x
Kχ(x, y)

and (for any parabolic P of G),

KP (χ, y) =
∑

χ∈x
KP,χ(x, y).



20 STEVE GELBART

Concluding Remarks. (a) When P = G,

KP (x, y) = KG(x, y) = K(x, y)

and

KP,χ(x, y) = Kχ(x, y).

Thus the first spectral expansion is a special case of the second.

(b) For G = GL(2), and P = B (the Borel), we have L2(P )χ = 0 if χ =

(G, π). On the other hand, if χ = {(MP , µ)}, then L2(P )χ just consists of ϕ
in L2(Z(A)NP (A)MP (F )\G(A), which under left action by M1(A) transforms ac-

cording to a sum of µ and µ−1. The corresponding kernel KB,χ(x, y) is given by

the formula

(1.6) KB,χ(x, y) =

∫

Z(A)M(F )\M1(A)

KB(x,my)(µ(m) + µw(m)) dm.

This is easily checked by computing the composition of R(f) with the projection

operator Pχ defined on L2(Z(A)N(A)M(F )\G(A)) by

(Pχϕ)(y) =

∫

Z(A)M(F )\M1(A)

ϕ(my)(µ(m) + µw(m)) dm.

Moreover, an analogue of (1.6) (without the subscript B) holds for the kernel
Kχ(x, y).

(c) The series ∑
Kχ(x, y) =

∑
KG,χ(x, y)

and ∑
KP,χ(x, y)

converge absolutely (to K(x, y) and KP (x, y) respectively).

(d) In general, for any G and χ = {(M, r)}

(1.7)
∑

KG,χ(x, y) =

∑

P

1

n(AP )

∑

σ

∫

ia∗

P /ia
∗

G

∑

φ

E(χ, ρ(σ, λ)(f)φ, λ)E(y, φ, λ) dλ,

where: the sum over P is over “associated” parabolics in G, n(AP ) is the number

of chambers in aP , a∗P = X(MP ) ⊗ R is dual to aP = Hom(X(MP )F ,R), ρ(σ, λ) is

the right regular representation in Ind
G(A)
P (A) σ ⊗ eλ(HP (p)), φ runs through a suitable

K-finite) basis for ρ(σ, λ), and—critically, σ runs through (classes of) irreducible

unitary representations of M(A) such that functions in Ind
G(A)
P (A) σ belong to L2(P )χ.

Note that for χ = {(G, π)}, (1.3) just reduces to

∑

φ

R(f)φ(x)φ(y),
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since L2(P )χ ≡ 0 unless P = G. Thus our original formula for Kπ(x, y) is indeed

consistent with the statement that any KP,χ(x, y) is expressible in terms of Eisen-
stein series (but now the Eisenstein series in question belong to φ in Lπ, viewed

as induced from themselves on P = G). At the same time, formula (1.7) is also

general enough to include the extra term R(f)(µ)(x)µ(y) in case G = GL(2), and

χ = {(M,µ)} with µ = µ−1; indeed, the parabolic P = B in (1.7) contributes the

leading term (1.2) to Kχ(x, y), while the parabolic P = G contributes the crucial
additional term (1.3).

2. Modified Kernels and Truncated Kernels. Recall the identity

(1.5)
∑

o∈O

KP,o(x, y) =
∑

χ∈X

KP,χ(x, y),

introduced towards the end of the last section. By complete analogy with the

geometric side (compare formulas (3.1) and (3.4) of Lecture II), Arthur defines the

modified spectral kernel functions

(2.1) kTχ (x, f) =
∑

P⊂G
(−1)dim(AP /Z)

∑

δ∈P (F )\G(F )

KP,χ(δx, δx)τ̂P (HP (δx) − T ),

which in the case of GL(2) look like

kTχ (x, f) = Kχ(x, x) −
∑

δ∈B(F )\G(F )

KB,χ(δx, δx)τ̂B(HB(δx) − T ).

Because of the identity (1.5), one clearly has

(2.2)
∑

o∈O

kTo (x, f) =
∑

χ∈X

kTχ (x, f),

i.e., the modification of the geometric expression for the kernel of R(f) is equal to

the modification of the spectral expression for this kernel.

Despite its simplicity, this identity (2.2) is the starting point of Arthur’s trace
formula in the case of non-compact quotient. Of course, we emphasize (again!)

that neither side of (2.2) represents (in general) the kernel of R(f). However, we

have already seen in Lecture II that each of the functions kTo (x, f) is (absolutely)

integrable over Z(A)G(F )\G(A), and that the sum of the resulting distributions

JTo (f) =

∫

Z(A)G(F )\G(A)

kTo (x, f) dx

also converges absolutely. Thus by (2.2), we have shown that

(2.3)
∑

o

JTo (f) =

∫

Z(A)G(F )\G(A)

∑

χ

kTχ (x, f) dx,
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i.e., to obtain the first form of Arthur’s trace formula, we need “only” show that the

integral (on the right side of (2.3) may be taken inside the sum over χ; in particular,
each kTχ (x, f) is integrable, and the sum of the resulting distributions

(2.4) JTχ (f) =

∫
kTχ (x, f) dx

converges absolutely to the left side of (2.3).

To prove the absolute integrability of each kTχ (x, f), and of the sum of such

kernels, it turns out to be necessary to introduce a truncation operator on

G(F )\G(A). Given T in a+ as before, the truncation of a continuous function
ϕ(x) on Z(A)G(F )\G(A) is the function

(2.5) ΛTϕ(x) = ϕ(x) −
∑

δ∈B(F )\G(F )

ϕN (δx)τ̂B(H(δx) − T ),

where

ϕN (δx) =

∫

N(F )\N(A)

ϕ(nx) dn

denotes the constant term of ϕ. (Again, for x ∈ Sc, the sum over δ is finite, by

Fact 1 of Lecture II . . . ) In general, for arbitrary reductive G,

(2.6) ΛTϕ(x) =
∑

P⊂G
(−1)dim(AP /Z)

∑

δ∈P (F )\G(F )

ϕNP (δx)τ̂P (H(δx) − T ).

Note that if ϕ(x) is cuspidal, i.e., ϕNP = 0 for every NP , then

ΛTϕ = ϕ.

Of course, for a general automorphic ϕ, this is no longer true; however, the whole

idea of truncation is that ΛTϕ still equals ϕ on a large part of Sc (how large

depends on T ), and suitably modifies ϕ “near infinity” so as to be integrable over
all of Sc. In particular, for given “large” T , there is a compact (mod Z(A)) set Ω

such that

ΛTϕ ≡ ϕ on Ω.

(Both this statement—and its proof—resembles its analogue for the modified ker-
nels kTo (x, f); see Remark 3.5 of Lecture II.)

Now for any χ in X, let ΛT2Kχ(x, x) denote the function obtained by truncating

the function

KG,χ(x, y) = Kχ(x, y)

with respect to the second variable and then setting y = x. The strategy Arthur

follows in [A3] to prove that

(2.7)

∫ (∑

χ

kTχ (x, f)

)
dx =

∑

χ

∫
kTχ (x, f) dx
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is the following: Using properties of ΛT , he first shows that

(2.8)

∫ ∑

χ

ΛT2 kχ(x, x) dx =
∑

χ

∫
ΛT2 kχ(x, x) dx

with ∑

χ

∫ ∣∣ΛT2 kχ(x, x)
∣∣ dx <∞

and ∫ ∣∣∣
∑

χ

ΛT2 kχ(x, x)
∣∣∣ dx <∞;

then he shows that for sufficiently large T ,

(2.9)

∫ ∑

χ

∣∣ΛT2 kχ(x, x) − kTχ (x, f)
∣∣ dx = 0.

From these facts it follows that
∑

o J
T
o (f) converges absolutely to

∑
χ J

T
χ (f), where

for sufficiently large T , JTχ (f) is given by either (absolutely convergent) integral

∫
kTχ (x, f) dx or

∫
ΛT2Kχ(x, x) dx.

In particular, the first form of Arthur’s trace formula is established.

Concluding Remarks. Set

Kcusp(x, y) =
∑

χ∈X(G)

Kχ(x, y)

where X(G) denotes the set of cuspidal data {(M,σ)} with M = G, and R0 be the

regular representation of G(A) restricted to

L2
0 =

⊕

χ∈X(G)

L2
χ.

Then for any T ,

(2.10) ΛT2Kcusp(x, y) = Kcusp(x, y),

this kernel is integrable over the diagonal, and equals to R0(f). Thus Arthur’s first

form of the trace formula gives the more familiar trace formula

(2.11) trR0(f) =
∑

o∈O

JTo (f) −
∑

X\X(G)

JTχ (f).

Here only the proof of (2.10) is elementary; it results from the observation that

y −→ Kcusp(x, y) is cuspidal (see the beginning of §4 below). The remaining facts
are discussed in [A1], at least for the case of rank 1. To prove that trR0(f) exists

and equals Kcusp(x, x) dx one uses arguments similar to those used in the (earlier)

proof that
∫
kTo (x, f) dx <∞.
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3. Proof of (2.8) and the Absolute Convergence of
∑

χ

∫
ΛT2Kχ(x, y) dx <

∞. When Arthur described the spectral expansion

(3.1) K(x, y) =
∑

Kχ(x, y).

in [A2], he stressed its absolute convergence by way of the following:

Lemma 3.2. (see Lemma 4.4 of [A2]) There exists an N such that for any differ-
ential operators D1 and D2 in U(g),

∑

χ

∑

P

n(A)−1

∫

ia∗

P /ia
∗

G

∣∣∣
∑

φχ

D1E(x, ρ(σ, λ)(f)(φχ), λ)D2E(y, φχ, λ)
∣∣∣ dλ

≤ c(D1, D2)‖x‖N‖y‖N .

Here ‖x‖ denotes a “norm” or “height” function on G(A), which we may (for
GL(2)) take to be

∏
v ‖xv‖, with ‖xv‖ = sup{|(xv)ij |v, |(x−1

v )ij |v}. This norm

satisfies the properties ‖x‖ = ‖x−1‖, ‖x1x2‖ ≤ ‖x1‖‖x2‖, and ‖x > ‖c1, for some

c1; moreover, it is commensurable with eα(H(x)), at least for x in a fixed Siegel

domain.

The above Lemma is essentially part of Langlands’ theory of Eisenstein series;

from it, we get

(3.3) |D1,xD2,yKχ(x, y)| ≤ c(D1, D2)‖x‖N‖y‖N ,

with a similar identity for K(x, y) itself . (Here D2,y indicates that D2 is operating

only in the y variable, etc..) These identities say that K(x, y) and Kχ(x, y) are

“slowly increasing” in each variable. It is by way of these facts that the finiteness

of
∑

χ

∫
|ΛT2K(x, x)| dx

is established.

Lemma 3.4. (see Lemma 1.4 of [A3]) The truncation operator transforms “slowly

increasing functions” ϕ into “rapidly decreasing” ones; more precisely, suppose ϕ
in C∞(Z(A)G(F )\G(A)) is such that for some N (the “degree of slow increase”),

|Dϕ(x)| ≤ CD‖x‖N for all x ∈ Sc

and differential operators D. Then for any M

|ΛTϕ(x)| ≤ CM‖x‖−M

for x in Sc (and some CM ).
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Remarks. (a) Since we are not proving Lemma (3.5), let us at least explain why

it is plausible for G = GL(2). In this case, it is clear from Lemma 2 of Lecture II,
that for x “near infinity”, in particular, such that α(H(x) > α(T ) > C0,

ΛTϕ(x) = ϕ(x) − ϕN (x),

Thus ΛT removes the constant term form φ, making it rapidly decreasing at ∞
(think roughly of a classical modular form for SL2(Z) with vanishing constant term
. . . ).

(b) What Lemma 1.4 of [A3] actually asserts is that for any pair of positive integers
M and N , we can choose D1, . . . Dn such that for any x in Sc,

(3.5) |ΛTϕ(x)| ≤
∑

i

(
sup
x′

|Diϕ(x′)| · ‖x′‖−N
)
· ‖x′‖−M

But if ϕ happens to be slowly increasing of degreeN , along with its derivatives , then
the expression in parentheses is bounded, and so Lemma 3.4 immediately follows.

It is this latter form of the Lemma—that is, (3.5)—that we shall now apply.

Proposition 3.5. The truncated kernels ΛT2K(x, x) and ΛT2Kχ(x, x) are abso-

lutely integrable, and
∫

ΛT2K(x, x) dx =
∑

χ

∫
ΛT2Kχ(x, x) dx.

Proof. Let us show that for any M , there exists constants c′ and cχ such that for

x in Sc,

ΛT2K(x, x) ≤ c′‖x‖N−M and ΛT2Kχ(x, x) ≤ c′χ‖x‖N−M .

Since ‖x‖ ≍ eα(H(x)) on any Siegel domain, this will suffice, by Iwasawa’s decom-

position, to prove that ∫
|ΛT2K(x, x)| dx <∞,

and hence by (Lebesgue’s) dominated convergence theorem, that
∫

ΛT2K(x, x) dx =
∑

χ

∫
ΛT2K(x, x) dx,

an absolutely convergent sum.

Applying Lemma 3.4 (in the form of identity (3.5)) to the second variable of

K(x, y) yields

|ΛT2K(x, y)| ≤ C0‖y‖−M · sup
y′

sup
D1,...Dn

(|Di,yK(x, y′)|‖y′‖−N),

which by (3.3) is dominated by

C0‖y‖−M sup
y′,i

(C(1, Di)‖x‖N‖y′‖N )‖y′‖−N = C0‖y‖−N sup
i

(C(1, Di))‖x‖N .

So now setting x = y gives the desired conclusions (for K(x, x)), and for Kχ(x, x)

one argues similarly.
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4. Proof of (2.9) Relating
∫

ΛT2Kχ(x, x) dx to
∫
kTχ (x, t) dx. Note first that

when χ = (G, π), there is nothing to prove. Indeed, if Kπ is the kernel of R(f)
restricted to any cuspidal subspace Lπ of L2(Z(A)G(F )\G(A)), then

y −→ Kπ(x, y)

is itself cuspidal: for any ϕ∗ in (L2
0)

⊥,

∫
Kπ(x, y)ϕ∗(y) dy = R(f) ◦ (Projection onto Lπ ⊂ L2

0) = 0.

Thus it follows ΛT2Kπ(x, y) = Kπ(x, y). On the other hand, as recalled in §1,
KP,χ(x, y) ≡ 0 for all proper P in G (when χ = (G, π)). Thus we also have

(from the definition (2.1) of kTχ (x, f)) that kTχ (x, f) = KG,χ(x, x) = Kπ(x, x), i.e.,

ΛT2Kπ(x, x) ≡ kTχ (x, f), and there is nothing to prove.

Henceforth, we shall fix G = GL(2), and assume χ = {(M,σ)} with M ={(
a 0
0 b

)}
, and σ

(
a 0
0 b

)
= µ(a/b) (or rather its class, relative to the relation

µ ∼ µ−1 in (F x\A1)∧). Adapting the general arguments of §2 of [A3] to this case,

we shall now (at least) prove that

∫
|ΛT2Kχ(x, x) − kTχ (x, f)| dx = 0

for sufficiently large T .

By definition,

− (ΛT2 Kχ(x, x) − kTχ (x, f)) =
∑

δ∈B(F )\G(F )

∫

N(F )\N(A)

Kχ(x, nδx)τ̂B(HB(δx) − T ) dn

−
∑

δ∈B(F )\G(F )

KB,χ(δx, δx)τ̂B(HB(δx) − T ).

Note that Kχ(x, nδx) = Kχ(δx, nδx) (since E(x, φ) is left G(F )-invariant). There-

fore the above difference equals

(4.1)
∑

δ∈B(F )\G(F )

τ̂B(HB(δx)−T )

{∫

N(F )\N(A)

Kχ(δx, nδx) dn−KB,χ(δx, δx)

}
.

Next recall our expression (1.6) for KB,χ (and KG,χ) in the Concluding Re-

mark (b) of §1. Applying it to (4.1), with y = δx, we get that the expression in

parenthesis equals
∫

N(F )\N(A)

Kχ(y, ny) dn−KB,χ(y, y) =

∫

Z(A)M(F )\M1(A)

{∫

N(F )\N(A)

(K(y, nmy) −KB(y,my)) dn

}
×

µ(m) + µ−1(m) dm.
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Applying the definition of K and KB, we find, in turn, that the last expression in

parentheses equals

∫

N(F )\N(A)

∑

γ∈Z(F )\G(F )

f(y−1γ nmy) dn−
∫

N(A)

∑

µ∈Z(F )\M(F )

f(y−1γ nmy) dn

=

∫

N(A)




∑

γ∈N(F )Z(F )\G(F )

f(y−1γ nmy) −
∫

N(A)

∑

µ∈Z(F )\M(F )

f(y−1γ nmy)


 dn

Now apply Bruhat’s decomposition

Z(F )N(F )\G(F ) = Z(F )\M(F ) ∪ (Z(F )\M(F ))wN(F )

to the first summation above. The result is that the entire last expression equals

∫

N(A)

∑

ν∈N(F )

∑

µ∈Z(F )\M(F )

f(y−1µw ν nmy) dn.

Using this, it remains to show that

∫
|ΛT2Kχ(x, x) − kTχ (x, f)| dx

≤
∫

Z(A)G(F )\G(A)

∑

δ∈B(F )\G(F )

τ̂B(H(δx) − T ) ×
∫

Z(A)M(F )\M1(A)

∫

N(A)

∑∑
f(x−1δµw ν nmδχ)(µ(m) + µ−1(m) dmdχ.

=

∫

Z(A)B(F )\G(A)

τ̂B(H(y) − T ) ×

(∫∫ ∑∑
f(y−1δµw ν nmy)(µ(m) + µ−1(m)

)
dmdy

(4.2)

= 0 for sufficiently large T .

So suppose y is such that this expression (4.2) is not zero. Then our hypothesis

on f implies

y−1µw ν nmy

belongs to the compact (mod Z(A)) subset Ωf of G(A). Writing out the Iwasawa

decomposition n1ak for y implies

g = a−1n−1
1 ν w µnmn1a ∈ Ω′

f

with Ω′
f the compact ( mod Z(A)) set KΩfK, i.e., α(H(g)) remains bounded

(from below and above).
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On the other hand, write

g = a−1n−1
1 ν w µnmn1a

= (n−1
1 ν)a

−1

a−1)w µma (nm
−1

n1)
a−1

= n∗a∗wn′

where n∗, n′ ∈ N(A) and a∗ = a−1aw(µm)m. Then

c < H(g) = H(a∗) +H(wn′) = −2H(a) +H(wn′)

implies

−2H(a) > c−H(wn′),

i.e.

(4.3) H(a) <
H(wn′)

2
− c

2
<
c0 − c

2
= c′

(using Lemma 4.1 of Lecture II).
To complete the proof, take T “sufficiently large” to mean that α(T ) > c′. Then

the condition τ̂B(H(y) − T ) = τ̂B(H(a) − T ) 6= 0 will be incompatible with (4.3),

i.e. (4.2) will be identically zero, as claimed.

5. An Alternate Strategy?. In any treatment of the trace formula prior to the

1978 paper [A2] (see [A1]), no modified kernels appear. For example, in [GJ] one

simply and (formally) truncates both sides of the identity

K(x, y) =
∑

γ

f(x−1γy) =
∑

Kχ(x, y)

to obtain a trace formula (for GL(2)) of the form

(5.1)

∫
ΛT2K(x, x) dx =

∑

χ

∫
ΛT2Kχ(x, x) dx.

Our purpose now is to explain where the modified kernels are actually hiding in(5.1)

and why they can not be avoided in the general theory.

Using the crucial Lemma 2.1 of Lecture II, one can easily prove (see p. 235 of
[GJ]):

Lemma 5.2. For T sufficiently large (i.e. α(T ) larger than the constant dΩf

described in Lemma 2.1 of Lecture II ),

ΛT2K(x, x) =
∑

o elliptic

KT
o (x, f) +

∑

o unipotent
or

hyperbolic

KT
o (x, f) ≡ KT (x, f)
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Note that Lemma (5.2) implies that the truncated geometric kernel used in (5.1)

is already a sum of the modified geometric kernels. Thus an alternate strategy for
obtaining the trace formula

(5.3)
∑

o

JTo (f) =
∑

χ

JTχ (f)

suggests itself: since we also have

ΛT2K(x, x) =
∑

χ

ΛT2Kχ(x, x).

(the spectral analogue of the geometric formula for ΛT2K(x, x) afforded by Lemma

(5.2)) , why not just integrate each of these expressions term by term to obtain the

trace formula identity (5.3) with

JTχ (f) =

∫

Z(A)G(F )\G(A)

ΛT2Kχ(x, x) dx?

Indeed, by Lecture II we know the left hand side of (5.3) is nicely behaved, and by

the first three sections of this lecture, we know the right hand side converges too.
This strategy was in fact carried out in [GJ] for GL(2), where it turns out that

terms on either side of (5.3) can be computed completely explicitly, as (linear)

polynomials in T (see §6 of [GJ] and §§1 and 2 of the next lecture). Then when

these expressions are plugged into the formula

trR0(f) =
∑

o∈O

JTo (f) −
∑

χ∈X\X(G)

JTχ (f),

the terms depending on T cancel out (as they must, since the left hand side is

independent of T ). Thus we are left with our sought-after formula for trR0(f).

What goes wrong with this strategy in general? Well, for an arbitrary reductive

group G, it would be hopeless to try and compute each term JTo (f) and JTχ (f)
completely explicitly; fortunately, however, it is also unnecessary. What Arthur’s

more indirect strategy (involving modified spectral as well as geometric kernels)

allows one to prove is that JTχ (f) and JTo (f) are a priori polynomials in T (for

sufficiently large α(T )). Thus we can concern ourselves only with the constant
terms of these polynomials (since our goal is to make (5.3) explicit, and only terms

not depending on T will survive on the right-hand side . . . ). These constant terms

((Jo(f) ≡ J0
o (f) and (Jχ(f) ≡ J0

χ(f)) are by no means trivial to compute, but they

do turn out to be feasible to treat in Arthur’s general theory, as we shall soon see.
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Lecture IV. More Explicit Forms of the Trace Formula

In the first few lectures, we have described the first form of Arthur’s trace for-

mula, which in its symmetric formulation reads

(*)
∑

JTo (f) =
∑

χ

JTχ (f);

more suggestively,

(**) tr(R0(f)) =
∑

o

JTo (f) −
∑

χ∈X\X(G)

JTχ (f).

After developing this formula in [A2] and [A3], Arthur devoted the next ten years
(and several hundred pages of work) to rewriting this formula in a more explicit

form, suitable for applications. In particular, in order to apply (∗∗) effectively to the

theory of automorphic forms, it seems essential to know a lot about the distributions

JTo (f) and JTχ (f). How do they depend on T ? How can they be expressed explicitly

in terms of weighted orbital integrals or weighted characters? How can they
be factored into local distributions on the groups Gv?

Our purpose in the remainder of these lectures is to explain some of Arthur’s

answers to these questions. But to make this task easier, we proceed in stages.

One of Arthur’s first general results is that each distribution JTo (f) or (JTχ (f)) is
a polynomial in T , of degree at most dim(AP0

/Z). Another is that each “unram-

ified” JTo (f) (or JTχ (f)) has a fairly explicit representation as a weighted orbital

integral (or character). To motivate these and other general results, we shall first

recall the familiar example of GL(2).

1. Explicit Results for GL(2) (Geometric Side). As we already observed in

general in Lecture II, the elliptic terms JTo (f) are independent of T , and simply

equal ordinary (factorizable) orbital integrals (see Proposition 2.5 of Lecture II).

On the other hand, the hyperbolic and unipotent terms are non-trivial (linear)
polynomials in T , explicitly described in the propositions below.

Proposition 1.1. If o denotes a hyperbolic class with representative γ, then for

α(T ) sufficiently large,

JTo (f) = (T1 − T2)m(F ∗\A1)

∫

M(A)\G(A)

f(x−1γx) dx

− 1

2
m(F ∗\A1)

∫

M(A)\G(A)

f(x−1γx)α(H(wx) +H(x)) dx
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Remarks. (1) The proof of this proposition is provided by the formal computa-

tions of [GJ, pp. 237–238] now justified by the already established a priori absolute
convergence of

∫
kTo (x, f) dx. The assumption α(T ) ≫ 0 is needed so as to be able to

apply Lemma 4.1 of Lecture II (which in the case of GL(2) just requires α(T ) > 0).

(2) In §3 of Lecture I, we saw that the unmodified hyperbolic kernel Ko was not

integrable because of the appearance of the (divergent) volume of F x\Ax; Propo-

sition 1.1 shows that the integral of the modified kernel indeed “truncates” this

volume to a finite interval of length (T1 − T2), which appears as a linear term in T
with coefficient

∫
f(x−1γx) dx; however, the constant term of this polynomial no

longer involves an invariant orbital integral (because of the presence of the “weight

function” α(H(wx)) +H(x)).

Proposition 1.2. For the unipotent class o, and α(T ) sufficiently large,

Jo(f) = m(Z(A)G(F )\G(A))f(1)

+ f. p.
s=1

(ζ(F, s)) + (T1 − T2)m(F ∗\A1)

∫

A

F (y) dy

where

F (y) =

∫

K

f(k−1
(

1 a

0 1

)
k) dk is in S(A),

and f. p.s=1 (ζ(F, s)) denotes the “finite part” at s = 1 of the (meromorphic) zeta-

function

ζ(F, s) =

∫

Ax

F (a)|a|s dxa

of Tate.

Remarks. (1) Iwasawa’s decomposition implies (formally) that

ζ(F, s) (at s = 1) =

∫

Ax

∫

K

f
(
k−1

(
1 a

0 1

)
k
)
dk |a| dxa

=

∫

Z(A)N(A)\G(A)

f
(
x−1

(
1 1

0 1

)
x
)
dx,

the non-trivial unipotent orbital integral of f . Thus the constant term of this JTo (f)
is indeed analogous to the constant term of the hyperbolic JTo (f): one involves a

regularized (unipotent) orbital integral, and the other a weighted (hyperbolic)

orbital integral.

(2) Because the left hand side of (**) is independent of T , it must be that the linear

terms in T appearing in both the hyperbolic and unipotent JTo (f) cancel out with

the linear terms appearing in
∑
JTχ (f). Indeed one can check (using Iwasawa’s

decomposition) that the linear terms in Propositions 1.1 and 1.2 (for all hyperbolic

o) combine into the single term

L(T ) = (T1 − T2)m(F ∗\A1)
∑

γ∈Z(F )\M(F )

∫

K

∫

N(A)

f(k−1γnh) dn dh;
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then this term is seen (later) to exactly cancel the linear term in T arising from∑
χ J

T
χ (f); see §2 below, also p. 239 of [GJ]).

(3) The proof of Proposition 1.2 again results from formal computations—see p. 236

of [GJ]—all of which are justified now by the a priori absolute convergence of∫
kTo (x, f) dx. As in the hyperbolic case, the appearance of the linear term, and the

“shearing off” (i.e., regularization) of the relevant orbital integral, are explained by
the fact that the kernel Ko(x, x) was modified before being integrated.

(4) The need to modify Ko (in this unipotent case) is clarified by the exercise below.

Exercise. Show that for the unipotent class o,

JTχ (f) =

∫

Z(A)G(F )\G(A)

Ko(x, x) dx

= val
s=1

{ζ(F, s)} +m(Z(A)G(F )\G(A))f(1),

with ζ(F, s) as in the proposition above. In particular, Jo(f) = ∞ when the

“principal part” of ζ(F, s), namely m(F ∗\A1)F̂ (0)/(s− 1), is non-zero.

Solution. Recall that

o = {1} ∪ o′,

where o′ consists of the elements

{
δ−1

(
1 t

0 1

)
δ : t ∈ F ∗, δ ∈ B(F )\G(F )

}

Thus we compute

∫

Z(A)G(F )\G(A)

ko′(x, x) dx =

∫ ∑

t6=0

∑

δ∈B(F )\G(F )

(
x−1δ−1

(
1 t

0 1

)
δx
)
dx

=
∑

t6=0

∫

Z(A)B(F )\G(A)

f
(
x−1

(
1 t

0 1

)
x
)
dx,

which, by Iwasawa’s decomposition, equals

∫

K

∫

Fx\Ax

∑

t∈Fx

f
(
k−1

(
1 a−1t

0 1

)
k
)
|a|−1 dxa dk =

∫

Fx\Ax

(
∑

t∈Fx

F (at)

)
|a| dxa

=

∫

A∗

F (a)|a| dxa

with F (y) as defined in Proposition 1.2.

Concluding Remark. As we shall see in the next lecture, the explicit expressions

just obtained for JTo (f) (hyperbolic or unipotent) already suffice to express these

distributions as (a sum of) products of local distributions Jv(fv); this fact will turn
out to be crucial in yielding a simple form of the trace formula in Lecture V.
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2. Explicit Results for GL(2) (Spectral Side). As already observed in gen-

eral in Lecture III, the “elliptic” spectral terms JTχ (f), where χ = {(G, π)}, are
independent of T ; they just reduce to the distributional characters

JTχ (f) = tr π(f).

As for the remaining “hyperbolic” and “unipotent” χ, we have the following:

Proposition 2.1. Suppose χ = {(M,µ)} is “hyperbolic” in the sense that µ 6=
µ−1 (i.e., there is no 1-dimensional residual spectrum contributing to Kχ(x, y)).

Then for T sufficiently large,

(2.1) JTχ (f) = (T1 − T2)

∫ ∞

−∞
tr(ρ(µ, it)(f)) dt

+

∫ ∞

−∞
tr(M(−it)M ′(it)ρ(µ, it)(f)) dt

with the intertwining operators M(s) (and their derivatives) to be explained below.

Because the proof of this result directly generalizes to any G, we include it.

By definition, for χ regular (µ 6= µ−1),

(2.2) JTχ (f) =

∫

Z(A)G(F )\G(A)

(∑

φ

∫ ∞

−∞
E(x, ρ(µ, it)(f)φ, it)ΛTE(x, φ, it)

)
dt dx.

However, because we have already established the absolute convergence of this

integral, we can interchange the orders of integration and write

(2.3) JTχ (f) =
∑

φ

∫ ∞

−∞
(ΛTE(ρ(µ, it)(f)φ, it),ΛTE(φ, it)) dt.

Here we have used also the well-known fact that ΛT is an orthogonal projection

operator on L2, and hence (φ1,Λ
Tφ2) = (ΛTφ1,Λ

Tφ2), with (·, ·) denoting the
usual inner product in L2.

To continue with the proof, we obviously need a more explicit expression for

the inner product of these truncated Eisenstein series. This is provided by the

“Maass–Selberg relations” (generalized by Langlands to an arbitrary G in [La1]);
in the present context they imply

(ΛTE(φ′, it),ΛTE(φ, it))

= (T1 − T2)(φ
′, φ) + (M(−it)M ′(it)φ′, φ)

+
1

2it
{(φ′,M(it)φ)e2it(T1−T2) − (M(it)φ′, φ)e−2it(T1−T2)}.

(2.4)

Here M(s) = M(s, µ) is the operator

φ −→M(s)φ(g) =

∫

N(A)

φ(wng) dn
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intertwining ρ(µ, s) with ρ(µw,−s). (Like E(g, φ, µ, s), M(s) is initially defined

only for Re(s) > 1/2, but is analytically continuable in C, and holomorphic on
iR.) Note M(−s) = M(−s, µw) maps ρ(µw,−s) to ρ(µ, s), and the inner product

(φ1, φ2) is defined by

(φ1, φ2) =

∫

Z(A)M(F )\M1(A)

∫

K

φ, (mk)φ2(mk) dmdk.

Finally, M ′(s) is the derivative d
dsM(s, µ) : ρ(µ, s) −→ ρ(µw,−s) (defined by iden-

tifying ρ(µ, s) with ρ(µ, 0) . . . ).
Now formula (2.4) is valid not just in our case (when µ is “regular”), but also

when µ = µ−1; in fact we shall require (2.4) below when we treat the “unipotent”

contribution JTχ (f). However, when µ 6= µ−1, it is a simple matter to observe that

the third (and most complicated) term on the right side of (2.4) actually vanishes.

Indeed, as M(s) = M(s, µ) maps φ into ρ(−s, µ−1), it follows that φ′ and M(it)φ
transform under M1(A) according to distinct characters (namely, µ and µ−1). Thus

the inner product

(φ′,M(it)φ) =

∫
φ′(k)M(it)φ(h) dh(

∫

Z(A)M(F )\M1(A)

µ2(m) dm)

vanishes (and so, similarly, does (M(it)φ′, φ)). So plugging (2.4) into (2.3) simply
yields

(2.5) (T1 − T2)

∫ ∞

−∞
tr(ρ(µ, it)(f)) dt+

∫ ∞

−∞
tr(M(−it)M ′(it)ρ(µ, it)(f)) dt,

as required.

We now move on to the more problematic case when µ = µ−1. In this case,

plugging in (2.4) into (2.3) yields (in addition to the terms in (2.5)) the term

(2.6) E(T ) =
∑

φ

∫ ∞

−∞

{
(ρ(µ, it)(f)φ,M(it)φ)

e2it(T1−T2)

2it

− (ρ(µ, it)(f)φ,M(−it)φ)
e−2it(T1−T2)

2it

}
dt.

(Here we have used the fact that the adjoint of M(s) is M(−s).) But this still

isn’t enough to describe JTχ (f). In this singular situation, what’s missing is the
contribution from the one-dimensional residual spectrum, i.e., the contribution

JT,resµ (f) = µ(f)

∫

Z(A)G(F )\G(A)

µ(x)ΛT (µ(x) dx

from the residual kernel

KT,res
µ (x, y) = µ(f)µ(x)µ(y).

Analyzing both these functions of T (namely E(T ) and JT,resµ (f)) yields finally:
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Proposition 2.7. For α(T ) ≫ 0, and χ = {(M,µ)} with µ = µ−1,

JTχ (f) = (T1 − T2)

∫ ∞

−∞
tr(ρ(µ, it)(f)) dt+

∫ ∞

−∞
tr(M(−it)M ′(it)ρ(µ, it)(f)) dt,

+ 1
4 tr(M(0)ρ(µ, 0)(f)) + µ(f)m(Z(A)G(F )\G(A))

plus n∗
1(T ), a negligible term (for T very large).

Proof. In [GJ, pp. 239–240], a Fourier analysis argument is given to show that

E(T ) = 1
4 tr(M(0)ρ(µ, 0)(f)) + r1(T )

with r1(T ) negligible for α(T ) large. On the other hand, it is a pleasant exercise to

check that

JT,resµ (f) −→ µ(f)m(Z(A)G(F )\G(A)) as T → ∞.

Indeed,

µ(f)

∫

Z(A)G(F )\G(A)

µ(x)ΛT (µ(x)) dx

= µ(f)

∫

Z(A)G(F )\G(A)

µ(x)
(
µ(x) −

∑

δ∈B(F )\G(F )

µ(x)τ̂B(δx) − T )
)
dx

= µ(f)

∫
dx− µ(f)

∫ ∑

δ∈B(F )\G(F )

τ̂B(H(δx) − T ) dx

= µ(f)m(Z(A)G(F )\G(A)) − µ(f)

∫

Z(A)B(F )\G(A)

τ̂B(H(x) − T ) dx

= µ(f)m(Z(A)G(F )\G(A)) − n1(T )

with

n1(T ) = µ(f)m(F ∗\A1)
e−2(T1−T2)

2
−→ ∞ as α(T ) → ∞.

So setting n∗
1(T ) = r1(T ) + n1(T ) completes the proof. �

Concluding Remark. (a) Proposition 2.1 expresses JTχ (f) directly as a poly-

nomial in T when χ is regular. But as already suggested, Arthur has proven in

general that JTχ (f) is polynomial in T . Thus it must follow that the “negligible”

term n∗
1(T ) (appearing in the expression for JTχ (f) for singular χ in Proposition 2.7)

is actually zero identically. (Indeed, it is a polynomial in T , which goes to 0 as T

goes to infinity . . . .) On the other hand, the expression E(T ) (or equivalently

(6.28) in [GJ, p. 239] is definitely not a polynomial; rather E(T ) includes a negli-

gible term r1(T ) which must cancel the negligible (exponentially decreasing) term

n1(T ) appearing in the expression for JT,resµ (f).

(b) Our computation of

JT,resµ (f) = µ(f)

∫

Z(A)G(F )\G(A)

µ(x)ΛT (µ(x)) dx
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really amounts to the computation of the inner product of two truncated “degen-

erate Eisenstein series” (induced from µ on P = G . . . ). In general, the explicit
description of JT,resχ (f) with χ “singular” will involve an inner product

(2.8) (ΛTEP (φ′, λ′),ΛTEP (φ, λ))

where φ in Ind
G(A)
P (A) σ belongs to L2(P )χ, but P does not belong to Pχ. Thus the

natural generalization of Proposition 2.7 must involve Arthur’s generalization of
Langlands’ formula (valid for P /∈ Pχ, but like the formula for JT,resµ (f) giving only

an asymptotic expression for (2.8); see [A9] ).

3. Results for General G. Arthur’s generalization of the above results, and in

fact the GL(2) results themselves, seem much easier to digest and understand when

viewed not as a long chain of unrelated results, but rather as realizations of a few
fundamental phenomena and principles. Of course Arthur knowingly developed his

trace formula with these thoughts in mind. To begin to explain them, let us start

with the symmetry of the formula itself.

Remark 3.1. Consider the formula

∑

o∈O

JTo (f) =
∑

χ∈X

JTχ (f).

Although at first sight the indexing sets O and X seem asymmetric and unrelated,

they can actually be viewed as mirror images of one another. Indeed, if o ∈ O,
consider those (standard) parabolics B of G which are minimal with respect to the

property that o meets MB. Then o ∩MB is a finite union of MB(F ) conjugacy

classes which are “elliptic” in the sense that they meet no proper parabolic subgroup

of MB. Moreover, if W0 denotes the restricted Weyl group of (G,A0), then O is

in bijective correspondence with the set of W0-orbits of pairs (MB, cB), where
B is a parabolic subgroup of G, and cB is an elliptic conjugacy class in MB(F ).

Thus O indeed corresponds naturally to X, itself defined to be the set of W0-orbits

of pairs (MB, rB), where rB is an irreducible cuspidal automorphic representation

of MB(A). This description of O has the additional benefit that it highlights the
analogy between “elliptic” classes and “cuspidal” representations. (For convenience

here, we have ignored centers . . . .)

In light of the symmetry between O and X (expressed by this Remark 3.1), it is
not surprising that most of the general results Arthur proves for the distributions

JTo (f) have an immediate analogue for JTχ (f). For example, if o = {(MB, cB)} is

such that JTo (f) is a polynomial of degree at most dim(AB/Z), then so is JTχ (f),

for χ = {(MB, rB)}. Or, if o = {(MB, cB)} is suitably unramified that JTo (f)

is expressible as a weighted orbital integral, then the corresponding JTχ (f) should

be expressible as a weighted average of characters. Let us explain these matters in
some more detail now, and along the way bring into play some other basic principles

as well.
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Proposition 3.1 (see Proposition 2.3 of [A4]). For each fixed f , JTo (f) is a

polynomial in T of degree at most dim(aP0
/aG) (with P0 the minimal parabolic).

The proof has two main ingredients. First, for any parabolic P ⊃ P0, and point

X in a0, a certain characteristic function

Γ′
P (H,X) =

∑

{R : R⊃P}
(−1)dim(AR/Z)τRP (H)τ̂R(H −X)

is defined on a0, with τRP the characteristic function on a0 of the set

{H ∈ a0 : α(H) > 0, α ∈ ∆R
P }

and τ̂R of the set

{H ∈ a0 : ω̃(H) > 0, ω̃ ∈ ∆̂R}.
(Here ∆̂R is the dual basis in a∗R corresponding to the basis of coroots {α∨ : α ∈ ∆R}
in aR.)

For example, for GL(2), andX = (X0,−X0) in a+
0 , Γ′

B(H,X) = τB(H)−τ̂B(H−
X); as a function on the one-dimensional subspace aG0 = {(T,−T )} ≈ {T }, this is

just the characteristic function of the interval [0, X0].
On the other hand, for G = GL(3) and (X1, X2,−(X1 + X2)) = X in a+

0 , the

function Γ′
P0

( · , X) (viewed on the two-dimensional space {(r1, r2,−(r1 + r2))}) is

just the characteristic function of the shaded region below:

X

Figure 1

In general, the crucial property of Γ′
P (H,X) is that it has compact support, and

that its integral ∫

aG
P

Γ′
P (H,X) dH

is a polynomial in X of degree q = dim(AP /Z). (Here aGP is the subspace of aP
annihilated by a∗G, so in particular, aP = aGP ⊕ aG.)

Second, certain geometric distributions J
MQ,T
o (analogous to JTo ) are defined for

each Levi subgroup M of G. Namely, for any fixed suitably regular point T1 in
a+
0 , class o in O and fQ in C∞

c (Z(A)\MQ(A)), define

J
MQ,T1

o (fQ) =

n∑

i=1

J
MQ,T1

oi ,
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where o ∩MQ(F ) is the union (possibly empty) of “classes” o1, . . . on in MQ. (If

o∩MQ(F ) = ∅, then J
MQ,T1

o ≡ 0; on the other hand, if M = G, then JM,T1
o = JT1

o .)
To prove Proposition 3.1, Arthur derives the formula

(3.2) JTo (f) =
∑

Q⊃P0

J
MQ,T1

o (fQ)

∫

aG
Q

Γ′
Q(H,T − T1) dH,

where fQ in C∞
c (Z(A)\MQ(A)) is explicitly determined by f (and T varies freely

through T1 + a+
0 ). Since each

∫
Γ′
Q(H,T − T1) dH is a polynomial in T − T1 of

degree at most dim(AP0
/Z), it follows that the same is true of JTo (f), as claimed.

Note that JTo (f) will be independent of T , i.e., be of degree zero, precisely when o

is elliptic, i.e., has empty intersection with every proper parabolic Q appearing in

(3.2) above.

Remark 3.3. As expected, there is an analogue of Proposition 3.1 for JTχ (f),
proved in just the same way (in keeping with the principle that the geometric and

spectral terms are different facets of the same type of object). For χ in X, and M a

Levi subgroup of G, one similarly defines distributions JM,T
χ on M(A) and proves

(analogously) that

(3.4) JTχ (f) =
∑

Q⊃P0

JMQ,T1

χ

∫

aG
Q

Γ′
Q(H,T − T1) dH

is (again) a polynomial in T of degree ≤ dim(A0/Z). Interestingly, one also obtains

the equality

(3.5)
∑

0∈O

JM,T
o (f) =

∑

χ∈X

JM,T
χ (f),

which may be viewed as (a first form of) Arthur’s trace formula “relativized” to an

arbitrary Levi subgroup MP of G! This relativization is reminiscent of Langlands’

use of the spectral decomposition of L2(P ) (P any parabolic of G) in order to
describe L2(G) itself, and it constitutes another of the unifying themes in Arthur’s

work.

To turn next to explicit formulas for JTo (f) (and JTχ (f)), we need first to recall

Arthur’s notion of an unramified class of datum. For χ = {(MB, rB)} this just

means that for any pair (MB, rB) in χ, the only element of Ω(aP , aP ) fixing rB is
the trivial element. On the other hand, for o = {(MB, cB)}, the notion is a little

less obvious.

Namely, fix a class o, and choose a parabolic subgroup P and a semisimple

element γ in o such that γ belongs to M(F ) but not to the Levi subgroup of
parabolic properly contained in P . Then let

∑
(γ) denote the (possibly empty) set

of roots α in
∑

=
∑

(P,AP ) such that the centralizer of γ in yα (the root subspace

of the Lie algebra of NP belonging to α) is not zero, and let A′ be the intersection

of the kernels of these roots α (regarded as characters of A). Now assume that

every element in o is semi-simple, and choose a parabolic subgroup P1, and an
element w ∈ Ω(a, a1) such that AP1

= wA′w−1. Setting γ1 equal to wγw−1, we call

o unramified if the centralizer G(γ1) is contained in M1.
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Note that

γ =

(
α 0
0 1

)
or γ =




α 0 0
0 β 0
0 0 1





determines a semi-simple class in GL(2) (or GL(3)) which is unramified, with P

the Borel subgroup, A′ = AP , P1 = P , and γ1 = γ. On the other hand, any class

in GL(3) containing a non-semisimple element, like say

γ =




α 0 0
0 1 x
0 0 1



 ,

is automatically ramified, and its corresponding distribution JTo (f) will not be of

the nice type described in the proposition below.

Proposition 3.6. Suppose o is an unramified class in O, and γ1 is a (semi-

simple) element in o. Then for sufficiently large T ,

JTo (f) = m(Gγ1(F )\G1
γ1(A))

∫

Gγ(A)\G(A)

f(x−1γ1x)v(x, T ) dx,

with v(x, T ) (the weight function) equal to the volume of the convex hull of the

points

{w−1T − w−1HP0
(wx) : w ∈

⋃

P2

Ω(a1, a2)}

projected onto a1/aG.

Let us describe v(x, T ) graphically for G = GL(2) or GL(3), with γ1 a diagonal

element (with distinct eigenvalues). We shall also sketch the proof of the proposition

for GL(2), making clear how the volume v(x, T ) naturally arises.
N.B. We should really write vo(x, T ) for v(x, T ), since this function indeed depends

on the nature of o.

For GL(2) or GL(3), and γ1 as just specified, v(x, T ) is precisely the volume of

the convex hull of the projection of

{w−1T − w−1HP0
(wx) : w ∈ Ω(aP0

, aP0
)}

onto aP0
/aG. For GL(2), this is just the length of the line segment determined

by the points (T1, T2) − H(x) and (T2, T1) − wH(wx) in aP0
projected onto the

one-dimensional space aP0
/aG, i.e.,

v(x, T ) = 2(T1 − T2) − (α(H(x)) + α(H(wx))).

Thus Proposition 3.5 indeed reduces to Proposition 1.1.

On the other hand, for GL(3), v(x, T ) (at least for T = 0) reduces to the area

of the convex set

 H     


      

pw(x)

 H     
p(x)
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Figure 2

whose extreme points are indexed by the Weyl group elements {w1 = e, w2, . . . , w6}.
Note here that

w−1HP0
(wx) = HPw (x),

where Pw denotes the (not-necessarily standard) parabolic subgroup w−1P0w, and

HPw (x) is defined analogously to HP0
using the decomposition G = PwK. (Indeed

wx = nm0k implies w−1HP0
(wx) = w−1HP0

(m0), and x = w−1nm0k implies

HPw (x) = HP0
(w−1mw) = w−1HP0

(m0), i.e., HPw(x) = w−1HP0
(wx).) Thus we

could have alternately described v(x) = v(x, 0) in terms of the points

{HP (x) : P ∈ P(M0)},

where P(M0) denotes the set of parabolics (not necessarily standard) in G whose

Levi part equals M0.

Remark 3.7. Weighted orbital integrals of the above type were first systemat-

ically studied by Arthur in the context of real groups. In [A8], Arthur studied
general properties of these real weighted orbital integrals, motivated by a sugges-

tion of Langlands that such integrals would arise in any projected general treatment

of the trace formula. In particular, for matrix coefficients of discrete series repre-

sentations, Arthur related
∫
f(x−1γx)v(x) dx to the characters of the discrete series

(whence the title of [A8]). On the other hand, Arthur’s weight functions v(x) were

also interpreted in [A8] in terms of what would eventually be known as (G,M)

families. We shall return to this point in a later lecture, where (G,M) families

are discussed in earnest.

On the Proof of Proposition 3.6 for GL(2). Precisely because o is unramified

(in this case, a hyperbolic class with semi-simple element γ1), the centralizer G(γ1)
is contained in M (in this case equals M) and we can express the modified kernel

as

kTo (x, T )

=
∑

δ∈M(F )\G(F )

f(x−1δ−1γ1δx)

−
∑

δ∈B(F )\G(F )

∫

N(A)

f(x−1δ−1γ1nδx) dn τ̂B(H(δx) − T )

=
∑

B(F )\G(F )





∑

η∈N(F )

f(x−1δ−1η−1γ1ηδx)

−
∫

N(A)

f(x−1δ−1γ1nδx) dn τ̂B(H(δx) − T )

}
.
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Thus

JTo (x, f)

=

∫

Z(A)G(F )\G(A)

kTo (x, T ) dx

=

∫

Z(A)B(F )\G(A)





∑

η∈N(F )

f(x−1η−1γ1nx)

−
∫

N(A)

f(x−1n−1γ1nx) dn τ̂B(H(x) − T )

}
dx

(here we made the change of variables n −→ (γ−1
1 n−1γ1)n in the second integral)

=

∫

Z(A)M(F )G(A)

f(x−1γ1x)(1 − τ̂B(H(x) − T )) dx,

(here we used the decomposition

Z(A)B(F )\G(A) ≈ N(A)Z(A)M(F )\G(A) ·N(F )\N(A),

carrying out first the integration over N(F )\N(A)). But now observe the following:

because we know kTo (x, T ) is absolutely integrable, we also know that the last

integral

A =

∫

Z(A)M(F )\G(A)

f(x−1γ1x)(1 − τ̂B(H(x) − T )) dx

converges absolutely, and equals (from the change of variables x→ wx)

B =

∫
f(x−1γ1x)(1 − τ̂B(H(wx) − T )) dx,

i.e.,

JTo (x, f)

= A = 1
2 (A+B)

= 1
2

∫

Z(A)M(F )\G(A)

f(x−1γ1x)(1 − τ̂B(H(x) − T ) − τ̂B(H(wx) − T )) dx

=

∫

M(A)\G(A)

f(x−1γ1x)v
∗(x, T ) dx,

with

v∗(x, T ) =

∫

Z(A)M(F )\G(A)

(1 − τ̂B(H(mx) − T )) − τ̂B(H(wmx) − T )) dm,

and it remains only to prove:
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Claim. Set v∗T (x) = 1 − τ̂B(H(x) − T ) − τ̂B(H(wx) − T ). Then

v∗(x, T ) =

∫

Z(A)M(F )\M(A)

v∗T (mx) dm = Arthur’s weight factor v(x, T ).

Proof. Note that v∗T (x) is identically zero unless

(a) Both τ̂B(H(x) − T ) and τ̂B(H(wx) − T ) are 1 (in which case v∗T (x) = −1);
or

(b) Both are zero (in which case v∗T (x) = 1). But the first possibility for

v∗T (mx) 6= 0 implies that

α(H(mx)) > α(T ) and α(H(wmx)) > α(T ),

which (for α(T ) sufficiently large . . . ) implies (by Lemma 4.1 of Lecture

II) that w ∈ B(F ), an obvious contradiction. On the other hand, it is

straightforward to check that the second possibility for v∗T (mx) 6= 0 implies

α(H(mx)) − (T1 − T2) < α(H(m)) < (T1 − T2) − α(H(x)).

Thus the decomposition

Z(A)M(F )\M(A) =

{(
a 0
0 1

)
: a ∈ F x\A1

}
·
{(

et 0
0 1

)}

∫
v∗T (mx) dx =

∫

Fx\A1

dxa

∫ (T1−T2)−α(H(x))

α(H(wx))−(T1−T2)

dt

= m(F x\A1)v(x, T ).

�

Remark 3.8. The analogue of Proposition 3.6 for a spectral unramified dis-

tribution JTχ (f) is also a “straightforward” generalization of the GL(2) situation

(Proposition 2.1), namely, we have:

Proposition 3.9. For χ = {(M, r)} unramified,

JTχ (f) =
∑

P∈Pχ

1

n(Ap)

∫

ia∗

P /ia
∗

G

tr(MT
P (σ)χρ(σ, λ)(f)) dλ,

with MT
P (σ)χ the operator on IndP (σ, λ) defined by

cP lim
ζ→0

∑

P2∈Pχ

∑

w∈Ω(aP1
,aP2

)

ewζ(T )M(w, 0, σ)−1M(w, ζ, σ)∏

α∈∆P2

(wζ)(α∨)

and M(w, ζ, σ) the operator intertwining IndGP1
σ| |λ+ζ with IndGP2

σw| |w(λ+ζ).

As suggested in §2, the crucial point of the proof is Langlands’ formula for the
inner product of truncated Eisenstein series, and since this is valid for general

G (for Eisenstein series EP with P ∈ Pχ), the proof of Proposition 2.1 generalizes

directly. The interesting point here is that the integrals appearing in the description

of JTχ (f) above really should be viewed as weighted character sums. In fact, using

the notion of (G,M) families, Arthur eventually views both MT
P (σ) and the weight

functions v(x) as special examples of functions constructed out of similar (G,M)

families; we shall return to this point in Lecture VII.
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Lecture V. Simple Forms of the Trace Formula

In this lecture and the next, we explain (at least for GL(2)) how the trace formula
can be molded into a simpler form, and then used to obtain dramatic results in

representation theory, number theory, and the theory of automorphic forms. In

addition to providing a welcome respite from the general theory, this detour will

provide impetus and direction for the further discussion of Arthur’s development

of a general trace formula.
Roughly speaking, the trace formula takes on a simpler form when more re-

strictive hypotheses are put on the test functions f . The more restrictive the

hypotheses, the easier it is to establish the corresponding “simple trace formula”;

but the less restrictive the hypotheses, the more effective it is to apply the resulting
trace formula to the theory of automorphic forms.

For example, the “very simple” trace formula of Deligne-Kazhdan (described

in §3 below) has nice applications to local representation theory, but cannot give

complete results on the functorial lifting of automorphic forms, and cannot give

applications to the computation of Tamagawa numbers. For such applications one
seems to need the “simple trace formula of Arthur”, described in §2 below (in the

context of GL(2)).

We start by showing (in §1) that each term on the right side of the formula

tr(R0(f)) =
∑

o

JTo (f) −
∑

χ/∈X(G)

JTχ (f)

may be expressed as a finite sum of products of local distributions on each Gv.

Then we show (in §2) that for specially chosen f =
∏
v fv, sufficiently many of

these local distributions vanish to ensure that the resulting trace formula reduces

to the simple formula

trRd(f) = m(Z(A)G(F )\G(A))f(1) +
∑

o
elliptic

Jo(f)

(as in the case of compact quotient).

Henceforth, we assume

f =
∏

v

fv

is such that for all v, fv ∈ C∞
c (Zv\Gv), and for almost all v, fv is the characteristic

function of ZvKv.
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1. Factorization into Local Distributions. We start with the geometric terms

Jo(f). Fix f = Πfv, and let Sf denote the finite set of places of F outside of which
fv is the characteristic function of ZvKv.

Proposition 1.1. Suppose γ is hyperbolic and belongs to o. Then Jo(f) (the
constant term of the polynomial JTo (f)) is expressible as the sum (over v in Sf ) of

the products

c
(∏

w 6=v

∫

Mw\Gw

fw(g−1γg) dg
)∫

Mv\Gv

fv(g
−1γg)vv(g) dg.

Here vv(g) = α(Hv(g) +Hv(wg)) is the local weight function.

Proof. It is easy to check that for g in G(A),

v(g) =
∑

v

vv(gv),

with vv(gv) ≡ 0 on ZvKv. Thus, Proposition 1.1 of Lecture IV immediately implies

Jo(f) = c
∑

v

∫

M(A)\G(A)

f(g−1γg)vv(g) dg

=
∑

v

c
(∏

w 6=v

∫

Mw\Gw

fw(g−1γg) dg
)∫

Mv\Gv

fv(g
−1γg)vv(g) dg.

But if v /∈ Sf , the second integrand is identically zero. Thus the proposition is

clear. �

The factorization of the unipotent term is a bit more complicated. Recall from

Proposition 1.2 of Lecture IV that the constant term of the (non-trivial part of the)

unipotent term JTo (f) is computed by subtracting off from

ζ(F, s) =

∫

Zx

∫

K

f(k−1
(

1 a

0 1

)
k) dk|a|s dxa

its principal part at s = 1, and then setting s = 1.

So first rewrite this last integral as L(s, 1F )θ(s), where

θ(s) =
1

L(s, 1F )

∫∫
f(k−1

(
1 a

0 1

)
k) dk|a|s dxa.

By Tate’s theory, θ(s) is holomorphic at s = 1, whereas

L(s, 1F ) =
λ−1

s− 1
+ λ0 + · · · .

Therefore, the constant term Jo(f) we need to compute is λ−1θ
′(1) + λ0θ(1), and

arguing as in [GJ, pp. 242–243], we get:
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Proposition 1.2. With Sf as before, and o unipotent,

Jo(f) = λ0

∏

v

( 1

L(1, 1v)

∫

ZvNv\Gv

fv

(
g−1

(
1 1

0 1

)
g
)
dg
)

+ λ−1

∑

u∈Sf

∏

v 6=u

( 1

L(1, 1v)

∫

ZvNv\Gv

(
g−1

(
1 1

0 1

)
g
)
dgv

)
× d

ds

∣∣∣
s=1

1

L(s, 1u)

∫∫
fu

(
k−1

(
1 a

0 1

)
k
)
dk |a|s dxa

+m(Z(A)G(F )\G(A)f(1).

Remarks. (1) Each of the local unipotent orbital integrals

∫

ZvNv\Gv

fv(g
−1
(

1 1

0 1

)
g) dg = ζ(Fv , 1)

converges, and for almost every v equals (1 − N−1
v )−1. It is the appearance of

the “convergence factors” L(1, 1v)
−1 which makes possible the convergence of the

product of these local integrals in Proposition 1.2. (The divergence of the global

unipotent orbital integral

∫
f
(
g−1

(
1 1

0 1

)
g
)
dg =

∏

v

∫
fv

(
g−1

(
1 1

0 1

)
g
)
dg

was of course the reason for introducing the modified JTo (f) in the first place . . . ).

(2) If u /∈ Sf , then

1

L(s, 1u)

∫∫
fu

(
k−1

(
1 a

0 1

)
k
)
dk|a|s dxa =

1

L(s, 1u)
· ζ(1Ov , s) = 1.

and its derivative is zero; that’s why we need only sum over u /∈ SF in Proposi-

tion 1.2.

We turn now to the spectral contributions. Here we need to recall some crucial
facts about normalized intertwining operators.

Recall the operator

(M(s)φ)(g) =

∫

N(A)

φ(wng) dn (Re(s) > 1
2 )

intertwining ρ(µ, s)with ρ(µw,−s). This is the operator—or rather its analytic

continuation to iR—which appears in our description of the spectral “constant
term” Jχ(f)(χ = (M,µ)). The problem is that in analytically continuing M(s) we

lose its Euler product factorization (just as we lose the Euler product for ζ(s) in

analytically continuing it to the left of Re(s) = 1). It is to restore this factorization

that one needs the normalized intertwining operators R(s) recalled below.
For a fixed additive character ψ =

∏
v ψv of F\A, and v any place of F , set

mv(s, µv, ψv) =
L(s, µ2

v)

L(s+ 1, µ2
v)ε(s, µ

2
v, ψv)

.
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Then define local normalized intertwining operators

R(s, µv) : ρ(s, µv) −→ ρ(−s, µwv )

by the equality

M(s, µv) = m(s, µv, ψv)R(s, µv)

(where M(s, µv)φ is just defined by the local integral
∫
Nv
φ(wng) dn, convergent

for Re(s) ≫ 0). The crucial property of this normalized operator R(s, µv) is that
it takes the (normalized) Kv-fixed vector φ0

v in ρ(s, µv) (for µv unramified) to the

unique normalized Kv-fixed vector in ρ(−s, µ−1
v ); moreover, as an operator valued

function of s, R(s, µv) is holomorphic in Re(s) > − 1
2 . Thus we can define, for

φ =
∏
φv in ρ(s, µ),

R(s, µ)φ =
∏

v

R(sv, µv)φv.

Since R(s, µv)(φv) = φ0
v almost everywhere, this product makes perfect sense; more-

over, R(s, µ) is holomorphic in Re(s) > − 1
2 . But clearly (at least for Re(s) ≫ 0),

M(s, µ) = m(s, µ)R(s, µ),

where

m(s, µ) =
∏

v

mv(s, µv, ψ)v).

So since m(s, µ) is meromorphic, we indeed obtain the analytic continuation of

M(s, µ) to iR with its “Euler product” factorization intact.
N.B. By the (global) functional equation of Hecke L-functions,

m(s, µ) =
L(s, µ2)

L(s+ 1, µ2)ε(s, µ2, ψ)
=
L(1 − s, µ−2)

L(s+ 1, µ2)

Proposition 1.3. For χ “unramified”, the (constant term of the) spectral contri-

bution Jχ(f) equals

∫ ∞

−∞

m′(it, µ)

m(it, µ)
tr(ρ(it, µ)(f)) dt

+
∑

u∈Sf

∫ ∞

−∞
(
∏

v 6=u
tr(ρ(it, µv)(fv)) tr(Ru(it, µu)

−1R′
u(it, µu)ρ(µ, it)(fu)) dt.

In case χ is “ramified” (µ2 ≡ 1), there are the additional terms

(1.4) tr(M(0)ρ(µ, 0)(f))

and

µ(f)m(Z(A)G(F )\G(A)).

Proof. Straightforward (see [GJ, p. 243]). �
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2. Simplifications of the Formula. A first kind of simplification comes form

making the relatively mild assumption on

f =
∏

fv

that its local hyperbolic orbital integrals

(*)

∫

Mv\Gv

f
(
g−1

(
av 0

0 1

)
g
)
d∗g ≡ 0

for at least two place v = v1, v2.

Proposition 2.1. With f satisfying the above assumption (*), we have

trR0(f) = m(Z(A)\G(A))f(1) +
∑

o elliptic

Jo(f) −
∑

µ2=1

µ(f)m(Z(A)G(F )\G(A))

Proof. First consider the spectral contributions Jχ(f), with χ = {(M,µ)}. If

v1 is a place where (*) holds, then tr ρ(it, µv1)(fv) = 0 (by a well known com-
putation of the trace of induced representations). Thus the first term appear-

ing in Proposition 1.3 immediately disappears. But if (*) also holds at a second

place v2, then it is clear that the second term there must also always vanish. On

the other hand, if µ2 = 1, then M(0, µ) intertwines the irreducible representa-

tion ρ(0, µ) with itself; hence M(0, µ) must be a scalar operator. In particular,
tr(M(0)ρ(0, µ)(f)) = λ tr(ρ(0, µ)(f)) = 0 by our assumption on f , and we conclude

from Proposition 1.3 that the full spectral contribution
∑

χ = (M,µ)Jχ(f) reduces

to (
∑

µ2=1 µ(f))m((Z(A)G(F )\G(A)).

Now we consider the possible geometric contributions Jo(f), following Propo-
sitions 1.1 and 1.2. For the hyperbolic contributions, it is again obvious that if

assumption (*) holds at two places, then each Jo(f) is zero (just as for the unram-

ified spectral forms). On the other hand, for the unipotent contribution, it suffices

to make the following observation:

For any local fv in C∞
c (Zv\Gv),

∫

ZvNv\Gv

fv

(
g−1

(
1 1

0 1

)
g
)
dg = lim

a→1
|1 − a−1|

∫

Mv\Gv

fv

(
g−1

(
a 0

0 1

)
g
)
dg.

This is a simple yet important identity, which we encourage the reader to verify

(using Iwasawa’s decomposition and an appropriate change of variables in N). It

implies that the local unipotent orbital integral of fv vanishes as soon as its hyper-

bolic orbital integrals vanish. In particular, as soon as (*) holds for two places, it
follows that all of the unipotent term Jo(f) vanishes, except for the term involving

f(1). �

In the next lecture, we shall explain how this simplification of the trace for-

mula is used to prove the Jacquet–Langlands correspondence between automorphic

representations between a quaternion algebra and GL(2), and to show that the
corresponding Tamagawa numbers are equal.
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3. The “Simple” Trace Formula. In the early 1980’s, Deligne and Kazhdan

introduced a remarkably simple trick into the trace formula repertoire, the so-called
“simple trace formula” (see [BDKV]). As we shall see in the next lecture, it yields

powerful local results on functorial lifting, with surprisingly little work.

Theorem 3.1 (The Simple Trace Formula of Deligne-Kazhdan). Suppose f =∏
v fv in C∞

c (Z(A)\G(A)) satisfies the following two properties:

(i) At one place v = v1, fv1 is the matrix coefficient of a supercuspidal repre-

sentation of Gv1 ; and

(ii) at a second place v = v2, fv2 is supported on the set of regular elliptic

elements of Gv2 .

Then

(a) R(f) has its image in L2
0(Z(F )G(F )\G(A)), hence is of trace class, with

trR(f) =
∑

π cuspidal

trπ(f); and

(b) we also have

trR(f) =
∑

{γ}
regular
elliptic

m(Z(A)Gγ(F )\Gγ(A)

∫

Gγ\G(A)

f(x−1γx) dx

Remarks. (1) The condition we really need in (i) is that fv1 is a supercusp form

in the sense of Harish-Chandra, i.e., (like the matrix coefficient of any supercuspidal

representation),
∫

Nv1

fv1(gnh) dn = 0 for all g, h, in Gv.

(2) Both the theorem, and its proof below, hold more generally for any G; see [Ro1],

§1, for example.

(3) This simple trace formula is indeed less subtle than the simple form of Arthur’s

trace formula discussed in the last section. In particular, note that the distribution

f → m(Z(F )G(F )\G(A))f(1) disappears entirely from this simpler form of the

trace formula (and hence, for example, no application to Tamagawa numbers is

possible . . . ). It is just this crudeness, however, that makes the formula much
easier to prove!

Proof. For (a), it suffices to show that R(f) has image in L2
0(Z(F )G(F )\G(A) for

then the theorem of Gelfand and Piatetski-Shapiro (see [GPS] and [Go2]) implies

R(f) is of trace class). To check that R(f)φ is a cusp form for any φ we simply
compute:
∫

N(F )\N(A)

R(f)φ(nx) dx =

∫

N(F )\N(A)

(∫

Z(A)\G(A)

∑

v∈N(F )

f(x−1nvg)φ(g) dg
)
dn

=

∫

Z(A)N(F )\G(A)

(∫

N(A)

f(x−1ng) dn
)
φ(g) dg = 0
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since ∫

N(A)

f(x−1ng) dn =
∏

v

∫

Nv

fv(x
−1
v ngv) dn = 0

by our assumption (i) on fv1 .
To prove (b), note that a γ in G(F ) is regular elliptic as soon as it is regular

elliptic in Gv = G(Fv) for some place v. But f(x−1γx) 6= 0 implies {supp(f)} ∩
{Orbit of γ} 6= 0, which in turn implies {supp(fv2)} ∩ {Orbit of γ} 6= 0. So by

hypothesis (ii), γ is regular elliptic in Gv2 , i.e.,

(3.2) Kf (x, x) =
∑

{γ}
regular
elliptic

f(x−1γx),

and conclusion (b) follows. �

Concluding Remark. Implicit in the proof above is the fact that Kf(x, x) is an

absolutely integrable smooth function on Z(A)G(F )\G(A), and hence tr(R(f))

(= tr(R0(f))) is given by its integral. In fact (3.2) implies Kf (x, x) is compactly

supported on Z(A)G(F )\G(A) (as we saw in Lecture II). Interestingly enough, if

we drop the hypothesis (ii), so that (3.2) need no longer hold, it still follows (from
(i) above) that Kf(x, x) is absolutely integrable (in fact, rapidly decreasing), and

that trR(f) =
∫
Kf (x, x) dx; for a proof, see [Ro1, §1].
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Lecture VI. Applications of the Trace Formula

Let G = GL(2), and let G′ be the multiplicative group of a division quaternion

algebra D over F .

In this lecture, we shall explain how the simple forms of the trace formula are
used to prove the following three results:

(1) The Tamagawa number of G′ equals the Tamagawa number of G;

(2) There is a bijection (the “Jacquet–Langlands correspondence”) between the

automorphic π′ on G′ (which are not one-dimensional) and the automorphic
cuspidal π of G (such that πv is square integrable for each place v of F

ramified in D); and

(3) Given any finite set S of finite places v of F , and square-integrable πv on

Gv for v ∈ S, there exists a cuspidal π on G such that (π)v ∼= πv for all

v ∈ S.

1. Tamagawa Numbers. At the end of the 1950’s, Weil conjectured that the
Tamagawa number of any simply connected semi-simple group G equals one. At

the end of the 1960’s Jacquet–Langlands proposed a two step program for proving

this:

(1) Prove first that
τ(G0) = 1

for G0 the quasi-split inner form of G, using the Eisenstein series method

introduced by Langlands for split groups (see [La3] and [Lai]); then
(2) Use the trace formula to prove that

τ(G) = τ(G0).

This second step was first carried out in §16 of [JL] (for GL2 in place of
SL2), and then recently generalized to arbitrary G by Kottwitz to prove

Weil’s conjecture in general (see [Kot]).

We should stress that—in deriving a simple trace formula for an arbitrary semi-
simple quasi-split G—Kottwitz had to appeal not only to all of Arthur’s work on

the trace formula through 1988, but also to his own earlier works on the stable

form of the trace formula. By specializing Kottwitz’s argument below to the case

of GL(2) (in place of SL(2)), we manage to avoid both these bodies of work.

We start by recalling the notion of Tamagawa measures for our G and G′.
Fix a non-trivial character ψ =

∏
ψv of F\A. For each place v of F , ψv de-

termines a Fourier transform on Av = M2(Fv) or Dv, hence also a self-dual Haar
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measure dy on Av. The measure dy then determines a Haar measure dy/‖y‖ on

Axv , where ‖y‖ is the module homomorphism from Av to Rx+. Hence the choice of
ψ simultaneously determines Haar measures on each Gv and G′

v; similarly, Haar

measures are determined on Fv = Zv ≃ Z ′
v. Such measures are called Tamagawa

measures, locally and globally. The resulting measure of Z(A)G(F )\G(A) is inde-

pendent of ψ and called the Tamagawa number τ(G) of G, i.e.,

τ(G) = m(Z(A)G(F )\G(A)).

Similarly,

τ(G′) = m(Z ′(A)G′(F )\G′(A)).

The center Z ′ may of course be identified with the center Z ≃ F x of GL(2).

Theorem 1.1. The Tamagawa numbers of G and G′ are equal.

We start the proof with a definition.

Suppose v in F is ramified in D, i.e., Dv = D ⊗ Fv is a division quaternion

algebra over Fv. Then each quadratic extension Lv of Fv can be regarded simulta-

neously as a Cartan subgroup T ′
v = T ′

Lv
of G′

v and as an (elliptic) Cartan subgroup

Tv = TLv of Gv = GL2(Fv).

Definition 1.2. We say a function fv in C∞
c (Zv\Gv) matches f ′

v in C∞
c (Z ′

v\G′
v)

(and write fv ∼ f ′
v) if:

(i) fv(1) = f ′
v(1);

(ii) the regular hyperbolic orbital integrals

∫

Mv\Gv

fv(g
−1
(
a 0

0 1

)
g) dg

vanish identically; and

(iii) for corresponding tori Tv and T ′
v and t ∼ t′,

∫

Tv\Gv

fv(g
−1tg) dg =

∫

T ′

v\G′

v

f ′
v(g

−1t′g) d′g.

N.B. The Haar measures on Gv and G′
v are (simultaneously) normalized by way

of the Tamagawa measures recalled above; the measures on Tv and T ′
v are fixed by

a choice of Haar measure on Lv.

Fact 1 (Local Harmonic Analysis on G). Given any f ′
v in C∞

c (Z ′
v\G′

v), there exist

(infinitely many . . . ) fv in C∞
c (Zv\Gv) which match f ′

v in the above sense.

This crucial fact can be proved using a characterization of the orbital integrals

on GL2 à la “Shalika germs”; see §6 of [La2]

Using Fact 1, we can relate Tamagawa numbers to traces, and then prove The-

orem 1.1.
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Proposition 1.3. Let SD denote the set of v in F ramified in D. Given f ′ =∏
v f

′
v in C∞

c (Z ′(A)\G′(A)), suppose f =
∏
fv in C∞

c (Z(A)\G(A)) is such that for
all v in SD, fv ∼ f ′

v (in the sense of Definition 1.2 ), and for all v /∈ SD, fv = f ′
v

(via the natural isomorphism of Gv and G′
v). (In this case, we say f “globally

matches” f ′, and write f ∼ f ′). Then

(1.4) trR0(f) − trR′
0(f

′) = {τ(g) − τ(G′)}
(
f(1) +

∑

µ2=1

µ(f)
)
,

with R′
0 the representation of G′(A) in the subspace of L2(Z(A)G′(F )\G′(A)) or-

thogonal to all one-dimensional invariant subspaces.

Assuming this proposition (for the moment), we give the:

Proof of Theorem 1.1. If we rewrite (1.4) as

(1.5) trR0(f) − trR′
0(f

′) − {τ(G) − τ(G′)}
∑

µ2=1

µ(f) = {τ(G) − τ(G′)}(f(1),

then it clearly suffices to prove that both sides of this equation—valid for all f ∼ f ′

as above—equal zero. For this, we follow an argument first explicitly introduced

by Langlands in [La2].

Fix a place v0 outside SD, and consider the Hecke algebra Hv0(Gv0 ,Kv0). If we
fix all components of

f ′ =
∏

v

f ′
v

except the v0-component, which we let vary through Hv0 , then (1.5) reads

(1.6)
∑

j

cj tr(πj)v0(fv0) −
∑

µ2=1

cµµv0(fv0) = c0{τ(G) − τ(G′)}fv0(1),

where the πjv0 (and µv0) are unramified unitary representations of Gv0 . But the

distribution fv0 → fv0(1) is given in terms of tr πv0(fv0) (for all unramified tem-
pered πv0 ) by integration against Plancherel’s measure, which is continuous in the

obvious sense. Similarly, the left-hand side of (1.6) defines a discrete measure (on

this same unramified dual). Thus it follows from (the uniqueness part of) the Riesz

representation theorem for measures that both sides of (1.6) must be zero. �

Corollary (of Proposition 1.3 and the Proof of Theorem 1.1). For match-

ing f and f ′ on G(A) and G′(A),

trR0(f) = trR′
0(f

′),

where R′
0 is the representation of G′(A) in the subspace of L2(Z(A)G′(F )\G′(A))

orthogonal to all one-dimensional invariant subspaces.

It remains now to complete the:
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Proof of Proposition 1.3. Because |SD| ≥ 2, our assumption on f (that it matches

f ′) implies that fv has vanishing (regular) hyperbolic orbital integrals for at least
two places v1 and v2. Thus by Proposition 2.1 of the last lecture (Lecture V)

(1.7) trR0(f) = m(Z(A)G(F )\G(A))f(1)

+
∑

γ regular
elliptic

m(Z(A)Gγ(F )\Gγ(A)

∫

Gγ(A)\Gγ(A)

f(x−1γx) dx

−
∑

µ2=1

µ(f)m(Z(A)G(F )\G(A)).

On the other hand, for G′, the trace formula for compact quotient in Lecture I
implies

trR′
0(f

′) = m(Z(A)G′(F )\G(A))f ′(1)

+
∑

{γ}inZ′(F )\G′(F )

m(Z(A)G′
γ(F )\G′

γ(A)

∫

G′

γ(A)\G′(A)

f ′(x−1γx) dx

−
∑

µ2=1

µ(f ′)m(Z(A)G′(F )\G′(A))

So to prove the proposition, it remains to check that: (i) the regular elliptic orbital

integral terms match up on G and G′; and (ii) µ(f) = µ(f ′) for each character µ.

As for (i), let {L} run through a set of representatives for the classes of quadratic
extensions L of F which don’t split at any v ∈ SD. Then each integral

m(Z(A)Gγ(F )\G(A))

∫

Gγ(A)\G(A)

f(x−1γx) dx

in (1.7) is of the form

(*) m(AxLx\Lx(A))

∫

Lx(A)\G(A)

f(g−1γg) dg

for some γ 6= 1 in F x\Lx. (Note that if γ belongs to a quadratic extension L which

splits at some v ∈ SD, then our hypothesis on f implies

∫

TLv\Gv

f(g−1
v γgv) dgv = 0,

i.e., the orbital integrals for such γ don’t appear in the expression for trR0(f).) On

the other hand, each regular orbital integral

m(Z(A)G′
γ(A)\G′

γ(A))

∫

G′

γ(A)\G′(A)

f ′(x−1γx) dx

appearing in the expression for trR′
0(f

′) is also of the form (*), since quadratic L
which don’t split at v ∈ SD are precisely the quadratic extensions of F embeddable

in D. Thus the regular elliptic orbital integrals indeed match up term by term.
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As for (ii), let us verify that

µv(fv) = µv(f
′
v)

for each place v of F . For v /∈ SD this is a tautology. So let us assume v ∈ SD. By
Weyl’s integration formula for Z ′

v\G′
v we compute

µv(f
′
v)

∼=
∫

Zv\G′

v

f ′
v(g)µv(det g) dg

=
∑

{Lv}

1
2

∫

Zv\T ′

Lv

δ(t)µ(det t)
(∫

T ′

Lv
\G′

v

f ′
v(g

−1tg) dg
)
dtv

where {Lv} indexes the Cartan subgroup T ′
Lv

, and

δ(t) =
∣∣∣

(a1 − a2)
2

a1a2

∣∣∣

if t has eigenvalues a1 and a2. But because fv matches f ′
v, this last sum equals

∑

{Lv}

1
2

∫

Zv\TLv

δ(t)µ(det t)
(∫

TLv\Gv

fv(g
−1tg) dg

)
dtv =

∫

Zv\Gv

fv(g)µv(g) dg

(since the orbital integrals of fv vanish off the elliptic Cartans). Thus µv(f
′
v) =

µ(fv), as required, and the proof of Proposition 1.3 (and hence Theorem 1.1) is

complete. �

2. The Jacquet–Langlands Correspondence. Let A0(G) denote the collection

of irreducible invariant subspaces Vπ of R0(g) in L2
0(Z(A)G(F )\G(A)). According

to the “multiplicity one” result of [JL], proved only using the theory of Whittaker

models, each irreducible unitary representation

π = ⊗πv

of G(A) is realizable at most once in L2
0. Thus the (distinct) spaces Vπ in A0(G)

may be confused with the set of (classes of) irreducible automorphic cuspidal repre-

sentations of GL(2). Moreover, “strong multiplicity one” (proved using “only” the

theory of L-functions) implies that Vπ = Vπ′ as soon as πv and π′
v are equivalent

for almost all v.

Now consider the group G′ = Dx, and the collection A0(G
′) of irreducibly invari-

ant subspaces of R′
0(g) acting in the subspace of L2(Z(A)G′(F )\G(A)) orthogonal

to all the one-dimensional invariant subspaces. Then the trace formula implies

that “multiplicity one” and “strong multiplicity one” hold in A0(G
′) as well (even

though Whittaker models disappear in this setting, and the theory of L-functions
cannot be developed à la Hecke . . . ). Indeed, this is a corollary of the following

Jacquet–Langlands correspondence between G′ and G:
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Theorem 2.1. There exists a 1–1 mapping

Vπ′ −→ Vπ

from A0(G
′) to A0(G), with the property that πv ≡ π′

v for all v /∈ SD; the image

consists of all those π in A0(G) with the property that πv is square-integrable

(mod Z) for all v ∈ SD.

Remark. A weaker form of this correspondence asserts the existence of a map
between the representations π′ and π above; i.e., to each π′ on G′ realizable in

some G′ on A0(G) there exists a π in A0(G) such that π′
v ≡ πv for all v /∈ SD. As

noted in Lecture I, this can be proved using L-functions but the argument does not

yield a characterization of the image, nor the multiplicity one results for G′.
The trace formula proof of Theorem 2.1 starts from the basic identity

trR0(f) = trR′
0(f

′)

valid for matching f and f ′; see the Corollary to the proof of Theorem 1.1 in the

preceding section. Equivalently, and more suggestively,

(2.2)
∑

π∈A0(G)

tr π(f) =
∑

π′∈A′

0(G)

tr π′(f ′).

To extract the desired bijection between Vπ′ and π from the identity (2.2) we need

to refine this identity to one of the following type:

Fix any finite set S of places of F containing SD and the archimedean places,

and for each v /∈ S, fix a given representation π0
v which is unramified; then

(2.3)
∑

Vπ

∏

v∈S
tr πv(fv) =

∑

Vπ′

∏

v∈S
trπ′

v(f
′
v),

with fv ∼ f ′
v, and the sums taken over all Vπ in A0(G) (resp. Vπ′ in A0(G)) such

that πv (resp. π′
v) is isomorphic to π0

v for all v /∈ S. Note that by strong multiplicity

one for GL(2), the left-hand side of (2.3) contains at most one term.
Assuming the truth of (2.3), let us explain the slick fashion in which Theorem 2.1

can be proved. Suppose first that no Vπ in A0(G) corresponds to a given Vπ′ in

A′
0(G

′). Then (2.3) (with S the set of places outside of which D and π′
v are p-adic

and unramified, and π0
v = π′

v for v /∈ S) implies that the left-hand side of (2.3) is

zero. Thus we also have

(2.4)
∑

tr π′
S(f ′

S) = 0,

where

π′
S = ⊗

v∈S
π′
v, f ′

S =
∏

v∈S
f ′
v

is arbitrary in C∞
c (ZS(A)\G′

S(A)), and the sum is over all elements of A′
0(G

′) (like,

for example, Vπ′) such that (π)v ∼= π0
v for v /∈ S. But (2.4) contradicts a well-known

result of local harmonic analysis known as “linear independence of characters” (see

Lemma 16.1.1 of [JL] or Lemma 5.11 of [Ro1]).
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Similarly, we can begin to characterize the image of this correspondence Vπ′ → π.

Indeed, suppose π = ⊗πv is in the image of this correspondence, but πv is not
square-integrable for some v0 in SD. Then it follows

tr πv0(fv0) = 0,

since πv0 would then be induced, and fvo ∼ f ′
v0 implies that fv0 has vanishing

hyperbolic integrals. Thus the left-hand side of (2.3) would vanish, leading to the

same contradiction as above.

To complete the characterization of the image, we need to recall some facts

about the square-integrable representations of Gv and G′
v. In particular, let 〈 , 〉e

denote the inner product for the space of class functions on the set of regular elliptic

elements of Zv\Gv or Zv\G′
v defined by

〈f1, f2〉e =
∑

Tv

1
2

∫

Zv\T reg
v

δ(t)f1(t)f2(t) dt,

the sum extending over the conjugacy classes of compact tori of Gv (conveniently

confused with those of G′
v). For G′

v, the Peter–Weyl theorem and the Weyl integra-

tion formula imply that the characters of the irreducible representations of Zv\G′
v

comprise a complete orthonormal set with respect to 〈 , 〉e. On the other hand,

for Gv the so-called “orthogonality relations for square integrable representations”

imply that the characters of the square-integrable irreducible representations of

Zv\Gv comprise at least an orthonormal set with respect to 〈 , 〉e Thus, given

any square-integrable representation πv on Gv, v ∈ SD, we can determine an irre-
ducible π′′

v on G′
v by the condition

〈χπv , χπ′′

v
〉e = aπv 6= 0;

we also fix f ′
v in C∞

c (Zv\G′
v) such that

tr π′
v(f

′
v) =

{
1 if π′

v
∼= π′′

v ;

0 otherwise.

Namely, we take f ′
v = χπ′′

v
.

So suppose now that π in A0(G) is such that πv is square-integrable for each

v ∈ SD. Then the trace formula identity (2.3) implies that

(2.5)
∏

v∈S
aπv =

∑

Vπ′

1,

with the sum taken over Vπ′ in A′
0(G) such that π′

v ≃ π′′
v for v in S, and π′

v ≃ πv
for v /∈ S. Indeed, for v ∈ S,

trπv(fv) =

∫

Zv\Gv

f(g)χπv(g) dg

=
∑

{Tv}

1
2

∫

Zv\T reg
v

δ(t)χπv (t)Φt(f) dt

=
∑

1
2

∫
δ(t)χπv (t)Φt(f

′
v) dt

= 〈χπv , χπ′′

v
〉e = aπv ,

with

Φt(f
′
v) =

∫

Tv\Gv

fv(g
−1tg) dg =

∫

Tv\G′

v

f ′
v(g

−1tg) dg = Φt(f
′
v).
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Claim. The sum on the right side of (2.5) has exactly one term in it.

Indeed, if there were none, the left-hand side of (2.5) would be zero (which is

impossible by our assumption in aπv , whereas as if there were two or more terms,
we would have ∏

|aπv | ≥ 2

(again impossible, since each |aπv | = |〈χπv , χπ′′

v
〉e| ≤ ‖χπv‖e‖χπ′′

v
‖e ≤ 1). Thus we

conclude there must be exactly one Vπ′ in A′
0(G

′) corresponding to π in A0(G),

and the theorem is finally proved.

2. Embedding of Local Discrete Series in Cusp Forms.

Theorem 2.1. Let V be any finite number of finite places of F , and πv a dis-

crete series representation of Zv\Gv for each v in V . Then there exists a cuspidal

automorphic representation π of G(A) such that πv = (π)v for each v in V .

Proof. We can assume that for at least one place v1 ∈ V , πv1 is actually supercusp-
idal (by adding such a pair (v1, πv1) into the collection {v, πv} if necessary). Before

applying the simple trace formula of Deligne-Kazhdan to this situation, we need to

recall two important facts about local harmonic analysis on Gv.

For Gv non-archimedean, a function fv in C∞
c (Zv\Gv) is called a pseudo-

matrix coefficient for the discrete series representation πv of Zv\Gv if tr πv(fv) =
1, but tr τv(fv) = 0 for any tempered irreducible admissible representation τv not

equivalent to πv. That such pseudo-matrix coefficients exist in the generality of a

general reductive G is a theorem of Bernstein, Deligne and Kazhdan (see [BDK],

[Clo] [BDKV]). Moreover, one knows that for such functions fv and γ (regular)
elliptic in Gv,

Φγ(fv) =

∫

Tv\Gv

fv(x
−1γx) dx = cχπv(γ)

for a non-zero constant c. In particular, the orbital integral Φγ(fv) is not identically
zero (since χπv 6≡ 0 on the regular elliptic elements; see [Clo]).

Remark. Suppose πv is supercuspidal, and we denote one of its matrix coefficients
suitably normalized by fv(g). Then fv belongs to C∞

c (Zv\Gv),
tr πv(fv) = 1, and

tr τv(fv) = 0

for any irreducible admissible τv not equivalent to πv. Thus the terminology pseudo-

matrix coefficient is indeed apt.

Now given V and {πv} as in the hypothesis of Theorem 2.1, fix

f =
∏

v

fv in C∞
c (Z(A)\G(A))

such that (a) for each v ∈ V , fv is a pseudo-matrix coefficient; and (b) for a fixed

finite place v2 outside V , fv2 is supported on the regular elliptic set of Gv2 . Then
by the simple trace formula of Deligne-Kazhdan, for such f ,

(2.2)
∑

π

tr π(f) =
∑

γ

mγΦγ(f),
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where the sum on the left is over the cuspidal automorphic π on Z(A)\G(A) such

that (π)v ∼= πv for each v ∈ V , and the right-hand side is summed over the regular
elliptic conjugacy classes in Z(F )\G(F ). Thus to prove Theorem 2.1, it suffices to

prove that this right-hand side (and hence the left-hand side) does not vanish for a

particular special choice of such f .

Equivalently, write

Φγ(f) =
∏

v

Φγ(fv),

a product of local orbital integrals. It will suffice then to choose f such that
Φγ(f) 6= 0 for a particular elliptic regular γ0, but is zero for all other γ.

To this end, first choose γ0 and fv2 (still assumed to have support in the regular

elliptic set) such that

Φγ0(fv) 6= 0 for each v in V ∪ {v2}.

(Recall that for each pseudo-matrix coefficient, Φγ(fv) = cχπv(γ) is not identically
zero on the elliptic regular set of Gv . . . .) This particular choice of γ0 will intersect

the maximal compact Kv of Gv for almost all finite places outside V ∪{v2}. Let us

denote this (infinite) set of places by V ∗, and for each v in V ∗ set fv equal to the

unit element of Hv = H(Gv,Kv). Finally, choose fv at the remaining finite places

(outside V ∪ {v2} ∪ V ∗) to be such that Φγ0(fv) 6= 0.
With this refined choice of f =

∏
fv (still arbitrary at the infinite places!) it is

clear that

(2.3) Φγ(f) 6= 0

for some elliptic regular γ only if the coefficients of the characteristic polynomial

of γ are v-integral for each v in V ∗, i.e. are rational with uniformly bounded
denominator. But such rational numbers lie in a lattice of F . Thus we can choose

fv at the archimedean places to have support so small near γ0 as to intersect the

conjugacy class of no other γ satisfying (2.3). With this choice of f =
∏
fv,

Φγ(f) 6= 0 if and only if γ = γ0, and the proof is complete. �

Concluding Remark. Crucial to our argument was the fact that the pseudo-

matrix coefficients fv, v ∈ V , eliminated from (2.2) all cuspidal τ = ⊗τv with

τv not equivalent to πv for v in V . This worked in our case since the only non-

tempered τv which might satisfy tr τv(fv) 6= 0 is the trivial representation (when

πv is the Steinberg representation), and such a representation can never occur as
a local component of a cusp form on GL(2). In general, an additional argument

is necessary, involving some kind of limit-multiplicity argument (due to de George-

Wallach); see [Ro1] or Appendix 3 of [BDKV].
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Lecture VII. (G,M)-Families and the Spectral Jχ(f)

The transition from Arthur’s first (“coarse”) form of the trace formula to a more
explicit (“fine”) expansion results from formal operations on collections of functions

called (G,M)-families, operations which pervade the “fine o-expansion” as well as

the “fine χ-expansion”.

The purpose of this lecture is to describe some basic examples and properties

of (G,M)-families, and to explain the pivotal role they play, especially in making
explicit the spectral ramified terms Jχ(f).

1. Definitions and Basic Examples. Fix a Levi subgroupM ofG, and let P(M)

denote the set of not necessarily standard parabolic subgroups of G for which M is
the Levi component.

Definition 1.1.

Suppose that for each P in P(M), cP (Λ) is a smooth function on ia∗M . Then the
collection

{cP (Λ): P ∈ P(M)}

is called a (G,M)-family if the following condition holds: if P and P ′ are adjacent

groups in P(M), and Λ belongs to the hyperplane spanned by the common wall of

the chambers of P and P ′, then

(*) cP (Λ) = cP ′(Λ).

Remark 1.2. The compatibility condition (*) here is equivalent to the property

that whenever P and P ′ are elements of P(M) contained in a given parabolic

subgroup Q, and Λ belongs to ia∗Q, then

cP (Λ) = cP ′(Λ).

In particular, let
F(M)

denote the parabolic subgroups of G whose Levi components contain M ; then for
each Q in F(M) one may define a smooth function cQ(λ) on ia∗Q ⊂ ia∗P through

the formula

cQ(Λ) = cP (Λ).

for any parabolic P in P(M) contained in Q.
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Example 1.3. Let {XP : P ∈ P(M)} be a collection of points in aM with the

property that for each pair (P, P ′) of adjacent groups in P(M), XP −XP ′ is per-
pendicular to the hyperplane spanned by the common wall of the chambers of P

and P ′; pictorially:




Xp'

Xp

Figure 3

Then the resulting family of functions

cP (Λ) = eΛ(XP )

on ia∗M is a (G,M)-family. Indeed for Λ on such a hyperplane,

cP (Λ)

cP ′(Λ)
= eΛ(XP −XP ′) = 1.

Remark 1.4. The similarity here with Figure 2 of Lecture IV is not coincidental.

Indeed, for any fixed x in G(A), the points

{−HP (x) : P ∈ P(M)}

comprise an “orthogonal family” of points as depicted in the figure above; this

is proved in Lemma 3.6 of [A8], where such “AM -orthogonal” families of points

were first introduced. (N.B. A collection of points {XP } in aM comprises an AM -

orthogonal family if an only if XP −XP ′ is a multiple of the coroot associated to

the unique root in ∆P ∩ −∆P ′).)

Remark 1.5. If L is any Levi subgroup of G containing M , the more general

notion of an (L,M)-family is defined exactly as above: for each P in PL(M) (the

parabolic subgroups of L with Levi component M), cP (λ) is smooth on ia∗M , and

if P ′ in PL(M) is adjacent to P , then cP and cP ′ agree on the wall between the
corresponding adjacent chambers.

For the next Lemma, we need to recall a function θP (Λ) defined on ia∗M by

θP (Λ) = (aP )−1
∏

α∈∆P

Λ(α∨),

where aP is the covolume of a certain coroot lattice. (Again, there is the more

general notion of θQP for any parabolic Q ⊃ P . . . .)
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Lemma 1.6. For any (G,M)-family {cP (Λ): P ∈ P(M)}, the function

cM (Λ) =
∑

P∈P(M)

cP (Λ)θP (Λ)−1,

initially defined away from the hyperplanes Λ(α∨) = 0, extends to a smooth function

on ia∗M .

Proof. The only possible singularities along Λ(α∨) = 0 occur in terms correspond-

ing to those P for which α or −α is a simple root. But such groups occur in pairs

of adjacent P , P ′, where cP and cP ′ agree. I.e., the contribution of these P ’s to
cM (Λ) is

cP (Λ)

θP (Λ)
+
cP ′(Λ)

θP ′(Λ)
,

where the numerators are equal, and the denominators appear as negatives of one

another; thus the singularities cancel. �

Remark. The functions cM (Λ) arise naturally as the weight functions of the
weighted orbital integrals described in Lecture IV. Indeed, consider the (G,M)-

family

{cP (Λ) = eΛ(XP );XP = −HP (x)}
recalled above. In [A8] it was shown that the function

cM (Λ) =
∑

P∈P(M)

eΛ(XP )θP (Λ)−1

equals the Fourier transform of the characteristic function of the convex hull of the

points XP (pictured in Figure 3 above). Thus it follows (without appealing to the

more general Lemma 1.6 above) that cM (Λ) is a smooth function on ia∗M (being
the Fourier transform of a compactly supported function). In particular, cM (0)

is defined, and equal to the volume of this convex hull, namely the weight

function vM (x).

It turns out that (G,M)-families pervade even more extensively the spectral
terms Jχ(f). Here, as we shall explain below, (G,M) families arise which are

products of families of the above (geometric) type, with (G,M)-families defined

in terms of intertwining operators.

2. Motivation and Examples Arising from the Spectral Distributions

JTχ (f). Recall (from Lecture III) that

JTχ (f) =

∫

Z(A)G(F )\G(A)

ΛT2Kχ(x, x) dx,

with

Kχ(x, y) =
∑

P

1

n(AP )

∑

σ

∫

ia∗

P /ia
∗

G

∑

φ

E(x, ρ(σ, λ)(f)φ, λ)E(y, φ, λ) dλ.
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Here P = MPNP runs over the “associated” parabolics of G, φ runs thru a K-finite

basis for ρ(σ, λ), and σ runs through (classes of) irreducible unitary representations

of MP (A) such that functions in Ind
G(A)
P (A) σ belong to L2(P )χ.

Formally then,

JTχ (f) =
∑

P

∑

σ

∫

ia∗

P /ia
∗

G

ΨT
σ (λ, f, P ) dλ,

where

ΨT
σ (λ, f, P ) =

1

n(AP )
tr(ΩTχ,σ(P, λ)ρ(σ, λ)(f)),

and

(ΩTχ,σ(P, λ)φ
′, φ) =

∫

Z(A)G(F )\G(A)

ΛTE(x, φ′, λ)ΛTE(x, φ, λ) dx.

But according to the inner product formula for truncated Eisenstein series, this

operator ΩTχ,σ(P, λ) equals the value at λ′ = λ of

(2.1)
∑

P1

∑

t,t′ in
W (aP ,aP1

)

MP1|P (t, λ)−1MP1|P (t′, λ′)
e(t

′λ′−tλ)(T )

θP1
(t′λ′ − tλ)

.

Here MP1|P (t, λ) is the intertwining operator defined on Ind(σ, λ) by

∫

NP1
(A)∩wtNP (A)w−1

t \NP1
(A)

φ(w−1
t nx) dx

(initially for λ with large real part, then for any λ by analytic continuation). Denote

by ωTχ,σ(P, λ) the value of the operator defined in (2.1) at λ′ = λ. Actually, for

P /∈ Pχ, the operators ΩTχ,σ(P, λ) and ωTχ,σ(P, λ) are only asymptotically equal

(for large T ); this is the thrust of [A9].

Claim.

(2.2) tr(ωTχ,σ(P, λ)ρ(σ, λ)(f))

may be evaluated by setting λ′ = λ in the sum over s ∈ W (aP , aP ) of

tr(
∑

Q∈P(M)

cQ(Λ)dQ(Λ)θQ(Λ)−1ρ(σ, λ)(f)),

where Λ = Λs = sλ′ − λ, and cQ and dQ are two (G,M) families to be described

below.

To see this, rewrite the expression (2.1) as

∑

s∈WP =
W (aP ,aP )

∑

P1

∑

t∈W (aP ,aP1
)

MP1|P (t, λ)−1MP1|P (ts, λ′)
e(t(sλ

′−λ))(T )

θP1
(t(sλ′ − λ))

.
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For any P1 and t ∈ W (aP , aP1
), set Q = w−1

t P1wt for any representative wt of t in

G(F ). Then
(P1, t) ↔ Q

is a bijection between pairs which occurs in the sum above and groups Q ∈ P(M).

It can also be checked that θP1
(t(sλ′ − λ)) = θQ(sλ′ − λ); moreover,

MP1|P (t, λ)−1MP1|P (ts, λ′)e(t(sλ
′−λ))(T ) = MQ|P (λ)−1MQ|P (s, λ′)e(sλ

′−λ)YQ(T ),

where MQ|P (λ) = MQ|P (1, λ), and

YQ(T ) = t−1T

(or rather the projection of this point onto aM ). Thus the expression (2.1) indeed

equals the value at λ′ = λ of the sum over s in W (aP , aP ) of

∑

Q∈P(M)

cQ(Λ)dQ(Λ)θQ(Λ)−1

with

(2.3) cQ(Λ) = eΛ(YQ(T )),

Λ = sλ′ − λ,

and

(2.4) dQ(Λ) = (MQ|P (λ)−1MQ|P (s, λ′)).

Remark 2.5. Below we shall see that {cQ(Λ)} and {dQ(Λ)} both define (G,M)-

families. Thus the product

{e(Λ) = c(Λ)d(A)}

is also a (G,M)-family, and the corresponding function

eM (Λ) =
∑

Q∈P(M)

cQ(Λ)dQ(Λ)θQ(Λ)−1

is smooth on ia∗M . In particular, the expression (2.2) may indeed be evaluated at

λ′ = λ (which corresponds to evaluating eM (Λ) at Λ = sλ− λ).

Remark 2.6. In (2.3) and (2.4), set λ′ = ζ + λ in ia∗M , and s = the identity.

Then the value of eM (Λ) at λ′ = λ corresponds to the (operator) expression

val
λ′=λ

∑

Q∈P(M)

eΛ(YQ(T ))MQ|P (λ)−1MQ|P (λ′)

θQ(ζ)

= lim
ζ→0

∑

P1

∑

w∈W (aP ,aP1
)

ewζ(T )M(w, λ)−1M(w, λ+ ζ)∏
α∈∆P1

(wζ)(α∨)
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This is precisely the operator we denoted by MT
P (σ)χ in Proposition 3.9 of Lec-

ture IV. Thus the “weight function” MT
P (σ)χ appearing in the weighted character

expression for the unramified spectral term JTχ (f) in Proposition 3.9 is indeed

realizable as a special value of eM (Λ) for an appropriate (G,M)-family eP .

N.B. As we observed in the case of GL(2) (in §2 of Lecture IV), the expression

for JTχ (f) simplifies considerably for unramified spectral data χ, since the sum

over t, t′ in W (aP , aP1
) in (2.1) need only be taken over t = t′, i.e., only the term

corresponding to s = 1 really appears in the expression for (2.2), and we indeed

have

JTχ (f) =
∑

P∈Pχ

∑

σ

1

n(AP )

∫

ia∗

P /ia
∗

G

tr(MT
P (σ)χρ(σ, λ)) dλ

as asserted in Proposition 3.9 of Lecture IV.

Proposition 2.7. Both cQ(Λ) and dQ(Λ) define (G,M)-families.

Proof. We have to show that if Q and Q′ are adjacent in P(M), then

YQ(T ) − YQ′(T )

is perpendicular to the hyperplane in ia∗M spanned by the wall common to the

chambers of Q and Q′. Recall that for any Q in P(M), YQ(T ) = t−1T if Q =

w−1
t P1wt for some fixed P1 ∈ P(M). But ifQ′ is adjacent toQ, then Q′ = w−1

t′ P1wt′

with t′ = sαt, and sα the simple reflection corresponding to an α ∈ ∆P0
. Therefore

YQ(T ) − YQ′(T ) = t−1(T − s−1
α T ), which is a multiple of t−1α∨ (see footnote1

below). But s−1α∨ = β∨, where β∨ is the unique root in ∆Q ∩ (−∆Q′). Thus

YQ(T ) − YQ′(T ) is perpendicular to the hyperplane between Q and Q′. �

As for dQ(Λ), we recall the standard functional equation

MQ′|P (s, λ) = MQ′|Q(1, sλ)MQ′|P (s, λ),

valid for s ∈ W (aM , aM ) and Q ∈ P(M) (see equation (1.2) of [A8]). Using it gives

dQ′(Λ) = MQ′|P (λ)−1MQ′|P (s, λ′)

= MQ|P (λ)−1MQ′|Q(λ)−1MQ′|Q(sλ′)MQ|P (s, λ′).

So it remains to show that for Λ belonging to the hyperplane common to Q′ and Q,

MQ′|Q(λ)−1MQ′|Q(sλ′) = I.

For this, see §§1 and 2 of [A8].

1Formally, α∨ = 2α/(α, α), and s−1
α = T − 2(T, α)/(α, α) α. Therefore, for any β, (β, T −

s−1
α (T )) = (β, T )−(β, T )+2(T, α)/(α, α) (β, α) = (T, α)(β, α∨), i.e., T −s−1

α T is indeed a multiple
of α∨.
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3. A Splitting Formula for Products of (G,M)-families. In the last section,

we explained how JTχ (f) is expressed in terms of integrals of special values of the
functions eM (Λ), where eP = cP (Λ)dP (Λ) is the product of two (G,M)-families.

The result below is crucial in completing the evaluation of these integrals.

Proposition 3.1 (see Lemma 6.3 of [A4]). In general,

(cd)M (Λ) =
∑

Q∈F(M)

cQM (Λ)d′Q(Λ),

where F(M) denotes the set of parabolics of G whose Levi component contains (but

does not necessarily equal) M .

We will not prove this proposition, since the reader can find it in [A4]. But

we shall at least define the terms cQM and d′Q appearing here, and explain their

significance.
Given any (G,M)-family {cP (Λ)}, and a parabolic Q containing some P in

P(M), how first do we define the function cQ?

Since ia∗Q ⊂ ia∗P , it is tempting to simply set

cQ(Λ) = cP (ΛQ)

with ΛQ the projection of Λ onto ia∗Q. But is this well-defined? If P ′ is another

element of P(M) contained in Q, we must check that

cP ′(Λ) = cP (Λ)

as soon as λ ∈ ia∗Q. But we have already remarked that the compatibility condition

on the (G,M)-family {cP } implies this is the case (Exercise!), and thus cQ is well-

defined on ia∗Q.

Now for any pair of parabolics Q ⊂ R, define

θ̂RQ(Λ) = (âRQ)−1
∏

w̃∈∆̂R
Q

Λ(w̃∨),

with w̃∨ in aRQ defined by

α(w̃∨) = w̃(α∨), α ∈ ∆R
Q

(and the constant âRQ the covolume of a certain lattice . . . ). Then the functions

c′Q(Λ), Q ⊃ P

are defined (initially on the complement of a finite set of hyperplanes in ia∗P ) by

c′Q(Λ) =
∑

{R : R⊃Q}
(−1)dim(AQ|AR)θ̂RQ(Λ)−1cR(Λ)θR(Λ)−1.

In Lemma 6.1 of [A4], it is shown that these functions extend to smooth functions

on all of ia∗P .
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Now that the functions d′Q in Proposition 3.1 are defined, there remains the

simpler task of defining the cQM (Λ); these are just the cM functions (1.5) derived

from the following (L,M)-families of functions {cQR(Λ)}.
Fix Q arbitrary in F(M), and let L = LQ denote its Levi component. By PL(M)

we denote the set of parabolic subgroups of L whose Levi component is M , and
for each R ∈ PL(M), we set Q(R) equal to the unique group in P(M) which is

contained in Q and such that Q(R)∩L = R. Then the resulting family of functions

{cQR(Λ) = cQ(R)(Λ): R ∈ PL(M)}

comprises an (L,M)-family, and the functions cQM (Λ) appearing in Proposition 3.1

are the corresponding cM -functions

cQM (Λ) =
∑

R∈PL(M)

cQR(Λ)θQR(Λ)−1.

4. GL(2) Revisited. Although we already discussed (in Lecture IV) the evaluation

of JTχ (f) in this case, we wish to return to this calculation now from the more general

standpoint of Arthur’s theory.

According to the discussion in Section 2 above, JTχ (f) is given by the polynomial

(4.1)
∑

P

∫

ia∗

P \ia∗

G

∑

σ

∑

s∈W (aP )

{ val

λ = λ′ tr(eM (Λ)ρ(σ, λ)(f))
}
dλ,

where e(Λ) is the (G,M)-family given by the product of the family of functions

(2.3) and (2.4). When P = B (the Borel subgroup), we have

λ =
( it

2
,
−it
2

)

and

λ′ =
( it′

2
,
−it′
2

)
,

with t′ = t+ ζ and Λ = sλ′ − λ.

For χ = {(M,µ)}, the contribution from the term s = 1 reduces to

(4.2)∫

R

tr

(
lim
ζ→0

{eiζ(T1−T2)/2

iζ
+
e−iζ(T1−T2)/2M(w, it)−1M(w, i(t+ ζ))

−iζ
}
ρ(µ, it)(f)

)
dt

Indeed, the two elements of P(M) are just B and B̄ (the subgroup wBw−1 opposite

to B), and so

eM (Λ) = eB(Λ)θB(Λ)−1 + eB̄(Λ)θB(Λ)−1

=
cB(Λ)dB(Λ)

iζ
+
cB̄(Λ)dB̄(Λ)

−iζ .
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But (2.3) clearly implies that

cB(Λ) = eΛ(T ) = eiζ(T1−T2)/2

and

cB̄(Λ) = e−Λ(T ) = e−iζ(T1−T2)/2.

Also MB|B(1, λ) = I, so dB(Λ) = I, and it remains only to compute dB̄(Λ). For

this, let Tw denote the linear transformation φ(x) −→ φ(wx) taking IndB̄ σ
w | |wλ

to IndB σ | |λ. Then it is straightforward to check that

dB̄(Λ) = MB̄|B(λ)−1MB̄|B(1, λ′)

= (TwM(w, λ))−1(TwM(w, λ′))

= M(w, it)−1M(w, i(t+ t′)),

and thus (4.2) holds. To continue, there is no need to appeal to the fact that the

expression in brackets in (4.2) comes from the (G,M)-family {eP }. Instead, one

can just compute the limit in question to be

(T1 − T2) +M(−it)M ′(it),

and hence the contribution to JTχ (f) (from s = 1) to be

(T1 − T2)

∫ ∞

=∞
tr(ρ(µ, it)(f) dt+

∫ ∞

=∞
tr(M(−it)M ′(it)ρ(µ, it)(f) dt.

This of course agrees with formula (2.5) of Lecture IV, and for χ unramified, it

accounts for all of JTχ (f).

Now let us concentrate on the more interesting contribution to (4.1), namely the
one corresponding to s = w. In this case, Λ = wλ′ − λ, and this equals (−it, it)
when λ′ = λ. So as above, we compute

cB(Λ) = eΛ(T ) = e−2it(T1−T2)

cB̄(Λ) = e−Λ(T ) = e2it(T1−T2)

dB(Λ) = M(w, λ′)

and

dB̄(Λ) = M(w, λ)−1.

In other words, for s = w
{

val

λ′ = λ tr(eM (Λ)ρ(σ, λ)(f)

}

= tr(M(w,−it)(ρ(µ, it)(f))
e2it(T1−T2)

2it
− tr(M(w, it)(ρ(µ, it)(f))

e−2it(T1−T2)

2it
.

This is exactly the expression (6.28) in [GJ]. But instead of evaluating its integral
over R using the simple manipulations of [GJ], let us instead appeal to the splitting

formula for eM (Λ).
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Lemma. For s = w

eM (Λ) = (cd)M = dB(0)
eΛ(T ) − e−Λ(T )

−2it

+
dB(Λ) − dB(0)

−2it
· eΛ(T )

+
dB̄(Λ) − dB(0)

2it
· e−Λ(T )

with e±Λ(T ) = e∓2it(T1−T2).

Proof. According to Proposition 3.1, we need to compute

cQM (Λ)d′Q(Λ)

for each Q ∈ F(M). So first fix Q = G. By definition, dG(Λ) = dB(0) = dB̄(0),

and then d′G(Λ) = dG(Λ). On the other hand, we compute (from the definition of

cQM ) that cGM (Λ) = cM (Λ). Thus the leading term of (cd)M(Λ) is indeed

dB(0)
eΛ(T ) − e−Λ(T )

−2it
,

as claimed.

Now fix Q = B. Then

d′B(0) =
dB(Λ) − dB(0)

−2it
,

while cBM (Λ) = cB(Λ). Indeed, in this case L = M and PL(M) = M ! Similarly

cB̄M (Λ)d′B̄(Λ) =
dB̄(Λ) − dB̄(0)

−2it
· cB̄(Λ),

and we’re done. �

Proposition. For T large, the contribution to JTχ (f) from (the Borel subgroup B

and) s = w is just

tr(dB(0)ρ(0, µ)(f)) = tr(M(0, µ)ρ(0, µ)(f));

in particular, only the leading term in (cd)M (Λ) contributes to JTχ (f).

Proof.

Let us suppose for the moment that JTχ (f) can be calculated by taking a com-

pactly supported Schwartz function B(t) with B(0) = 1, and then computing

JTχ (f) = lim
ε→0

lim
α(T )→∞

∫ ∞

−∞
tr(ωTχ (t)ρ(µ, it)(f))B(εt) dt.

By the last lemma, the contribution from s = w (and P = B) to

tr(ωTχ (t)ρ(µ, it)(f))
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is

{
e2it(T1−T2) − e−2it(T1−T2)

2it

}
tr(dB(0)ρ(µ, it)(f))

+ e−2it(T1−T2) tr((dB(Λ) − dB(0))ρ(µ, it)(f))

−2it

+ e2it(T1−T2)
tr((dB̄(Λ) − dB(0))ρ(µ, it)(f))

−2it
.

But for any real T ,

eiyT

iy
+
e−iyT

−iy =

∫ T

−T
eiyx dx

=

∫ ∞

∞
χT (x)e−iyx dx,

with χT the characteristic function of [−T, T ]. Thus we can write the contribution

of the leading term as

lim
ε→0

lim
α(T )→∞

{∫ ∞

−∞
χα(T )(x)

∫ ∞

−∞
e2itx tr(dB(0)ρ(µ, it)(f))B(εt) dt dx

}

= lim
ε→0

lim
α(T )→∞

{∫ ∞

−∞
χα(T )(x)F̂ε(x) dx

}

= lim
ε→0

{∫ ∞

−∞
F̂ε(x) dx

}
= lim

ε→0
Fε(0),

where

Fε(t) = tr(dB(0)ρ(µ, it)(f))B(εt)

= tr(M(0, µ)ρ(µ, 0)(f)) at t = 0,

since B(0) = 1. On the other hand, for the second (or third) term, the contribution

is

lim
ε→0

lim
α(T )→∞

∫ ∞

−∞
e∓2it(T1−T2)Fε(t) dt

where for each ε,

Fε(t) = tr

{
dB(t) − dB(0)ρ(µ, it)(f)

±2it

}
B(εt)

is a smooth Schwartz function on R, whose Fourier transform vanishes at infinity.

Thus the second and third terms contribute nothing to JTχ (f). �

Concluding Remarks. (1) In treating the GL(2) calculation of JTχ (f) from the

point of view of Arthur’s general theory, we have made a big mountain out of

a small mole hill. However, already for GL(3), there are compelling reasons for
appealing to the general theory—not just for using the splitting formula for products

of (G,M)-families, but also for exploiting the compactly supported function B in
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the calculation of Jχ(f). Indeed, without using this function B, there is the need to

directly establish the integrability of a function like tr(M(w, λ)ρ(σ, λ)(f)) (in order
to justify applying a Riemann-Lebesgue Lemma as T → ∞). In the case of GL(2),

this can be checked directly, but already for GL(3) the required estimates on the

growth of M(w, λ) are non-trivial (see Section 3 of [Ja1]), and in general they are

simply not available.

(2) It remains to prove that the above computation (with the insertion of the

“smoothing function” B(t)) is justified. This is precisely the goal of Arthur’s paper

[A7] and—we hope—part of the subject matter of Lecture IX.

(New) Reference

[Ja1] Jacquet, H., The continuous spectrum of the relative trace formula for GL(3) over a

quadratic extension, Israel Journal of Math. 89, 1–59.
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Lecture VIII. Jacquet’s Relative Trace Formula

In deriving Arthur’s trace formula

(*)
∑

o

JTo (f) =
∑

χ

JTχ (f),

we started by restricting the kernel functions

Kf(x, y) =
∑

o

Ko(x, y) =
∑

χ

Kχ(x, y)

to the diagonal subgroup.

Z(A)G(F )\G(A) × Z(A)G(F )\G(A).

Then after modifying these restricted kernels, we were able to integrate them and

obtain the formula (*). The term “trace formula” seemed apt because—at least for

cuspidal data χ = {(M, r)} with M = G, JTχ (f) actually represents the trace of

R(f) restricted to L2
χ.

The idea of Jacquet’s relative “trace formula” is to restrict the kernel functions

Kf (x, y) to interesting subgroups of the diagonal, and then integrate them against
possibly non-trivial automorphic forms on these subgroups. Although the re-

sulting integrals no longer represent the “trace” of anything, there results from this

new approach a dramatic array of interesting possible applications to automorphic

forms (See [JLR] and [Ja1] for a general discussion, and further references.)

In this lecture we shall concentrate on a particular example (cf. [Ye]) which

already shows the power of this method, and indicates how the further development

of the method is inextricably linked to the general theory developed by Arthur.

Even in our exposition of this simplest example, we are influenced by Jacquet’s
more general ideas (see [Ja1]); moreover, the approach to the computations in §4
is adapted from joint work with him and Rogawski on similar computations for

GL(3).

1. Description of a Base Change Theorem. Fix a quadratic extension E of

the number field F , and let ωE/F denote the corresponding quadratic character of
F ∗\AF . Let us call a cuspidal automorphic representation π of GL2(AF ) stable if

it is not of the form π(µ′) for any grossencharacter µ′ of E.
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Theorem (cf. [Ye]). Every stable cuspidal π on GL2(AF ), with central charac-

ter ωE/F , has a base change lift to a cuspidal representation πE of GL2(AE);
moreover, the resulting map

π −→ πE

is a bijection onto the cuspidal representations Π of GL2(AE) which (have trivial

central character and ) are distinguished with respect to GL2(F ), i.e., the “period”

(1.2)

∫

Z(A)GL2(F )\GL2(AF )

φ′(h) dh

is non-zero for some φ′ in the space of Π.

Remarks. (i) In [La2], Langlands established the existence of a base change lift

for GL2 for an arbitrary cyclic extension E of F , and in[AC] these results were

dramatically generalized to GLn. Both these works characterize the image of base
change in terms of the Galois invariance of the representations “upstairs”; this is

not surprising, since the proofs proceed from a comparison of the (“invariant”)

trace formula over F with the (Galois) “twisted” (“invariant”) trace formula over

E.

(ii) In [HLR] it is shown that an automorphic cuspidal representation Π of GL2(E)

(trivial on its center) is the base change lift of an automorphic cuspidal representa-

tion π of GL2(AF ) (with central character ωE/F ) if and only if Π is distinguished.

The argument there combines the base change result of [La2] with properties of
the so-called Asai L-function L(s,Π, Asai) (which has a pole at s = 1 if and only

if π is distinguished . . . ). (By contrast, the relative trace formula proof of Theo-

rem 1.1 (see below) makes no appeal to [La2].) The main thrust of [HLR] was to

study algebraic cycles on certain Shimura varieties attached to GL2 over E, whose
Hasse–Weil zeta functions are computable in terms of

L(s,Π,Asai).

It was precisely the desire to extend these results to the context of quaternion

algebras that led to the idea of the relative trace formula introduced in [JLai].

(iii) In [JLai], Jacquet and Lai used a comparison of relative trace formulas on

GL2 /E and the multiplicative groupG′ of a division quaternion algebra over E (the

relative subgroups of the diagonal being the F -diagonal subgroups) to prove that Π′

on G′/E is G′(F ) distinguished if and only if its Jacquet–Langlands correspondent
Π on GL2 /E is GL2(F ) distinguished. This was applied in [Lai2] to extend the

results of [HLR] to the case of certain compact Shimura varieties.

2. Outline of the Proof of Theorem 1.1. It is convenient to use the notationH

for the group GL2 over F , and G for the group ResEF GL2 ( so thatH(A) = GL2(AF )

and G(A) = GL2(AE)). By

f =
∏

fv
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we denote a test function in C∞
c (H(A), ωE/F ), where for almost every place v, fv

is the identity element of the local Hecke algebra H(Hv,K
H
v , ωv); similarly,

f ′ =
∏

f ′
v

belongs to C∞
c (Z(AE\G(AF )), with f ′

v almost everywhere the identity in

H(ZGv\Gv,KG
v ).

Corresponding to f there is the convolution operator

R(f) =

∫

Z(A)\H(A)

f(h)R(h) dh

in the space L2(H(F )\H(A), ω); it is an integral operator with kernel

Kf(x, y) =
∑

γ∈Z(F )\H(F )

f(x−1γy).

Similarly f ′ determines an integral operator R′(f ′) in L2(ZG(A)G(F )\G(A)) with

kernel

Kf ′(g1, g2) =
∑

γ∈ZG(F )\G(F )

f ′(g−1
1 γg2).

The proof of Theorem 1.1 will come from comparing certain “relative traces” asso-

ciated to these kernels, as we shall now explain.

Step I. Prove that for “matching” f and f ′,

(2.1)

∫∫

[N(F )\N(AF )]2
Kf(n1, n2)ψN (n−1

1 n2) dn1 dn2

=

∫

Z(A)H(F )\H(A)

∫

N ′(F )\N ′(AF )

Kf ′(n′, h)ψ′
N ′(n′) dn′dh.

Here N (resp. N ′) is the standard maximal unipotent of H (resp. G), and ψN
(resp. ψ′

N ) the corresponding character of N(F )\N(AF ) (resp. N ′(F )\N ′(AF ))

determined by a fixed additive character ψ (of F\A) (with ψ′ = ψ ◦ trE/F ).

Remarks. (i) A special feature of this particular relative trace formula approach is
the absolute convergence of the integrals on either side of the identity (2.1). On

the left hand side, this is clear from the compactness of the domains of integration;

for the right side, this follows from the fact that for sufficiently large T ,

∫

N ′(F )\N ′(A)

ΛT2Kf ′(n′, h)ψ′
N ′(n′) dn′

equals (as opposed to just approximates)

∫
Kf ′(n′, h)ψ′

N ′(n′) dn′.
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For a proof, see Proposition 2.1 of [Ja1].

(ii) At first sight, the equality in (2.1) seems surprising, since the double cosets

N\H/N and N ′\G/H

which arise on each side do not match up. However, it seems to be a general feature
of the relative trace formula that the “relevant” orbits—those which survive the rel-

ative integrations—do indeed match up. In the case at hand, it is the integration

against ψ which allows for the matching up of relevant orbits. Once this is estab-

lished, the assertion that (2.1) holds for matching f and f ′ reduces quickly to a
collection of purely local assertions: two local function fv and f ′

v are “matching”

if certain local relative orbital integrals (indexed by identical sets) are equal.

(iii) It is also crucial to prove a “fundamental lemma” asserting that this local

matching is compatible with the base change map BC ∗ between the Hecke algebras
of Kv and Gv. This map is dual to the natural base change morphism

BC : (g, σ) −→ (g, g, σ)

from LH = GL2(C) × Gal(E/F ) to LG = (GL2(C) × GL2(C)) ⋊ Gal(E/F ). In

particular, when f ′
v belongs to the Hecke algebra of Gv, the function fv in the

Hecke algebra of Hv defined by

(fv)
∨(t) = (f ′

v)
∨(BC(t))

will be a matching function to f ′
v. For proofs of these matching results, see [Ye]. For

more general results, and discussion of “relative fundamental lemmas”, see [Ja2],

[JaYe], [Mao], and [JLR].

Step II. Prove (again for these matching f and f ′) that the relative traces of the

continuous parts of the kernels Kf and Kf ′ cancel each other out.

To explain what this means, let us first write out the spectral expansion of Kf

in crude form:

Kf (x, y) = Kf, cont +Kf,sp +Kf,0,

where Kf,cont denotes the kernel of R(f) restricted to the continuous spectrum of

L2(H(F )\H(A), ωE/F ), and Kf,sp the kernel for the discrete non-cuspidal spec-

trum. Similarly,

Kf ′(g1, g2) = Kf ′,cont +Kf ′,sp +Kf ′,0.

A simple but key observation is that the sp-part of the kernel contributes nothing

to the relative trace. Indeed,

∫

[N(F )\N(AF )]2
Kf,sp(n1, n2)ψ(n−1

1 n2) dn1 dn2

= 0 =

∫

N ′(F )\N ′(A)

Kf ′,sp(n′, h)ψ′
N ′(n′) dn′,

since these parts of the spectrum are non-generic.
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Thus, if we can show that the continuous kernels contribute roughly equal relative

traces, we might then conclude

(2.2)

∫∫
Kf,0(n1, n2)ψN (n−1

1 n2) dn1 dn2 =

∫∫
Kf ′,0(n

′, h)ψN ′(n′) dn′ dh

Henceforth, we denote the maximal compact of Hv by Kv and the maximal
compact of Gv by K ′

v.

Step III. Use the equality of the relative cuspidal traces on H and G to establish

the asserted base change bijection between the cuspidal (stable) π on H and the

cuspidal (distinguished) Π on G.

To see why this is relatively (!) straightforward, let us write out the explicit
spectral expansions for Kf,0 and Kf ′,0, namely,

Kf,0(x, y) =
∑

π
cuspidal

∑

φ∈Vπ

π(f)φ(x)φ(y),

and
Kf ′,0(g1, g2) =

∑

Π
cuspidal

∑

φ′∈VΠ

Π(f)φ(g1)φ′(g2).

If we assume f and f ′ are right KS =
∏
v/∈S Kv (resp. K ′S) invariant, where S is

a finite set of places (including the infinite ones), then these identities read

(2.3) Kf,0(x, y) =
∑

πKS 6={0}

(fS)∨(t(πS))
∑

{φπ}

∏

v∈S
πv(fv)φ(x)φ(y)

and

(2.3′) Kf ′,0(g1, g2) =
∑

ΠK′S 6={0}

(f ′S)∨(t(ΠS))
∑

{φ′

Π
}

∏

v∈S
Πv(f

′
v)φ

′(g1)φ′(g2).

If we further assume that for v /∈ S (where both f ′
v and fv are spherical), fv

corresponds to f ′
v via the natural base change map between their Hecke

algebras, then,

(fS)∨(t(πS)) = (f ′S)∨(BC(t(πS))).

So plugging these expressions into the relative trace formula identity (2.2) yields

the more explicit identity

(2.4)
∑

π

A(π, fS)(f ′S)∨(BC(t(πS)) =
∑

Π

B(Π, f ′
S)(f ′S)∨(t(ΠS))

with

A(π, fS) =
∑

{φπ}
Wψ
πS(fS)φ(e)W

ψ
φ (e),

B(Π, f ′
S) =

∑

{φ′

Π
}
Wψ′

ΠS(f ′

S)φ′
(e)D(φ′),

Wψ
φ (e) =

∫

N(F )\N(A)

φ(n)ψN (n) dn, (with a similar expression for Wψ′

)
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and

D(φ′) =

∫

Z(A)H(F )\H(A)

φ′(h) dh.

Note that (2.4) may be viewed as a (absolutely convergent) linear combination

of irreducible characters of the group (G)S =
∏
v/∈S Gv. Also, note that a particular

cuspidal
∏

on G(A) will appear on the right side of (2.4) only if it is distinguished,

i.e., D(φ′) 6= 0 for some φ′. Thus it is not surprising that a “linear independence of

characters argument” yields the desired bijection of Theorem 1.1. For more details,

we refer the reader to [Ye], and §4 below.
Since the most subtle part of the proof outlined above is Step II, we focus on

this step in some detail in the sections below.

3. Step II: Subtracting off the Continuous Spectrum. Once we know that

the relative trace formulas on H and G agree for matching f and f ′, it follows

(keeping in mind the previous discussion) that

(3.1)

∫∫
Kf,0(n1, n2)ψN (n−1n2) dn1 dn2 −

∫∫
Kf ′,0(n

′, h)ψN ′(n′) dn′ dh

=

∫∫
Kf,cont(n1, n2)ψN (n−1n2) dn1 dn2 −

∫∫
Kf ′,cont(n

′, h)ψN ′(n′) dn′ dh.

“Subtracting off the continuous spectrum” from the initial relative trace formula

identity thus amounts to being able to prove that both sides of this last identity

are identically zero.

According to (2.3) and (2.4), the left hand side of (3.1) reduces to the discrete
expression

∑

π

A(π, fS)(f ′S)∨(BC(t(πS)) −
∑

Π

B(Π, f ′
S)(f ′S)∨(t(ΠS)).

So the natural strategy should be to show that the right hand side of (3.1) can be

written as the difference of two absolutely convergent expressions of the form

(3.2)

∫
Φ(σ)(f ′S)∨(σ) dσ

with Φ(σ) an integrable function on the unramified unitary dual of GS . In fact it

turns out that the right-hand side of (3.1) contributes a discrete as well as con-
tinuous distribution (i.e., the continuous spectrums cancel each other only modulo

an “unstable” piece of the cuspidal spectrum). Nevertheless, it is possible (after

rearranging terms) to apply the trick of Langlands from [La2, p. 211]: since (3.1)

amounts to an equality between an “atomic” and a “continuous” measure on the
unramified unitary dual of GS , both sides must be identically zero.

Consider for example the expression

(3.3)

∫∫

[N(F )\N(A)]2
Kf,cont(n1, n2)ψN (n−1

1 n2) dn1 dn2,
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where

Kf,cont(x, y) =
∑

χ={(M,µ)}
Kχ(x, y)

=
∑

µ

∑

{φµ}

∫ ∞

−∞
E(x, ρ(µ, it)(f)φ, it, µ)E(y, φ, it, µ) dt.

Because the integration is over a compact domain, it is easy to compute that (3.3)

equals

(3.4)
∑

µ
unramified
outside S

∫ ∞

−∞
(fS)∨(µ, it)c(fS , µ, it) dt.

where (µ, it) denotes the conjugacy class in LGS attached to IndµS‖it,

c(fS, µ, it) =
∑

{φµ}
W (ρ(µS , it)(fS)φ, ψ, µ, it)W (φ, ψ, µ, it),

and

W (φ, ψ, µ, it) =

∫

N(F )\N(A)

E(n, φ, it, µ)ψN (n) dn.

Moreover, because fS “matches” f ′S , we have

(3.5) (fS)∨(µ, it) = f ′S)∨(BC(µ, it),

with (BC)(µ, it) = (µ′, it) and µ′(z) = µ(zz̄). Thus the contribution from Kf,cont

to the right hand side of (3.1) is indeed of the form (3.2).
Now consider the relative trace formula expression

∫

Z(A)H(F )\H(A)

∫

N ′(F )\N ′(A)

Kf ′

cont
(n′, h)ψN ′(n′) dn′ dh

corresponding to the quadratic extension. As we already hinted (and shall explain
in the next section), this turns out to produce discrete as well as continuous sums

of traces (f ′S)∨(σ).

4. Step II Continued: Periods of Truncated Eisenstein Series, and the

Continuous relative trace over G. Our purpose here is to describe some of the

difficulties involved in proving the following result:

Theorem 4.1. The contribution of the continuous spectrum to the relative trace

formula for G is

∑

µ′

µ′=µ◦NE/F

∫ ∞

−∞
(f ′S)∨(µ′, it)c1(f

′
S , µ

′, it) dt+
∑

µ′

µ′ 6=µ◦NE/F

(f ′S)∨(µ′, 0)c2(f
′
S , µ

′, 0).
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Here both expressions are absolutely convergent,

∑

µ′

|c2(f ′
S , µ

′, 0)| <∞, and
∑

µ′

∫ ∞

−∞
|c1(f ′

S , µ
′, it)| dt <∞.

As we already explained in the last section, this theorem is exactly what is

needed to complete the proof of Theorem 1.1. Indeed, if we subtract the integral

expression here from
∫∫

Kf,cont(n1, n2)ψN (n−1
1 n2) dn1 dn2

in (3.1) we obtain (using(3.4) and (3.5)) the expression

(4.2)
∑

µ′

∫ ∞

−∞
(f ′S)(µ′, it)c∗(f

′
S , µ

′, it) dt.

On the other hand, bringing the discrete sum in (4.1) over to the left-hand side
of (3.1) yields the expression

(4.3)
∑

π
cuspidal

A(π, fS)(f ′S)(BC(t(πS))

∑

Π cuspidal

B(Π, f ′
S)(f ′S)∨(t(ΠS))

−
∑

µ6=µ◦NE/F

(f ′S)∨(µ′, 0)c2(f
′
S , µ

′, 0).

Hence we indeed can conclude (by the arbitrariness of (f ′S)) that both (4.2) and

(4.3) are identically zero.

Remark. For any given grossencharacter µ′ of E which does not factor through the
norm map, let π(µ′) denote the cuspidal representation of H(A) whose Langlands

parameter tπv almost everywhere base change lifts to the Langlands parameter of

IndGB′ µ′
v. These π(µ′) are the cusp forms constructed by Hecke and Maass (using

either the theory of theta-functions or L-functions). The fact that (4.3) equals zero

gives (by “linear independence of characters”) an alternate proof of the existence
of such forms, as well as establishing the bijection asserted in Theorem 1.1.

Now let us return to Theorem 4.1, giving a concrete expression for the relative

trace of Rcont(f
′). As we have already noted—for α(T ) sufficiently large,

∫

Z(A)H(F )\H(A)

∫

N ′(F )\N ′(A)

Kf ′

cont
(n′, h)ψN ′(n′) dn′ dh

=

∫∫
ΛT2Kf ′,cont(n

′, h)ψ′
N (n′) dn′ dh.

Moreover, it follows from Propositions 2.3 and 2.5 of [Ja1] that this last expression

equals ∑

χ={(M ′,µ′)}

∫∫
ΛT2Kχ(n

′, h)ψN ′(n′) dn′ dh
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and, ultimately, that

(4.4)

∫

Z(A)H(F )\H(A)

∫

N ′(F )\N ′(A)

Kf ′

cont
(n′, h)ψN ′(n′) dn′ dh

=
∑

µ′

∫ ∞

−∞

∑

{φ′

µ′
}

(∫

Z(A)H(F )\H(A)

ΛTE(h, ρ(µ′, it)(f ′)φ′, it) dh
)

×W (φ′, ψ, µ′, it)(e) dt.

Thus our task is to obtain an explicit expression for the right-hand side of this last

equation, as T → ∞ (i.e., for T sufficiently large . . . ); in this we follow [Ja1].

Remark. Introducing a truncation operation facilitates the explicit calculation

of the relative continuous spectrum of G but, as with the ordinary trace formula,
also produces “discrete traces” from within the continuous spectrum, as we shall

now explain.

In (4.4), the sum is over the (classes of) unitary characters µ′ of E∗\AxE inducing

the Eisenstein series

E(g, φ′, µ′, s) =
∑

γ∈B′(F )\G(F )

φµ(γg),

with φµ ∈ Indµ′‖s, and B′ = ResEF B = M ′N ′. In computing the periods

P(φ′, µ′, it) =

∫

Z(A)H(F )\H(A)

ΛTE(h, ρ(µ, it)(f)φ′, µ′, it) dh,

one appeals to the Bruhat-type decomposition

(*) G(F ) = B′(F )H(F )
⋃
B′(F )ηH(F ),

where η inG(F ) satisfies ηη̄−1 = w. (One can take η =
( √

τ 1

−√
τ 1

)
if
√
τ generatesE.)

The proposition below (see [JLai] and [Ja1]) is to be viewed as a “relative analogue”
of the Langlands formula for the inner product of two truncated Eisenstein series.

Proposition 4.5. For each unitary character µ′ of E∗\A∗
E, set

δ1(µ
′) =

{
m(F x\A1

F ) if µ′ |Fx\A1
F
≡ 1;

0 otherwise,

and

δ2(µ
′) =

{
m(A∗

FE
x\A∗

E) if µ(a) ≡ µ(ā);

0 otherwise,

Then for sufficiently large α(T ) ,

P(φ′, µ′, it)

= δ1(µ
′)
{eit(T1−T2)

it

∫

K

φ′(k) dk − e−it(T1−T2)

it

∫

K

M(w, it)φ′(k) dk
}

+ δ2(µ
′)

∫

Tη(A)\H(AF )

φ′(ηh) dh

with
Tη = η−1B′(F )η

⋂
H(F ).
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Remark. The δ1-term here corresponds to the contribution from the “small-cell”

part of (*), whereas the δ2-term corresponds to the “big cell” (w 6= e). Note that
the second term is independent of the truncation parameter T . Also, all terms

must be understood in the sense of meromorphic continuation from s in some right

half-plane to s = it.

Sketch of the Proof. From the definition of ΛT , and the formula for the constant

term of E, one computes that

(4.6) ΛTE(g, φ′, µ′, s) =
∑

γ∈B′(F )\G(F )

φ′(γg)(1 − τ̂B(H(γg) − T )

−M(w, s)φ′(γg)τ̂B(H)(γg) − T ).

(This is a special case of Arthur’s “second formula” for ΛTE; see Lemma 4.1 of

[A3].) The next step is to check that (for s in the domain of convergence of the

Eisenstein series), the series

∑

γ∈B′(F )\G(F )

|φ′(γg)| |1 − τ̂B(H(γg) − T )| + |M(w, s)φ′(γg)|τ̂B(H(γg) − T )

is integrable over Z(A)H(F )\H(A). This justifies the term by term integration of

(4.6) over Z(A)H(F )\H(A); see [Ja1] §3 for the case of GL(3). Then the decompo-

sition (*), together with Iwasawa’s decomposition for H(A), ultimately yields the
Proposition. Implicit here is the fact that for α(T ) sufficiently large,

τ̂B(H(ηh) − T ) ≡ 0 for all h;

this requires some proof (see Proposition 7.2 of [Ja1] for a more general setting),
and explains why the contribution from η is indeed independent of T .

In applying Proposition 4.5 to the calculation of

(4.1)

∫∫
Kf ′,cont(n

′, h)ψN ′(n′) dn′ dh,

let us first consider the contributions from characters µ′ with δ2(µ
′) 6= 0. These are

precisely the grossencharacters of E which factor thru the norm map from F . If in
addition δ1(µ

′) = 0, then Proposition 4.5 implies that the contribution of such µ′

to (4.1) is

(4.7)
∑

µ′

∫ ∞

−∞

∑

{φ′

µ′
}
θf (µ

′, it, φ′)W (φ′, ψ, µ′, it) dt

where

θf (µ
′, it, φ′) = δ2(µ

′)

∫

Tη(AF )\H(AF )

ρ(µ′, it)(f)φ′(ηh) dh.

Note we can rewrite (4.7) as

∑

µ′

∫ ∞

−∞
(f ′S)∨(µ′, it)Cf ′

S
(µ′, it) dt
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with

Cf ′

S
(µ′, it) dt =

∑

φ′

W (φ′, ψ, µ′, it)θf ′

S
(µ′, it, φ′).

Now suppose δ2(µ
′) = 0, i.e., µ′ does not factor thru the norm map from F .

Then Proposition 4.5 implies that the contribution of each such µ′ to the relative

trace (4.1) is

(4.8)

∫ ∑

φ′

W (φ′, ψ, µ′, it)·

δ1(µ
′)

{
eit(T1−T2)

it

∫

K

fφ′(h) dh− e−it(T1−T2)

it

∫

K

M(w, it)fφ′(k) dk

}
dt,

with

fφ′ = ρ(µ′, it)(f)φ′.

Notice the similarity here with the formula encountered for the ordinary trace

formula term JTχ (f) in §4 of Lecture VII. There we computed the limit as T → ∞
by applying Arthur’s splitting formula for products of (G,M)-families. Here we

can do the same thing, taking (as before)

cB(it) = e2it(T1−T2) and cB̄(it) = e−2it(T1−T2).

But now we set

dB(it) = W (φ′, ψ, µ′, it)

∫

K

fφ′(k) dk

and

dB̄(it) = W (φ′, ψ, µ′, it)

∫

K

M(w, it)(fφ′)(k) dk.

It must of course be checked that this d(Λ) is also a (G,M)-family (not obvious!).
The main task, though, is to compute

lim
ε→0

lim
T→∞

∑

φ′

(cd)M (it)B(εt) dt,

with B(t) a compactly supported Schwartz function as in Lecture VII. Computing

as before, we find that

d′G(it) = dB(0)(= dB̄(0)) = W (φ′, ψ, µ′, 0)

∫

K

ρ(µ′, 0)(f)φ′(k) dk

with φ′ in Indµ′, and—ultimately—that the above limit equals

∑

φ

W (φ′, ψ, 0, µ′)

∫
ρ(0, µ′)(f ′)φ′(k) dk.

Thus we find that the total contribution (to the relative trace formula) from char-

acters µ′ of this form is
∑

µ′

µ′ 6=N◦µ

(f ′S)∨(0, µ′)C(f ′
S , µ

′)
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with

C(ψ, f ′
S , µ

′) =
∑

φ

W (φ′, ψ, 0, µ′)

∫

K

ρ(0, µ′
S)(f ′

S)φ′(k) dk.

It remains to observe that when δ2(µ
′) 6= 0 and δ1(µ

′) 6= 0, the contribution to

the relative trace formula is again just (4.5). There are apparent contributions

e2it(T1−T2)

it

∫
fφ′(k) dk − e−2it(T1−T2)

it

∫
M(w, it)φ′(k) dk

from P(φ′, µ′, t), but they integrate to zero over R by way of a Riemann–Lebesgue
Lemma (just like the terms in cdM (t) not belonging to the leading term Q = G in

F(M) at the end of the last Lecture). We spare the reader the details.

Concluding Remarks. A host of natural problems present themselves in connec-
tion with any general development of the relative trace formula, especially as far

as applications are concerned. In addition to the obvious problem of developing

general local “matching” theorems (and related “fundamental lemmas”), there are

these problems from the “spectral side”:

(1) Develop a general formula for the period of a truncated Eisenstein series,

analogous to Langlands’ formula for the inner product of truncated Eisen-

stein series;

(2) Apply a general theory of (G,M)-families and smoothing functions B(λ)

to the calculation of the contribution of the “continuous spectrum” to the
relative trace formula, and

(3) Prove in general that the resulting spectral expressions are sufficiently con-

vergent to justify subtracting them off from the full relative trace formula.

For the case of GL(2), this can done by direct estimates on the intertwining
operators, but already for GL(3) such a direct approach is problematic.
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Lecture IX. Some Applications of

Paley–Wiener, and Concluding Remarks

In Lecture VII, we explained how (G,M)-families arose in Arthur’s explicit calcu-

lation of the general spectral terms Jχ(f). We also alluded to why a Paley–Wiener

theorem was needed to complete this calculation, and promised to return to it. In

fact, this Paley–Wiener theorem is also crucial in handling other convergence prob-

lems related to the trace formula. So our purpose now is to finally touch on these
matters, albeit briefly. This being the last lecture, we shall also conclude with a

few remarks orienting the reader to some papers of Arthur’s that we so far haven’t

even mentioned.

1. The Paley–Wiener Theorem. The Fourier transform of a compactly sup-

ported smooth function f on R extends to an entire function F (Λ) on C, and

satisfies a well-known growth condition, namely that there exists a constant N

(depending on the support of f) such that

sup
{
|F (Λ)|e−N |Re(Λ)|(1 + | Im(Λ)|)n

}
<∞

for any integer n. According to the classical Paley–Wiener Theorem, these prop-
erties characterize the image of the Fourier transform on the space of such test

functions f .

For a real reductive group G, let C∞
c (G,K) denote the “Hecke algebra” of K-

finite compactly supported smooth functions. Then for any f in C∞
c (G,K) and

irreducible admissible representation π of G (on a Banach space Uπ), the Fourier

transform of f at π is defined to be the operator

π(f) =

∫

G

f(x)π(x) dx.

The resulting function

π → π(f)

has as its domain the set of irreducible (admissible) representations of G, and for

any (π, Uπ) takes values in the space of operators on Uπ. The purpose of the
(operator) Paley–Wiener Theorem of [A10] is to characterize which functions

π 7→ F (π)

are of the form π 7→ π(f) for some f .



86 STEVE GELBART

More precisely, let us (following Arthur) fix a minimal parabolic subgroup B of

G with Langlands decomposition N0A0M
1
0 , and consider the nonunitary principal

series of induced representations ρB(σ,Λ), indexed by quasi-characters Λ of A0 and

irreducible representations σ of M1
0 . By a well-known theorem of Harish-Chandra,

any π is equivalent to a subquotient of some ρB(σ,Λ). This means that π(f) will

be completely determined by the Fourier transform

f̂ : (σ,Λ) → f̂B(σ,Λ) = ρB(σ,Λ)(f).

What should the image of this Fourier transform be?

Arthur defines PW (G,K) to be the space of functions

F : (σ,Λ) 7→ FB(σ,Λ),

which are entire, K-finite (in a sense I shall not explain here), and satisfy the growth

condition

(1.1) sup
σ,Λ

{
‖F (σ,Λ)‖e−N‖Re(Λ)‖(1 + ‖ Im(Λ)‖)n

}
<∞,

for some N (and all n). Moreover, there is another, more complicated condition for

F (σ,Λ) which comes from the various intertwining maps between principal series.

Namely, if there is a relation

m∑

k=1

Dk(ρB(σk,Λk)(g)uk, vk) = 0

valid for all g in G, where Dk is a differential operator (acting through the variable

Λ, and uk, vk are vectors in the space of ρ(σk,Λk), then F (σ,Λ) must also satisfy

the relation

(1.2)
m∑

k=1

Dk(F (σk,Λk)uk, vk) = 0.

(Such relations exist commonly, but are difficult to characterize explicitly; indeed,
a listing of all such relations would be tantamount to a complete knowledge of the

irreducible subquotients of the principal series.)

The main result of [A10] is that

f → f̂(σ,Λ)

provides an algebra isomorphism from C∞
c (G,K) onto PW(G,K). The conse-

quence of this result which is actually needed for the trace formula concerns the
notion of Paley–Wiener multipliers.

By a “multiplier” of C∞
c (G,K) is meant a linear operator C on C∞

c (G,K) such

that

C(f ∗ g) = C(f) ∗ g = f ∗ C(g)
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for all f , g in C∞
c (G,K) . (The algebra of all such “multipliers” coincides with

EndU(G)(C
∞
c (G,K)). The Paley–Wiener multipliers are constructed as follows.

Set

(1.3) h = ihK ⊕ h0,

where hK is a fixed Cartan subalgebra of the Lie algebra of K ∩ M0, and h0 is

the Lie algebra of the split component of M0. (Here M0 is the Levi component
of a fixed minimal parabolic subgroup of G.) If G is the Lie algebra of G, then

hC is a Cartan subalgebra of GC, and h ⊂ hC is invariant under the Weyl group

W of (GC, hC). Let E(h)W be the algebra of compactly supported distributions on

h which are invariant under W . Then for any γ in E(h)W , the Fourier–Laplace

transform
γ̂(ν), ν ∈ h∗C

is an entire function on h∗C which is W -invariant and satisfies a growth estimate of
the form

(1.4) sup
ν∈h∗

C

(
|γ̂(ν)|e−Nγ‖Re(ν)‖(1 + ‖ Im ν‖−nγ

)
< M

for some integers Nγ and nγ . According to the result below, these γ̂ provide us

with multipliers Cγ (called Paley–Wiener multipliers).

Theorem 1.5 (see Thm. 4.2 of [A10]). For each distribution γ in E(h)W , and f

in C∞
c (G,K), there is a unique fγ in C∞

c (G,K) such that

(1.5) π(fγ) = γ̂(νπ)π(f)

for any irreducible admissible representation π. (Here {νπ} is the W -orbit in h∗C
associated to the infinitesimal character of π.) In particular, if we define

Cγ(f) = fγ ,

then the map

γ → Cγ , γ ∈ E(h)W ,

is a homomorphism from the algebra E(h)W to the algebra of multipliers

EndU(G)(C
∞
c (G,K)).

Remarks. (i) This Theorem is almost an immediate consequence of the Paley–

Wiener Theorem described earlier. Indeed, the uniqueness is clear (since (1.5)

completely determines the Fourier transform of fγ). On the other hand, the exis-
tence of fγ results from checking that the function

FB(σ,Λ) = γ̂(νσ + Λ)f̂B(σ,Λ)

belongs to PW(G,K), and hence is the Fourier transform of some fγ ; then since

π(fγ) is given by the action of ρ(σ,Λ)(fγ) on the appropriate subquotient, it follows
that

π(fγ) = γ̂(νσ + Λ)π(f) = γ̂(νπ)π(f),
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as required.

(ii) That Cγ(f) = fγ defines a “multiplier” of C∞
c (G,K) follows formally from

(1.5): Cγ(f ∗ g) = Cγ(f) ∗ g, since

π((f ∗ g)γ) = γ̂(νπ)π(f ∗ g)
= γ̂(νπ)π(f)π(g)

= π(fγ)π(g).

(iii) This Paley–Wiener theorem may be viewed as an analogue for real groups of

the p-adic results of [BDK] and [Ro3].

2. Applications of Paley–Wiener to the Calculation of Jχ(f).. Recall how

JTχ (f) was defined (for sufficiently large T ) to be the integral over the diagonal of the

truncated kernel function ΛT2 (Kχ(x, y). Using the explicit formula for ΛT2 (Kχ(x, y)

in terms of Eisenstein series, we then wrote

(2.1) JTχ (f) =
∑

P

∑

σ

∫

ia∗

P /ia
∗

G

ΨT
σ (λ, f) dλ,

where

ΨT
σ (λ, f) =

1

n(AP )
tr(ΩTχ,σ(P, λ)ρ(σ, λ)(f)),

and ΩTχ,σ(P, λ) is the operator on the space of ρ(σ, λ) defined by

(ΩTχ,σ(P, λ)φ
′, φ) =

∫

Z(A)G(F )\G(A)

ΛTE(x, φ′, λ)ΛTE(x, φ, λ) dx.

We stress that the integral formula (2.1) for JTχ (f) is absolutely convergent, and

that JTχ (f) is known to be polynomial in T . The problem is to explicitly compute

JTχ (f) for a conveniently chosen value T0 of T .

At the end of Lecture IV, we used Arthur’s general theory to derive an explicit

formula for JTχ (f) in the case of G = GL(2). The strategy consisted of three steps:

(1) plug into (2.1) Langlands’ explicit formula for ΩTχ,σ(P, λ) in terms of inter-

twining operators;

(2) use the theory of (G,M)-families to rewrite ΨT
σ (λ, f) in a form still more

amenable to integration over dλ; and
(3) compute the resulting integrals over λ (and show that some of the contri-

butions are negligible as T → ∞).

It was in this last step that we resorted to a Riemann–Lebesgue Lemma whose

application is best justified by way of Paley–Wiener multipliers; indeed these mul-

tipliers allow for the insertion of a compactly supported function B(λ) into the

formula for JχT , as explained in Theorem 2.3 below.

For general G, there is an additional, more fundamental reason for requiring
the Paley–Wiener Theorem in the calculation of Jχ(f). It derives from the fact

that Langlands’ explicit formula for ΩTχ,σ(P, λ) is not valid for Eisenstein series
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induced from non-cuspidal σ. (Equivalently, it is not valid when P lies outside Pχ,

the set of parabolics attached to the collection of pairs (MB, rB) describing the
cuspidal datum χ.) In these cases, Arthur proved “only” that the “nice” formula

for ΩTχ,σ(P, λ) is an asymptotic one for large T , valid uniformly only on compact

subsets of λ.

More precisely, let ωTχ,σ(P, λ) denote the operator on ρ(σ, λ) defined explicitly in
terms of intertwining operators as the value at λ′ = λ of

∑

P1

∑

t,t′

MP1|P (t, λ)−1MP1|P (t′, λ′)
e(t

′λ′−tλ)(T )

θP1
(t′λ′ − tλ)

(cf. formula (2.1) of Lecture VII for complete details). Then (cf. Corollary 9.2 of
[A9]) the difference between (ΩTχ,σ(P, λ)ρ(λ, σ)(f)φ, φ) and (the “nicer” expression)

(ωTχ,σ(P, λ)ρ(λ, σ)(f)φ, φ) is bounded in absolute value by

(2.2) r(λ)‖φ‖2e−ǫ‖T‖,

where ǫ > 0, and r(λ) is a locally bounded function on ia∗P . Thus the integrals of

these expressions over all of ia∗P/ia
∗
G need not approach one another as T → ∞.

In short, the substitution of ωTχ,σ for ΩTχ,σ in (2.1) is simply not justified.

Example. For G = GL(2), we explicitly derived Arthur’s estimate(2.2) in case

χ = {(M,µ)}, with µ = µ−1, and P = G. Namely, in the proof of Prop. 2.7 in

Lecture IV, we computed the difference of these expressions to be Me−2(T1−T2). Of

course, in this case the problem of uniformity alluded to above is a priori absent
(the variable λ being constrained to lie in the space ia∗P/ia

∗
G = {0} . . . ).

In general, the way out of this problem, like the problem of showing certain terms

to be “negligible” in step (3) above, is by way of Arthur’s Paley–Wiener Theorem,

as we shall now (finally) explain.

For any B in S(ih∗/ia∗G)W , and irreducible unitary representation σ on M(A),
define

Bσ(λ) = B(iYσ + λ),

Here Yσ is the imaginary part of the orbit {νσ} in h∗C associated to the infinitesimal

character of σ∞ (and we have fixed an embedding of any a∗P in h∗). Recall that
{νσ + λ} is also the orbit in h∗C associated to the infinitesimal character of the

induced representation ρ(σ∞, λ) of G∞.

Theorem 2.3 (see Thm. 6.3 of [A5]). Suppose B in S(ih∗/ia∗G)W is such that

B(0) = 1. For any ǫ > 0, write Bǫ for the function Bǫ(ν) = B(ǫν). Then

JTχ (f) = lim
ǫ→0

lim
T→∞

∑

P,σ

∫

ia∗

P /ia
∗

G

ΨT
σ (λ, f)Bǫσ(λ) dλ.

Remarks. (i) The importance of this result is that it allows us to invoke the as-

ymptotic formula for ΩTχ,σ. Indeed, if we take B in the Theorem to be compactly

supported, then we can indeed substitute ωTχ,σ for ΩTχ,σ and write

(2.4) JTχ (f) = lim
ǫ→0

lim
T→∞

∑

P,σ

∫

ia∗

P /ia
∗

G

tr(ωTχ,σ(P, λ)ρ(λ, σ)(f))Bǫσ(λ) dλ
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(since the error term (2.2), multiplied by such a compactly supported B, will indeed

approach 0 uniformly in λ).

(ii) For large T , the expression

∑

P,σ

∫

ia∗

P /ia
∗

G

ΨT
σ (λ, f)Bσ(λ) dλ

is asymptotic to a polynomial PT (B) in T . So Theorem 2.3 really says

JTχ (f) = lim
ǫ→0

PT (Bǫ),

or

JTχ (f) = lim
ǫ→0

lim
T→∞

∑

P,σ

∫
ΨT
σ (λ, f)Bǫσ(λ) dλ,

where the limit in T (as in the statement of the Theorem) is interpreted as the

polynomial PT (Bǫ) which is asymptotic to the given function as T approaches ∞.
On the other hand, since

lim
ǫ→0

Bǫσ(λ) = lim
ǫ→0

B(ǫ(iYσ + λ)) = B(0) = 1,

the dominated convergence theorem implies

JTχ (f) =
∑

P,σ

∫
ΨT
σ (λ) dλ (for T large)

= lim
ǫ→0

∑

P,σ

∫
ΨT
σ (λ)Bǫσ(λ) dλ (T large)

= lim
T→∞

lim
ǫ→0

∑

P,σ

∫
ΨT
σ (λ)Bǫσ(λ) dλ

(with limT→∞ interpreted as above). Thus all of the work of [A5] essentially boils

down to a justification of the interchange of order of two limits (over ǫ and T )!

(iii) (Concerning the Proof of Theorem 2.3). The basic idea of the proof is
explained clearly on pp. 1258–60 of [A5]. The starting point is an application of

the Paley–Wiener multiplier Theorem 1.5 to the archimedean component of any

K-finite function f in C∞
c (G(A)). For any γ in E(h)W , this yields a function fγ in

C∞
c (G(A)) such that

ΨT
σ (λ, fλ) = γ̂(νσ + λ)ΨT

σ (λ, f).

Using this relation, we write

(2.5)

JTχ (fλ) =
∑

P,σ

∫

ia∗

P /ia
∗

G

γ̂(νσ + λ)ΨT
σ (λ, f) dλ (for T large)

=
∑

P,σ

∫

ia∗

P /ia
∗

G

ΨT
σ (λ, f)

(∫

h

γ(H)e(νσ+λ)(H) dH
)
dλ

=

∫

h

(∑

P,σ

ΨT
σ (H)eνσ(H)

)
γ(H) dH
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where

ΨT
σ (H) =

∫

ia∗

P /ia
∗

G

ΨT
σ (λ, f)eλ(H) dλ.

In particular, if we fix H in h, and set

γH = |W |−1
∑

s∈W
γs−1H

with γs−1H the Dirac measure at s−1H, then (2.5) implies

(2.6) JTχ (fγH ) = |W |−1
∑

s∈W

∑

P,σ

ΨT
σ (s−1H)eνσ(s−1H)

Note here that, for each value of H , the right hand side of (2.6) is a polynomial in

T (since the left hand side is). Thus we have constructed a family of polynomials in
T , call them pT (H), whose value at H = 0 is exactly JTχ (f) (since then fγH = f).

Now to compute pT (H) at 0, the natural thing to do is to integrate this function

against an arbitrary Schwartz function β(H). By the Plancherel Theorem for h,

the resulting inner product
∫
pT (H)β(H) dH can be replaced by one over ih∗/ia∗G

involving the Fourier transform

B(ν) =

∫
β(H)eν(H) dH.

In particular, JTχ (f) should be obtained by having β approximate the Dirac measure

at 0, i.e., by using
βǫ(H) = ǫ− dim(h)β(ǫ−1H)

with ǫ small, and
∫
β(H) dH = 1; Equivalently, this brings into play

Bǫ(ν) = B(ǫν)

with B(0) = 1, and this is roughly how one ends up with the sought-after formula

JTχ (f) = lim
ǫ→0

∑

P,σ

∫

ia∗

P /ia
∗

G

ΨT
σ (λ, f)Bǫσ(λ) dλ.

The only problem is that pT (H) is not actually tempered, and hence cannot be

integrated against any β! Thus a lengthy detour is required in Sections 4–6 of [A5],

involving additional polynomials and analysis (but nothing approaching either the

Paley–Wiener theorem, or the theorem on the polynomial nature of JTχ (f)).

3. A Final Formula for
∑

χ J
T
χ (f). At the end of Lecture VII, we explained

how, for GL(2), the formula

JTχ (f) = lim
ǫ→0

lim
T→∞

∫ ∞

−∞
tr(ωTχ (t)ρ(µ, it)(f)B(ǫt) dt
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could be computed explicitly using (G,M) families. Now, thanks to formula 2.4,

we have a similar strategy for computing JTχ (f) in general, and the end result is a
formula directly generalizing the explicit formula

JTχ (f) = (T1 − T2)

∫ ∞

−∞
tr(ρ(µ, it)(f)) dt+

∫ ∞

−∞
tr(M(−it)M ′(it)ρ(µ, it)(f) dt

+ 1
4 tr(M(0)ρ(µ, 0)(f)) + µ(f)τ(G).

(Recall that the “limit in T ” is to be interpreted as the polynomial asymptotic to

the given integral as T approaches ∞.)

N.B. In Lecture IV, we were interested only in the constant term of the polynomial

JTχ (f), i.e., JTχ (f) = J0
χ(f). In Arthur’s general theory, one fixes on a convenient

point T0 (which in many “classical” situations is just zero; see Lemma 1.1 of [A4]),

and sets

Jχ(f) = JT0

χ (f).

Theorem 3.2 (see Theorem 8.2 of [A6]). Suppose f ∈ C∞
c (Z(A)\G(A)). Then

JTχ (f) equals the sum over M ∈ L(M0), L ∈ L(M), σ on M(A) (compatible with

χ), and w in WL(aM )reg of the product of

|WM
0 | |W0|−1| det(w − 1)aL

M
)|−1

with ∫

ia∗

L/ia
∗

G

|P(M)|−1
∑

P∈P(M)

tr(ML(P, λ)M(P,w)ρ(σ, λ)(f)) dλ.

Remarks. (i) The exact definition of each of the objects appearing here is to be
found in Sections 4 through 8 of [A6]. But the point is that they are all more

or less familiar objects related to the intertwining operators MQ|P discussed in

Lecture VII. For GL2, there will be only three terms in the sum above: one for

M = L = M0, with w = e and σ = µ a character of M0 (this gives the term in (3.1)
with the logarithmic derivative); one for M = M0,L = G, w the non-trivial Weyl

element, and σ a character of M0 (this gives the term involving tr(M(0)ρ(µ, 0)(f)));

and one with M = L = G, w = e, and µ the character µ(det g) of G(A) (this gives

the contribution µ(f)τ(G)).

(ii) The proof of Theorem 3.2 consists of two non-trivial steps. First one uses

(G,M) families to carry out the explicit computation of

val
T=T0

(
lim
ǫ→0

“ lim
T→∞

”
∑

P

∑

σ

∫
ωTσ,χ(λ, f)Bσ(ǫλ) dλ

)
,

where ωTσ,χ(λ, f) is a sum of special values of functions eM (Λ) for particular (G,M)-

families e(Λ) = c(Λ)d(Λ) (involving the intertwining operators MQ|P ); this is car-
ried out in Sections 3 through 5 of [A6], and the end result is a sum of terms of the

form

lim
ǫ→0

∫

ia∗

L/ia
∗

G

∑

P∈P(M)

tr(ML(P, λ)M(P,w)ρ(λ, σ)Bǫσ(λ)d
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with B in C∞
c (ih∗/ia∗G)W equal to 1 at 0. Clearly the second step must be to show

that this (limit and) test function can be made to disappear!

Equivalently, by the dominated convergence theorem, one must show that the

sum ∑

σ

∫

ia∗

L/ia
∗

G

‖ML(P, λ)ρ(λ, σ)(f)‖ dλ

is finite. This is carried out in Sections 6 through 8 of [A6], using normalized

intertwining operators, and estimates on the scalar functions defining these nor-

malizations. (Some assumptions are made on these normalizations at p-adic places,

but at least for GL(n) these assumptions are now proved; see [Sha1] and [Sha2]).

Finally, having reached the exalted plateau which Theorem 3.2 represents, we

should mention that it is really just the beginning! In particular it is not yet known
if the explicit spectral expansion

(3.3)
∑

χ

Jχ(f) =
∑

χ

∑

M,L
w

∑

σ

∫

λ∈ia∗

L/ia
∗

G

∑

P

tr(M∗
L(P, λ, σ, w, f) dλ

converges absolutely as a multiple integral. (The problem is that the estimates on
the normalizing factors alluded to above are not uniform in χ!).

In other words, we know that

∑

χ

|Jχ(f)| <∞,

and that ∑

σ∈∏ (M(A))χ

∫
‖ML(P, λ)ρ(λ, σ)(f)‖ dλ <∞,

but not that this last sum can be summed over all χ. This lack of knowledge
causes problems in applying the trace formula, say to base change, where on needs

absolutely convergent expressions (in order to use tricks like Langlands’ to subtract

off the non-discrete spectrum). In order to get around this problem, Arthur proves

certain estimates on the convergence of

∑

χ

|Jχ(f)|

which may be viewed as a weak form of the conjectured absolute convergence of
the multiple integrals (3.3). This involves the infinitesimal characters of the infinite

components σ∞ of the representations σ appearing in the spectral expansion, and an

application of the Paley–Wiener multiplier theorem. The end result is a technique

called “separation of infinitesimal characters via multipliers” which allows one to
obtain the required equality of discrete traces from the matching of the full traces;

details appear in [A12], [AC], and [La3].



94 STEVE GELBART

4. Related Works. Here are some of the topics from Arthur’s work which we

have ignored till now.

In comparing trace formulas for different groups (for example, in proving base

change for GLn), one wants to rewrite the basic formula

(4.1)
∑

o

Jo(f) =
∑

χ

Jχ(f)

in invariant form, i.e., as an identity

(4.2)
∑

o

I0(f) =
∑

χ

Iχ(f),

where each of the terms is an invariant distribution. The reason for this is that one

needs to assert the equality of two trace formulas for “associated” (or “matching”)

functions, given only by their orbital integrals (which are invariant distributions

. . . ). Such an invariant trace formula is obtained already in [A4], where a subtle
rearrangement and modification of the terms Jo(f) and Jχ(f) yields the new col-

lection of invariant distribution Io(f) and Iχ(f) appearing in (4.2). However, this

is only the “coarse” form of the invariant trace formula, analogous to the “coarse”

formula
∑
Jo(f) =

∑
Jχ(f). To get the “fine” expansion of the invariant trace

formula requires the papers [A11] and [A12]

Explicit formulas for Io(f) are obtained from the analogous fine expansions of

Jo(f) discussed in [A13] and [A14]. (In Lecture IV we described the exact form

of J0(f)—for unramified o—in terms of weighted orbital integrals; the extreme

opposite case—of o corresponding to {1}—is the subject matter of [A13], and the
general case—a mixture of these extremes—is handled in [A14].) On the other

hand, explicit formulas for Iχ(f) are obtained by another delicate mixture of the

techniques of Paley–Wiener multipliers and (G,M)-families, somewhat analogously

to the case of
∑
Jχ(f).

Remarks. (i) In a very recent work, Labesse has explained how one can apply the
trace formula to the base change problem for GL(n) without first putting the trace

formula in invariant form. This gives an alternate, simpler approach to [AC]; see

[La3].

(ii) Recall from our discussion of Jacquet’s relative trace formula that no truncation
operator was needed to define the “relative” distributions Jo(f) and Jχ(f); hence

these terms are already invariant!

(iii) Outside the scope of these “introductory” Lectures are the works of Kottwitz

and others on the stable trace formula (see [Kot2] and [La5]), and the more recent
papers of Arthur on unipotent representations, A-packets, etc. (see [A15], [A16]).
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