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We know both Ws(Γ) and Sk(Γ) can be embedded in L2
0(Γ\G). Denote L2

d(Γ\G) as the
discrete part of the spectrum. We have

Theorem 7.1. L2
d(Γ\G) is the direct sum of all irreducible unitary representations of G that

occur in L2(Γ\G), and
(1)(Gelfand, Graev and Piatetski-Shapiro) L2

d = L2
0 ⊕ 1 and the spectrum of L2

0 is finite.
(It means that the multiplicity of irreducible unitary representation occurring in L2

0 is finite.)
(2)(Selberg, 1950’s) The continuous spectrum of L2 is denoted by L2

cont, so that

L2
cont =

∮

πitdt,

where πit is the principal series.

Remark 1. In fact, the multiplicity of each irreducible unitary representation occurring in
L2

0(Γ\G) is one. This was proved by Jacquet and Langlands. In 1950’s, Selberg finished every-
thing about the spectrum by working on the upper half plane H. In 1965, Langlands did this
for an arbitrary reductive group, and the whole Langlands program was proposed in 1967.

Now we succeeded in lifting the classical automorphic form up to automorphic form of SL2(R).
The next question is about the Hecke operators. In fact, there is no group theory to handle this
only on SL2(R). The ideal is to lift it to functions of GL2(A). Via the method of GL1 theory
appearing in Tate’s thesis, Jacquet and Langlands succeeded in doing it for GL2(A).

In what follows we will work on Q. Let G = GL2, Gp = GL2(Qp) with p ≤ ∞, and let

Kp =

{

O(2,R) if p = ∞,
GL(2,Zp) if p <∞.

Define

GA =
∏′

p≤∞
Gp

= {(g∞, g2, g3, g5, . . .) , where gp ∈ Kp for all but finite many p} .

Moreover, Z denotes the center of G, and

ZA =

{(

z 0
0 z

)

, z ∈ A×

}

.

We know the automorphic forms on GL1 are Grossencharacters, i.e. the functions ψ on
Q×\A×. Note that A× = GL1(A) and Q× = GL1(Q). To generalize the GL1 theory, we need to
consider the functions on GQ\GA. However, it is not compact. The ideal is to consider functions
on GQZA\GA associated with a character of ZA. Since ZA

∼= A×, the center character is just a
Grossencharacter.

Now we recall the definition of classical modular forms.
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Let

Γ = Γ0(N) =

{(

a b
c d

)

∈ SL2(Z)

∣

∣

∣

∣

c ≡ 0(modN)

}

and let ψ be a character of NZ\Z. Then Sk (Γ0(N), ψ) consists of f which are holomorphic on
H, vanish at ever cusp of Γ0(N) and satisfy

f

(

az + b

cz + d

)

= ψ(a)(cz + d)kf(z).

In order to lift f ∈ Sk(Γ0(N), ψ) to a “nice” function on GA, we lift it to GL+
2
(R) firstly,

where

GL+
2
(R) = {g ∈ GL2(R),det g > 0}.

Proposition 7.2. For f ∈ Sk(Γ0(N), ψ) and g∞ =

(

a b
c d

)

∈ GL+
2
(R), denote j(g∞, i) =

(cz + d) (det g∞)−
1

2 . The function

ϕf (g∞) = f(g∞i)j(g∞, i)
−k

is a “nice” function on GL+
2
(R).

Remark 2. Since SL2(R) = GL+

2
(R)/Z+(R), ϕf is “nice” as in theorem 5.2.

We know the class number of Q equals 1. The strong approximation implies that

A× = Q× × R+ ×
∏

p<∞

Z×
p .

And in GL2, we have

GA = GQ ×GL+
2
(R) ×

∏

p<∞

K ′
p, (7.1)

where K ′
p is any choice of open subgroup of Kp satisfying K ′

p = Kp for almost all p, and

det(K ′
p) = Z×

p for every p. Therefore, for N ∈ Z, one can choose

K ′
p = KN

p =

{(

a b
c d

)

∈ GL2(Zp)

∣

∣

∣

∣

c ≡ 0(modN)

}

.

Denote K0(N) =
∏

p<∞KN
p , we have

Γ0(N)\SL2(R) ∼= ZAGQ\GA/K0(N) (7.2)

In fact, (7.2) follows form the following proposition.

Proposition 7.3. We have

GQ

⋂

(

GL+

2
(R)

∏

p<∞

KN
p

)

= Γ0(N). (7.3)
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Proof. It is easy to check that L.H.S ⊇ R.H.S. Suppose g =

(

a b
c d

)

∈ L.H.S., then a, b, c, d ∈ Q,

det g > 0 and
(

a b
c d

)

∈
⋂

p<∞

KN
p .

It implies a, b, c, d ∈
⋂

p<∞ Zp = Z, det g ∈
⋂

p<∞ Z×
p = Z×, and c ≡ 0(modN). Thus g ∈

R.H.S. �

(7.3) implies we can view a character ψ of Z/NZ as a Grossencharacter, because

Z/NZ ∼=
∏

pr‖N

Z/prZ ∼=
∏

pr‖N

Zp/p
rZp.

Via (7.1), (7.2) and (7.3), we can lift f ∈ Sk(Γ0(N), ψ) to GA now.

Definition 7.4. With respect to (7.1), we have g = γg∞k where γ ∈ Q, g∞ ∈ GL+
2
(R) and

k ∈ K0(N). For any f ∈ Sk(Γ0(N), ψ), we define a function ϕ on GA as

ϕ(g) = ϕ(γg+
∞k) = ϕf (g∞)ψ(k), (7.4)

where ψ is a character of NZ\Z.

It is easy to check that the definition is well defined. In deed, we have

Proposition 7.5. The map f 7→ ϕ on GA is an isomorphism between Sk (Γ0(N), ψ) and the
space of functions on GA such that
(1) ϕ(γg) = ϕ(g), γ ∈ GQ;
(2) ϕ(zg) = ϕ(gz) = ψ(z)ϕ(g), z ∈ ZA;
(3) ϕ(gκ(θ)) = e−ikθϕ(g), κ(θ) =

(

cos θ sin θ
− sin θ cos θ

)

;

(4) ∆ϕ(g∞) = −k
2

(

k
2
− 1
)

ϕ(g∞);
(5) ϕ(gk0) = ϕ(g)ψ(k0), ∀k0 ∈ K0(N);
(6) ϕ is cuspidal, i.e.

∫

Q\A

ϕ

((

1 x
0 1

)

g

)

dx = 0, for almost all g.

A general definition of automorphic form is given as follows:

Definition 7.6. An automorphic form is a “nice” function ϕ on GA such that
(1) ϕ(γg) = ϕ(g), γ ∈ GQ;
(2) ϕ(zg) = ϕ(gz) = ψ(z)ϕ(g), where z ∈ ZA and ψ is a Grossencharacter.
(3) ϕ is right K-finite, where K = K∞

∏

p<∞KN
p ;

(4) As a function on G∞, ϕ is “smooth” and z-finite, where z is the center of the universal
enveloping algebra of G∞.

Next we consider the Fourier expansions for ϕ. For simplicity, we only consider the case
Γ = SL2(Z) and ψ = 1. Recall for f ∈ Sk(Γ),

f(z) =
∞
∑

n=1

an exp(2πinz).
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Let ϕ be the corresponding functions in L2
0. The Fourier expansion of ϕ is defined as

ϕ

((

1 x
0 1

)

g

)

=
∑

ξ∈Q

ϕξ(g)τ(ξx) for almost all g ∈ GA,

where τ(x) = e2πix∞
∏

p<∞ τp(xp) is a non-trivial additive character of A, τp are unramified
additive characters of Qp, and

ϕξ(g) =

∫

Q\A

ϕ

((

1 x
0 1

)

g

)

τ(ξx)dx.

Proposition 7.7. Let f(z) =
∑∞

n=1
ane

2πinz, Γ = SL2(Z) and ψ = 1. For the corresponding ϕ
and each y > 0, we have

ϕξ

((

y 0
0 1

))

=

{

ane
−2πny if ξ = n ∈ Z

0 otherwise.

Consequently,

ϕ

((

1 x
0 1

)(

y 0
0 1

))

=

∞
∑

n=1

ane
2πinz = f(z), z = x+ iy.

Proof. We know A = QAS∞, where AS∞ = R
∏

p<∞ Zp. Therefore,

Q\A =
(

Q
⋂

AS∞

)

\AS∞ = Z\R ×
∏

p<∞

Zp.

Since Γ = SL2(Z) and ψ = 1, it implies N = 1 and ϕ is right invariant on
∏

p<∞Kp. Assume

ξ = n ∈ Z. By (7.4), we have

ϕn

((

y 0
0 1

))

=

∫

Z\R

ϕ

((

1 x
0 1

)(

y 0
0 1

))

τ∞(nx)dx

=

∫

1

0

f(z)e−2πinxdx

= ane
−2πiny.

Now assume ξ 6∈ Z. There exists some p and some m > 0 such that ξ = αp−m with p and

α relatively prime. Since ϕ is right invariant by
∏

p<∞Kp and

(

1 pm−1

0 1

)

∈
∏

p<∞Kp, we
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compute

ϕξ

((

y 0
0 1

))

=

∫

Q\A

ϕ

((

1 x
0 1

)(

1 pm−1

0 1

)(

1 −pm−1

0 1

)(

y 0
0 1

)(

1 pm−1

0 1

))

τ(ξx)dx

=

∫

Q\A

ϕ

((

1 x+ pm−1

0 1

)(

y 0
0 1

))

τ(ξx)dx

=

∫

Q\A

ϕ

((

1 x
0 1

)(

y 0
0 1

))

τ (ξ(x− pm−1))dx

= τ(ξpm−1)

∫

Q\A

ϕ

((

1 x
0 1

))

dx

= τ(αp−1)ϕξ

((

y 0
0 1

))

.

This implies that ϕξ

((

y 0
0 1

))

= 0, since τ(αp−1) = τp(αp
−1) 6= 1. �
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