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Let Γ be a discrete group of SL2(R), then Γ acts on H discontinuously. We are interested

in the case that Vol(Γ\H) < ∞, especially the case Γ = SL2(Z), since this case includes

many (but not all) features of the general case.

Fundamental Domain.
A Fundamental domain for Γ is a domain F in H which satisfies: i) γF ⋂F = ∅, for any

γ( 6= 1) ∈ Γ; ii) ∀x ∈ H, Γx
⋂F 6= ∅.

A fundamental domain for Γ = SL2(Z) is given by

F = {z ∈ H : −1

2
< Rez <

1

2
, |z| > 1}.

Automorphic Forms.

Automorphic forms are functions on H which satisfy the following conditions.

Firstly, it is a function on Γ\H, i.e., certain Γ-invariant functions on H. For example, the

j-function

j : Γ\H −→ C.

Secondly, it is an eigenfunction of ∆. The hyperbolic metric
|dz|
Imz can descend to Γ\H,

since it is G−invariant. Similarly, ∆ descends to Γ\H, and it becomes Laplacion on Γ\H.

Thirdly, it is of moderate growth. A function f : H −→ C is called of moderate growth, if

there exists n s.t. f(z) ≪ (Imz)n. Without this restriction, there are many kinds of eigen-

functions of ∆. For example, the harmonic functions Re j, ej , eej · · · are all eigenfunctions

of ∆ with eigenvalue 0.

We restrict to the space of automorphic forms with eigenvalue λ.

Theorem 1. The space of Γ-invariant functions with eigenvalue λ which are of moderate

growth is finite-dimensional.

To prove the theorem, the main object is the constant term in the Fourier expansion of

such functions.
Suppose f : H −→ C is a Γ∞-invariant function, i.e., f(z + 1) = f(z). We define

fP (y) =

∫ 1

0

f(x + iy)dx =

∫

Γ∞\N

f(n · iy)dn,

where

Γ∞ =

{(
1 n

1

)
: n ∈ Z

}
,

N =

{(
1 x

1

)
: x ∈ R

}
.
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In fact, we have exact sequence

Ccusp(Γ\H)λ −→ C(Γ\H)λ −→ C(R>0)λ.

Namely, the map f 7→ fP gives a homomorphism from the space of automorphic forms with

eigenvalue λ to the space of N−invariant eigenfunctions, and functions in kernel are called

cusp forms. For given λ = s(1 − s), the image is spanned by ys and y1−s if s 6= 1/2, or by√
y and

√
y log y if s = 1/2. Therefore, Theorem 1 reduces to show the finite-dimensionality

of the space of cuspidal forms with eigenvalues λ of moderate growth.

Recall invariant integral operator,

Lf =

∫

H

k(z, w)f(w)dµ(w),

where k(z, w) is a point-pair invariant function. We know

C(H)
L−→ C(H),

then L ◦ Tg = Tg ◦ L ⇒ L(C(Γ\H)) ⊆ C(Γ\H), i.e.,

C(Γ\H)
L−→ C(Γ\H).

We want to view L as an integral operator on Γ\H. By separating variables, we have

Lf(z) =

∫

H

k(z, w)f(w)dµ(w)

=

∫

Γ\H

∑

γ∈Γ

k(z, γw)f(w)dµ(w)

=

∫

Γ\H

K(z, w)f(w)dµ(w),

where the new kernel

K(z, w)
(∗)
=

∑

γ∈Γ

k(z, γw)

is a function on Γ\H × Γ\H called the automorphic kernel.

Remark 1. If k ∈ C∞
c (R+), then there are only finitely many summands in (*) which are

non-zero. It shows that K(z, w) is well defined.

Remark 2. K is not bounded. If z = w is high up in the cusp, many γ
′

s of the form ( 1 n
1 )

will contribute(up to n ≪ Imz). However, other γ
′

s do not cause a problem. More specially,

we have

Lemma. ∃C ⊂ F compact s.t. z, w ∈ F , k(γz, w) 6= 0 ⇒ γ ∈ Γ∞ or z, w ∈ C.

Proof. We know k(γz, w) 6= 0 implies that u(γz, w) is bounded, since k ∈ C∞
c (R+). It is

easy to check

Imγz · Imz ≤ 1, ifγ 6∈ Γ∞.
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Assume Imz ≫ 1 and γ 6∈ Γ∞, we have

Imw ≥
√

3

2
⇒ u(γz, w) ≫ 0 ⇒ k(γz, w) = 0.

Similar result for the case Imw ≫ 1, Imγz ≤ 1 where γ 6∈ Γ∞, since

Γ∞ · F ⊇ {z ∈ H : Imz ≥ 1} ⇒ {z ∈ F , γ 6∈ Γ∞ ⇒ Imγz ≤ 1}.
So again, u(γz, w) ≫ 0.

Thus we can take C = {z ∈ F , Imz ≤ T} for T sufficiently large. �

Recall a cusp form f is a Γ-invariant of moderate growth function which satisfies

fP = 0 and (∆ + λ)f = 0.

We know f is an eigenfunction of all invariant integral operators, i.e., Lf = Λf , where

Λ depends only on λ but not on f . Viewed on Γ\H, L is not compact, since K(z, w) is

unbounded and K 6∈ L2(Γ\H × Γ\H). However, we can modify K as follows.

Define

H(z, w) =
∑

γ∈Γ∞\Γ

∫

R

k(z, n(x)γw)dx

which is Γ-invariant in w. Let K̂(z, w) = K(z, w) − H(z, w), then

L̂f(z) =

∫

Γ\H

K̂(z, w)f(w)dµ(w), z ∈ F .

We know L̂ is a map from C(Γ\H) to C(F).

Lemma 1. If fP = 0, then L̂f = Lf .

Proof.

(L − L̂)f =

∫

Γ\H

H(z, w)f(w)dµ(w)

=

∫

Γ\H

∑

γ∈Γ∞\Γ

∫

R

k(z, n(x)γw)f(w)dxdµ(w)

=

∫

Γ∞\H

∫

R

k(z, n(x)w)f(w)dxdµ(w)

w=u+iv
=====

∫ 1

0

∫

R+

∫

R

k(z, u + x + iv)f(u + iv)dx
dvdu

v2

x 7→x−u
=====

∫ 1

0

∫

R+

∫

R

k(z, x + iv)f(u + iv)dx
dvdu

v2

=

∫

R+

∫

R

(∫ 1

0

f(u + iv)du
)
k(z, x + iv)dx

dv

v2

= 0 (by cuspidality). �
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Lemma 2.K̂(z, w) is rapidly decreasing on F × F . i.e., for any n, K̂(z, w) ≤ (ImzImw)n.

In particular, K̂(z, w) is bounded ⇒ K̂(z, w) ∈ L2(F2).

Corollary. L |L2
cusp(Γ\H) is compact.

Proof of the Corollary. By Lemma 1, we have

L |L2
cusp(Γ\H)= L̂.

L̂ is an integral operator on F with kernel K̂ ∈ L2(F2). This implies that L |L2
cusp(Γ\H) is

compact. �

Proof of Lemma 2 . We come back to give the proof of Lemma 2. From previous lemma,

there exists a compact subset C of F such that

K(z, w) =
∑

γ∈Γ∞

k(z, γw) unless z, w ∈ C.

Similarly, the same argument shows that

H(z, w) =

∫

R

k(z, n(x)w)dx unless z, w ∈ C.

We only need to consider the difference
∑

γ∈Γ∞

k(z, γw) −
∫

R

k(z, w + x)dx. (0.1)

Recall Poisson summation formula
∑

n∈Z

g(n) =
∑

n∈Z

ĝ(n)

which implies
∑

n∈Z

g(n) − ĝ(0) =
∑

n 6=0

ĝ(n),

where ĝ(n) = n−k, g
(k)
n ≤ n−k||g(k)||1. So the difference (0.1) is bounded in terms of the

derivatives in the x variable of k(z, w + x). Denote z = x′ + iy′ = n(x′)a(y′)i, then we have

k(z, w + x) = k(n(x′)a(y′)i, n(x)w) = k(n(−x)n(x′)a(y′)i, w)

= k(n(x′ − x)a(y′)i, w) = k(a(y′)n(y′−1
(x′ − x))i, w)

= k(n(y′−1
(x′ − x))i, w′).

The n-th derivative ≤ (y′)−n∗ derivative of k. Similarly, it is bounded by (Imw)−n. �

By properties of compact operator, we have

Corollary 1. The space of cusp forms of eigenvalues λ is finite-dimensional.

Corollary 2. Every cusp form (moderate growth and eigenfunction of ∆) is rapidly decreas-

ing on F .

Corollary 3. ∆ has discrete spectrum on L2
cusp(Γ\H).
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Firstly, let us prove Corollary 2. Suppose f is a cusp form of moderate growth and is

Γ-invariant, (∆ + λ)f = 0. Then there exists k such that

Lkf = Λf, Λ 6= 0.

So

L̂kf = Λf =

∫

F

K̂(z, w)f(w)dµw. (0.2)

Lemma 2 told us that K̂f(z) is rapidly decreasing because

(Imz)nL̂f(z) =

∫
(Imz)nK̂(z, w)(Imw)n f(w)

(Imw)n
dµw

where n ≫ 0. So the left hand side is bounded, and then L̂kf is rapidly decreasing.

Corollary 1 follows from compactness of L̂k and (0.2). To show Corollary 3, Lk has discrete

spectrum on L2
cusp(Γ\H). Let U = span eigenfunctions of Lk for all k.

Claim: U = all cuspidal spectrum. Otherwise, for any ϕ( 6= 0) ∈ L2
cusp(Γ\H),

Lkϕ = 0 ∀k.

It is easy to show that it is impossible.
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