- **2.** Let $f: \mathbb{R} \to \mathbb{R}$ be any function. Prove that the set of points x in \mathbb{R} where f is continuous is a countable intersection of open sets.
- **4.** Suppose $f:[a,b]\to \mathbf{R}$ be a L^1 -integrable function. Extend f to be 0 outside the interval [a,b]. Let

$$\phi(x) = \frac{1}{2h} \int_{x-h}^{x+h} f$$

Show that

$$\int_a^b |\phi| \le \int_a^b |f|.$$

- 5. Suppose $f \in L^1[0,2\pi]$, $\hat{f}(n) = \frac{1}{2\pi} \int_0^{2\pi} f(x)e^{-inx}dx$, prove that
 - 1) $\sum_{|n|=0}^{\infty} |\hat{f}(n)|^2 < \infty$ implies $f \in L^2[0, 2\pi]$,
 - 2) $\sum_{n=0}^{\infty} |n\hat{f}(n)| < \infty$ implies that $f = f_0, a.e., f_0 \in C^1[0, 2\pi],$

where $C^1[0, 2\pi]$ is the space of functions f over [0, 1] such that both f and its derivative f' are continuous functions.

2011

- **4.** Let $S = \{x \in \mathbb{R} \mid |x \frac{p}{q}| \le c/q^3$, for all $p, q \in \mathbb{Z}, q > 0, c > 0\}$, show that S is uncountable and its measure is zero.
 - 5. Let C([0,1]) denote the Banach space of real valued continuous functions on [0,1] with the sup norm, and suppose that $X \subset C([0,1])$ is a dense linear subspace. Suppose $l:X\to\mathbb{R}$ is a linear map (not assumed to be continuous in any sense) such that $l(f)\geq 0$ if $f\in X$ and $f\geq 0$. Show that there is a unique Borel measure μ on [0,1] such that $l(f)=\int f d\mu$ for all $f\in X$.

2012

4. Let f(x) be a real measurable function defined on [a, b]. Let n(y) be the number of solutions of the equation f(x) = y. Prove that n(y) is a measurable function on \mathbb{R} .

- 3. In the unit interval [0, 1] consider a subset $E = \{x | \text{ in the decimal expansion of } x \text{ there is no } 4\}$, show that E is measurable and calculate its measure.
- 4. Let $1 , <math>L^p([0,1], dm)$ be the completion of C[0,1] with the norm: $||f||p = (\int_0^1 |f(x)|^p dm)^{\frac{1}{p}}$, where dm is the Lebesgue measure. Show that $\lim_{\lambda \to \infty} \lambda^p m(x||f(x)| > \lambda) = 0$.

2013

1. Suppose that f is an integrable function on \mathbf{R}^d . For each $\alpha > 0$, let $E_{\alpha} = \{x | |f(x)| > \alpha\}$. Prove that:

$$\int_{\mathbf{R}^d} |f(x)| dx = \int_0^\infty m(E_\alpha) d\alpha.$$

- 2. Let f be a function of bounded variation on [a,b], f_1 its generalized derivative as a measure, i.e. $f(x)-f(a)=\int_a^x f_1(y)dy$ for every $x\in [a,b]$ and $f_1(x)$ is an integrable function on [a,b]. Let f' be its weak derivative as a generalized function, i.e. $\int_a^b f(x)g'(x)dx=-\int_a^b f'(x)g(x)dx$, for any smooth function g(x) on [a,b], g(a)=g(b)=0. Show that:
 - a) If f is absolutely continuous, then $f' = f_1$.
- b) If the weak derivative f' of f is an integrable function on [a, b], then f(x) is equal to an absolutely continuous function outside a set of measure zero.

2014

4. Let $U(\xi)$ be a bounded function on \mathbb{R} with finitely many points of discontinuity, prove that

$$P_U(x) = \frac{1}{\pi} \int_{\mathbb{R}} \frac{y}{(x-\xi)^2 + y^2} U(\xi) d\xi$$

is a harmonic function on the upper half plane $\{z \in \mathbb{C} | Imz > 0\}$ and it converges to $U(\xi)$ as $z \to \xi$ at a point ξ where $U(\xi)$ is continuous.

5. Let $f \in L^2(\mathbb{R})$ and let \hat{f} be its Fourier transform. Prove that

$$\int_{-\infty}^{\infty} x^2 |f(x)|^2 dx \int_{-\infty}^{\infty} \xi^2 |\hat{f}(\xi)|^2 d\xi \ge \frac{(\int_{-\infty}^{\infty} |f(x)|^2 dx)^2}{16\pi^2},$$

under the condition that the two integrals on the left are bounded.

(Hint: Operators $f(x) \to xf(x)$ and $\hat{f}(\xi) \to \xi \hat{f}(\xi)$ after Fourier transform are non-commuting operators. The inequality is a version of the uncertainty principle.)

- **4.** Let $D \subset \mathbb{R}^n$ be a bounded open set, $f: \bar{D} \to \bar{D}$ is a smooth map such that its Jacobian $\left| \frac{\partial f}{\partial x} \right| \equiv 1$, where \bar{D} denotes the closure of D. Prove
 - (a) for each small ball $B_{\epsilon}(x)$, there exists a positive integer k such that $f^{k}(B_{\epsilon}(x)) \cap B_{\epsilon}(x) \neq \emptyset$, where $B_{\epsilon}(x)$ denotes the ball centered at x with radius ϵ ;
 - (b) there exists $x \in \bar{D}$ and a sequence $k_1, k_2, \dots k_j, \dots$ such that $f^{k_j}(x) \to x$ as $k_j \to \infty$.

2015

- 1. Let $f_n \in L^2(R)$ be a sequence of measurable functions over the line, $f_n \to f$ almost everywhere. Let $||f_n||_{L^2} \to ||f||_{L^2}$, prove that $||f_n f||_{L^2} \to 0$.
- 2. Let f be a continuous function on [a,b], define $M_n = \int_a^b f(x)x^n dx$. Suppose that $M_n = 0$ for all n, show that f(x) = 0 for all x.
- **6.** Let H_1 be the Sobolev space on the unit interval [0,1], i.e. the Hilbert space consisting of functions $f \in L^2([0,1])$ such that

$$||f||_1^2 = \sum_{n=-\infty}^{\infty} (1+n^2)|\hat{f}(n)|^2 < \infty;$$

where

$$\hat{f}(n) = \frac{1}{2\pi} \int_0^1 f(x)e^{-2\pi i nx} dx$$

are Fourier coefficients of f. Show that there exists constant C > 0 such that

$$||f||_{L^{\infty}} \le C||f||_1$$

for all $f \in H_1$, where $||.||_{L^{\infty}}$ stands for the usual supremum norm. (Hint: Use Fourier series.)

2. Let f be a Lebesgue integrable function over $[a, b + \delta], \delta > 0$, prove that

$$\lim_{h\to 0} \int_a^b |f(x+h) - f(x)| dx \to 0.$$

2016

- **2.** Let p > 0 and suppose $f_n, f \in L^p[0, 1]$ and $||f_n f||_p = (\int_0^1 |f_n(x) f(x)|^p dx)^{\frac{1}{p}} \to 0$ as $n \to \infty$.
 - a) Show that for every $\epsilon > 0$,

$$\lim_{n \to \infty} m(\{x \in [0, 1] | |f_n(x) - f(x)| > \epsilon\}) = 0.$$

Here m is the Lebesgue measure.

b) Show that there exists a subsequence f_{n_j} such that $f_{n_j}(x) \to f(x)$ for almost every $x \in [0,1]$.

1. Suppose that F is continuous on [a,b], F'(x) exists for every $x \in (a,b), F'(x)$ is integrable. Prove that F is absolutely continuous and

$$F(b) - F(a) = \int_a^b F'(x) dx.$$

2. Suppose that f is integrable on \mathbb{R}^n , let $K_{\delta}(x) = \delta^{-\frac{n}{2}} e^{\frac{-\pi|x|^2}{\delta}}$ for each $\delta > 0$. Prove that the convolution

$$(f*K_\delta)(x)=\int_{{\bf R}^n}f(x-y)K_\delta(y)dy$$
 is integrable and $||(f*K_\delta)-f||_{L^1({\bf R}^n)}\to 0$, as $\delta\to 0$.