## Spectral analysis for $\Gamma \backslash \mathbb{H}$

## Erez Lapid

## §10 Spectral decomposition, hyperbolic lattice point problem(March 12, 2009)

Recall Bessel's inequality

$$
\sum_{j}\left|\left(u, e_{j}\right)\right|^{2} \leq\|u\|^{2}
$$

$\mathcal{H}$ is a Hilbert space, and $\left\{e_{j}\right\}$ is the orthogonal system. In our case, we consider functions in $L^{2}(\Gamma \backslash \mathbb{H}),\left\{e_{j}\right\}$ are orthogonal eigenfunctions of $\Delta$.

We take $k=k(u(z, w)) \in C_{c}^{\infty}(\mathbb{R}>0), k \mapsto h$ is the Selberg transform. We define

$$
K(z, w)=\sum_{\gamma \in \Gamma} k(z, \gamma w) .
$$

Fix $w$ and take $u=(z \mapsto K(z, w))$. If $\left(\Delta+\lambda_{j}\right) \varphi_{j}=0$, where $\lambda_{j}=s_{j}\left(1-s_{j}\right), s_{j}=\frac{1}{2}+i t_{j}$, then

$$
\left(u, \varphi_{j}\right)=\left(K(\cdot, w), \varphi_{j}\right)=\left(k\left(u(\cdot, w), \varphi_{j}\right)_{\mathbb{H}}=h\left(t_{j}\right) \varphi_{j}(w) .\right.
$$

Also,

$$
\left|\left(u, \int E\left(w ; \frac{1}{2}+i r\right) \mathrm{d} r\right)\right|^{2}=\int\left|h(r) E\left(w ; \frac{1}{2}+i r\right)\right|^{2} \mathrm{~d} r .
$$

The Bessel's inequality implies

$$
\sum_{j}\left|h\left(t_{j}\right)\right|^{2}\left|\varphi_{j}(w)\right|^{2}+\int_{A}^{B}|h(r)|^{2}\left|E\left(w ; \frac{1}{2}+i r\right)\right|^{2} \mathrm{~d} r \leq\|K(\cdot, w)\|_{\Gamma \backslash \mathbb{H} \cdot}^{2}
$$

We localize $k$, such that $k=\chi_{[0, \delta]}, \delta \ll 1$. We have

$$
\begin{align*}
\|K\|^{2} & =\int_{\Gamma \backslash \mathbb{H}} K(z, w)^{2} \mathrm{~d} \mu(z) \\
& =\int_{\Gamma \backslash \mathbb{H}} \sum_{\gamma, \gamma^{\prime}} k\left(u\left(\gamma^{\prime} z, w\right)\right) k\left(u\left(\gamma \gamma^{\prime}, w\right)\right) \mathrm{d} \mu(z) \\
& =\sum_{\gamma} \int_{\mathbb{H}} k(u(z, w)) k(u(z, \gamma w)) \mathrm{d} \mu(z) . \tag{0.1}
\end{align*}
$$

If $u(z, w)<\delta$ and $u(z, \gamma w)<\delta$, then we have

$$
u(w, \gamma w)<4 \delta(\delta+1) \leq 8 \delta
$$

Then, by polar coordinates

$$
\begin{aligned}
(0.1) & \ll \int_{\{z: u(z, w)<\delta\}} \sharp\{r: u(w, \gamma w) \leq 8 \delta\} \mathrm{d} \mu(z) \\
& =\operatorname{vol}\{z: u(z, w)<\delta\} \\
& =4 \pi \delta .
\end{aligned}
$$

Lemma. $\delta \ll h(t) \ll \delta$, if $t \ll \frac{1}{\sqrt{\delta}}$.

Proof. We have

$$
\begin{aligned}
h(t) & =\int_{\mathbb{H}} k(u(z, i)) y^{s} \mathrm{~d} \mu(z) \\
& =\int_{B_{\delta}=\{z: u(z, i)<\delta\}} y^{s} \mathrm{~d} \mu(z) .
\end{aligned}
$$

And

$$
u(z, i)<\delta \Rightarrow|y-1|<\sqrt{\delta} \Rightarrow\left|y^{s}-1\right| \leq \delta|y-1| \leq \frac{1}{2}
$$

if $t \ll \frac{1}{\sqrt{\delta}}$.
Thus,

$$
\left|\int_{B_{\delta}} y^{s} \mathrm{~d} \mu(z)-\operatorname{vol}\left(B_{\delta}\right)\right| \leq \frac{1}{2} \operatorname{vol}\left(B_{\delta}\right)
$$

Hence,

$$
\frac{1}{2} \operatorname{vol}\left(B_{\delta}\right) \leq h(t) \leq 2 \operatorname{vol}\left(B_{\delta}\right) .
$$

From Bessel's inequality, we get

$$
\left.\delta^{2}\left(\sum_{\left|t_{j}\right| \leq \frac{1}{\sqrt{8 \delta}}}\left|u_{j}(w)\right|^{2}\right)+\frac{1}{4 \pi} \int_{-\frac{1}{\sqrt{8 \delta}}}^{\frac{1}{\sqrt{8 \delta}}}\left|E\left(w ; \frac{1}{2}+i r\right)\right|^{2} \mathrm{~d} r\right) \ll \delta .
$$

If we take $\delta=\frac{1}{T^{2}}$ and $T \gg 1$, we get weak local Weyl law

$$
\sum_{t_{j}<T}\left|u_{j}(z)\right|^{2}+\frac{1}{4 \pi} \int_{-T}^{T}\left|E\left(w ; \frac{1}{2}+i r\right)\right|^{2} \mathrm{~d} r \ll T^{2}
$$

One can take it uniformly in $z, T^{2}+T \operatorname{Im} z$ for $\operatorname{Im} z \gg 1$.
Remark. By integrating over $z$, one gets

$$
\sharp\left\{t_{j}<T\right\} \ll t^{2} .
$$

Corollary. If $k$ is any point-pair invariant function, $K$ is the automorphic kernel,

$$
K(z, w)=\sum_{j} h\left(t_{j}\right) u_{j}(z) \overline{u_{j}(w)}+\frac{1}{4 \pi} \int_{-\infty}^{+\infty} h(r) E\left(z ; \frac{1}{2}+i r\right) E \overline{\left(w ; \frac{1}{2}+i r\right)} \mathrm{d} r .
$$

Suppose that

$$
|h(t)| \leq H(t), \quad t \in \mathbb{R},
$$

where $H$ is monotone, then

$$
\left.K(z, w)=\sum_{\frac{1}{2}<s_{j} \leq 1} h\left(t_{j}\right) u_{j}(z) \overline{u_{j}(w)}+O\left(\int_{0}^{\infty}(H(t)+1) t\right) \mathrm{d} t\right)
$$

Proof. Use partial summation or integral.

Hyperbolic lattice point problem: We study

$$
\sharp\{\gamma \in \Gamma: d(\gamma z, w)<R)\} \text { as } R \rightarrow \infty,
$$

where $z, w$ are fixed. All alternatively,

$$
\sharp\{\gamma \in \Gamma: u(\gamma z, w)<X)\}=: P(X) .
$$

(Recall that, in $\mathbb{R}^{2}, \Gamma=\mathbb{Z}^{2}$, this is the Gauss circle problem, $\sharp\left\{(a, b): a^{2}+b^{2}<R\right\}=\pi R+O(\sqrt{R})$ ),

$$
\begin{gathered}
\sharp\left\{(a, b): a^{2}-b^{2}<R\right\}=\sum_{n<R} \tau(n) \sim \text { area of a truncated hyperbolic, } \\
\sharp\left\{(a, b): a^{2}-b^{2}=n\right\} \sim \tau(n),
\end{gathered}
$$

where $\tau(n)$ is the number of divisors. Our goal is to get an error term for

$$
\begin{gathered}
P(X)-4 \pi X \\
P(X)=K(z, w) \quad \text { for } k=\chi_{[0, X]} .
\end{gathered}
$$

The main term should be the exceptional eigenvalue $\frac{1}{2}<s_{j} \leq 1$. For that, we bound for $h$.
Using $k$,

$$
P(X) \leq K(z, w) \leq P(X+Y),
$$

where $Y$ is a parameter. Recall

$$
\begin{aligned}
& q(v)=\int_{v}^{\infty} \frac{k(u)}{\sqrt{u-v}} \mathrm{~d} u, \\
& g(r)=q\left(e^{r}+e^{-r}-2\right), \\
& h(t)=\int_{-\infty}^{+\infty} e^{i r t} g(r) \mathrm{d} r .
\end{aligned}
$$

For our $k$, for any $f$, by partial integration we get

$$
\int_{0}^{\infty} f(u) k(u) \mathrm{d} u=\frac{1}{Y} \int_{X}^{X+Y} F(t) \mathrm{d} t
$$

where $F(t)=\int_{0}^{t} f(x) \mathrm{d} x$. For

$$
f(x)= \begin{cases}\frac{1}{\sqrt{x-v}}, & x>0 \\ 0, & \text { otherwise }\end{cases}
$$

we have

$$
\begin{aligned}
F(t)= & \min (0, \sqrt{t-v}) q(v)=\frac{1}{Y} \int_{X}^{X+Y} F(t) \mathrm{d} t \\
= & \frac{1}{Y}\left[\min \left(0,(X+Y-v)^{3 / 2}\right)-\min \left(0,(X-v)^{3 / 2}\right)\right] \\
& g^{\prime}(r)=q^{\prime}\left(e^{r}+e^{-r}-2\right)\left(e^{r}-e^{-r}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
-q^{\prime}(v) & =\frac{1}{Y}[\min (0,(X+Y-v)-\min (0,(X-v)] \\
& \leq q^{\prime}(0) \ll \sqrt{Y} .
\end{aligned}
$$

We have

$$
\begin{aligned}
h(t) & =\int_{-\infty}^{\infty} e^{i r t} g(r) \mathrm{d} r \\
& =\frac{1}{t^{2}} \int_{-\infty}^{\infty} e^{i r t} g^{\prime \prime}(r) \mathrm{d} r
\end{aligned}
$$

Trivially, we get

$$
\begin{gathered}
|h(t)| \ll \frac{1}{t^{2}} \int_{-\infty}^{\infty}\left|g^{\prime \prime}(r)\right| \mathrm{d} r=\frac{1}{t^{2}} \\
\text { total variation of } \mathrm{g}^{\prime} \ll \frac{1}{t^{2}} \max \left|g^{\prime}\right| \ll \frac{1}{Y} \frac{1}{t^{2}} X \sqrt{Y}=\frac{1}{t^{2}} \frac{X}{\sqrt{Y}} .
\end{gathered}
$$

So $\#$ of extreme of $g^{\prime} \ll 5$. If $\Gamma=S L_{2}(\mathbb{Z}), t \in \mathbb{R}$,

$$
\begin{gathered}
h\left(\frac{i}{2}\right)=\int_{0}^{\infty} k(u) \mathrm{d} u=4 \pi(X+Y) . \\
P(X)=\frac{4 \pi}{\operatorname{area}(\Gamma \backslash \mathbb{H})} X+O\left(Y+\frac{X}{\sqrt{Y}}\right),
\end{gathered}
$$

$u_{0}=\frac{1}{\sqrt{\text { areaa }(\Gamma \backslash \mathbb{H})}}$. Consequently, if $Y=X^{2 / 3}=O\left(X^{2 / 3}\right)$,

$$
\sharp\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in S L_{2}(\mathbb{Z}): a^{2}+b^{2}+c^{2}+d^{2} \leq X\right\}=3 X+O\left(X^{2 / 3}\right) .
$$

For

$$
\Gamma=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z}): a \equiv d(2), b \equiv c(2)\right\}
$$

which is conjugate to $\Gamma_{0}(2), r(n)=\sharp\left\{(a, b): n=a^{2}+b^{2}\right\}$, we have

$$
\sum_{n \leq X} r(n) r(n+1)=4 X+O\left(X^{2 / 3}\right)
$$

We consider functions on $\Gamma \backslash \mathbb{H}$, where $\mathbb{H}=S L_{2}(\mathbb{R}) / K$. We have $\Gamma \backslash \mathbb{H}=\Gamma \backslash S L_{2}(\mathbb{R}) / K$ and have the following relations : functions on $\Gamma \backslash \mathbb{H}=$ functions on $\Gamma \backslash S L_{2}(\mathbb{R}) / K=$ left $\Gamma$-invariant and right $K$-invariant functions on $G=S L_{2}(\mathbb{R})$

Look at

$$
C(\Gamma \backslash G)=\{\text { left } \Gamma \text {-invariant functions on } G\}
$$

G acts on $\Gamma \backslash \mathbb{H}$ by right translation. Therefore $G$ acts on $C(\Gamma \backslash G)$. Take $g \in G, f \in C(\Gamma \backslash G)$

$$
\underset{4}{[R(g) f](x)}=f(x g)
$$

$$
R(g): C(\Gamma \backslash G) \hookleftarrow
$$

$R: G \rightarrow \operatorname{Aut}(C(\Gamma \backslash G))$ is homomorphism of groups, i. e. $(R, C(\Gamma \backslash G))$ is a representation of $G$. Consider $L^{2}(\Gamma \backslash G, d g), d g$ is Haar measure. $R: G \rightarrow \mathfrak{U}\left(L^{2}(\Gamma \backslash G)\right), \mathfrak{U}$ is the group of unitary operators.
Main problem: Decompose $R$ into irreducible representation.

$$
\begin{gathered}
C(\Gamma \backslash G)^{K}=\left\{v \in C(\Gamma \backslash G): R(k)_{v}=v, \forall k \in K\right\}, \\
L^{2}(\Gamma \backslash \mathbb{H})=\left(L^{2}(\Gamma \backslash G)^{K} .\right.
\end{gathered}
$$

One can classify irreducible unitary representation of $G$. For any irreducible representation $(\pi, v)$ of $G$ (i.e. no closed $G$-invariant subspaces of $V$, or equivalently, no non-scalar operators which commute with $\pi(g), \forall g \in G)$.

$$
V^{K}=\{v \in V ; \pi(k) v=v, \forall k \in K\}
$$

is at most one-dimensional.
In the case where $\Gamma$ is uniform (co-compact).

$$
L^{2}(\Gamma \backslash G)=\oplus \pi_{i}
$$

this is the direct sum of Irreducible representation. Therefore

$$
L^{2}(\Gamma \backslash \mathbb{H})=\left(L^{2}(\Gamma \backslash G)^{K}=\oplus \pi_{i}^{K} .\right.
$$

$\left(m(\pi)<\infty\right.$, where $m(\pi)=$ multiplicity of $\pi$ in $\left.L^{2}(\Gamma \backslash G)\right) . \Delta$ preserves the isotypic compact of $\pi$. Eigenfunction of $\Delta \leftrightarrow$ irreducible representation $\pi$ which occurs in $L^{2}(\Gamma \backslash G)$ s. t. $\pi^{K} \neq 0$.

$$
\begin{gathered}
\operatorname{dim}\{\phi:(\Delta+\lambda) \phi=0\}=m(\pi), \\
\lambda \leftrightarrow \pi_{\lambda} .
\end{gathered}
$$

where $\lambda=\frac{1}{4}+s^{2}$, and $s \in \mathbb{R} \cup\left[-\frac{i}{2}, \frac{i}{2}\right]$. This is a parametrization of irreducible unitary representation, such that $\pi^{K} \neq 0$.

## Selberg's conjecture:

$$
\lambda_{1}(\Gamma(N)) \geq \frac{1}{4}, s_{i} \in \mathbb{R}, i>0 .
$$

Representation with $\lambda \geq \frac{1}{4}$ (i. e. $s \in \mathbb{R}$ ) have decaying matrix coefficients. If $(\pi, V)$ is an irreducible admissible representation, a matric coefficient of $\pi$ is a function of the form

$$
g \xrightarrow{\text { matrix coefficient }}\left(\pi(g) v_{1}, v_{2}\right),
$$

where $v \in V$, and

$$
\begin{gathered}
g=k_{1}\left(\begin{array}{ll}
a & \\
& a^{-1}
\end{array}\right) k_{2} \\
\int_{G}|f(g)|^{2+\varepsilon} \mathrm{dg}<\infty, \quad \varepsilon>0
\end{gathered}
$$

What about other representations which occur in $L^{2}(\Gamma \backslash G)$ modular forms + others.

Discrete series representations: for any $k=1,2, \ldots$ Denote $\sigma_{k}$ is the matrix coefficient in $L^{2}(G)$, we have

$$
L^{2}(G)=\oplus_{k=1}^{\infty} \sigma_{k} \oplus \int_{s \in i \mathbb{R}} \pi_{\frac{1}{4}+s^{2}} \mathrm{ds}
$$

(c.f. $\left.L^{2}(\mathbb{R})=\oplus \int_{\mathbb{R}} e^{i x} \mathrm{dx}\right)$

Denote $m\left(\sigma_{k}\right)=$ dimension of modular forms of weight $k+1$, we have weight $1 \rightarrow$ "limit of discrete series".

For $\Gamma=S L_{2}(z)$, Hecke operators : $\left\{T_{n}\right\}_{n \in \mathbb{Z}}$. Recall strong approximation:

$$
\begin{gathered}
S L_{2}(\mathbb{A})=S L_{2}(\mathbb{Q}) \cdot S L_{2}(\mathbb{R}) \cdot \prod_{p<\infty} S L_{2}\left(\mathbb{Z}_{p}\right) \\
S L_{2}(\mathbb{Q}) \backslash S L_{2}(\mathbb{A}) \longleftrightarrow S L_{2}(\mathbb{Z}) \backslash S L_{2}(\mathbb{R}) \cdot \prod_{p<\infty} K_{p} \\
S L_{2}(\mathbb{Q}) \backslash S L_{2}(\mathbb{A}) / \prod_{p \leq \infty} K_{p} \longleftrightarrow S L_{2}(\mathbb{Z}) \backslash S L_{2}(\mathbb{R}) / K_{\infty}=\Gamma(1) \backslash \mathbb{H} \\
S L_{2}(\mathbb{Q}) \backslash S L_{2}(\mathbb{A}) / K_{\infty} \prod_{p<\infty} K_{p}(N) \longleftrightarrow \Gamma(N) \backslash S L_{2} \mathbb{R} / K_{\infty}=\Gamma(N) \backslash \mathbb{H}
\end{gathered}
$$

where $K_{p}(N)$ is congruence subgroup of $K_{p}$. This is to say

$$
\begin{gathered}
S L_{2}(\mathbb{Q}) \backslash S L_{2}(\mathbb{A}) / K_{\infty}=\underset{\leftarrow}{\lim } \Gamma(N) \backslash \mathbb{H} \\
C\left(S L_{2}(\mathbb{Q}) \backslash S L_{2}(\mathbb{A})\right)^{K_{\infty}}=\underset{\longrightarrow}{\lim L^{2}(\Gamma(N) \backslash \mathbb{H})}
\end{gathered}
$$

The new problem: decomposition of $L^{2}\left(S L_{2}(\mathbb{Q}) \backslash S L_{2}(\mathbb{A})\right)$.
First part: what is the continuous spectrum? Answer: explicit construction using Eisenstein series.
What about discrete part? The analogue of Selberg conjecture in the principal becomes a bound on the Fourier transform of Maass forms.
Ramannujan-Petersson conjecture :

$$
\left\|a_{p}^{*}\right\| \leq 2
$$

The bound was proved by Delign.
Modular forms: $a_{p}^{*}=\frac{a_{p}}{p^{\frac{k-1}{2}}}$, trivial bound:

$$
a_{p}^{*} \leq \sqrt{p}
$$

Let

$$
\begin{gathered}
\lambda_{1} \leq \frac{1}{4}+\delta^{2} \quad\left(s \leq \frac{1}{2}+\delta\right), \\
a_{p} \leq p^{\delta}+p^{-\delta}
\end{gathered}
$$

So for the best known $\delta$ is $\frac{7}{64}$.
e. $g$.

$$
P(X)=\sum_{\frac{1}{2} \leq c_{j}<1} c X^{s j}+O\left(X^{\frac{2}{3}}\right) .
$$

Kim-Shahidi : For $\delta \leq \frac{1}{6}$,

$$
P(X)=\frac{\pi}{\operatorname{area}(\Gamma \backslash \mathbb{H})} X+O\left(X^{\frac{2}{3}}\right)
$$

Higher weight case: $G(\mathbb{Q}) \backslash G(\mathbb{A}), G$ is linear reductive group.
What is the decomposition into irreducible representation? $\Gamma \backslash G / K$ ring of invariant differential operators. what is the continuous spectrum?(Langlands). what is the discrete part? There is an analogue of Ramanujan conjecture(By Arthur). Langlands functoriality suggests a relation between the automorphic spectrum of $L^{2}\left(G_{i}(\mathbb{Q}) \backslash G_{i}(\mathbb{A})\right)$ for many pairs $\left(G_{i}, G_{j}\right)$ of reductive groups.

