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§4 The global functional equation (Mar. 13)

Let F be a global field. Suppose that c is a quasi-character of F×\A×
F with factorization

c = χ| · |s, where χ is unitary character and σ = Re(s) is the exponent of c. For f ∈ S(AF ), i.e.
f =

∏
v fv and fv = 1Ov

for almost all v, define the global zeta function as

ζ(f, c) =

∫

A
×

F

f(x)c(x) d×x

=
∏

v

∫

F×

v

fv(xv)cv(xv)d
×xv

which is convergent for σ = Re(s) > 1. Indeed,

∏

v

unramified

∫

F×

v

|fv(xv)cv(xv)| d
×xv =

∏′

v

∫

Ov

|xv|
Re(s)d×xv =

∏′

v

1

1 − q−σ
v

converges for σ > 1.

Theorem 4.1 (Global Theorem, Tate). ζ(f, c) extends to a meromorphic function of s and

satisfies the functional equation

ζ(f, c) = ζ(f̂ , c∨).

It is holomorphic everywhere except when c 6= | · |−iτ , τ ∈ R in which case it has simple poles at

s = iτ and s = 1 + iτ with residues given by

−Vol(F×\A1
F )f(0) and Vol(F×\A1

F )f̂(0)

respectively.

In order to prove the theorem, we need the following Riemann-Roch theorem, which is also
called Poisson summation formula.

Lemma 4.2 (Riemann-Roch). Let x be an idele of K and let f ∈ S(AF ). Then

∑

γ∈F

f(γx) =
1

|x|

∑

γ∈F

f̂(γx−1)

Proof : Since A
×
F = (0,∞)A1

F , we have

ζ(f, c) =

∫

A
×

F

f(x)c(x) d×x

=

∫ ∞

0

∫

A1

F

f(tx)c(tx)d×x
dt

t
.
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Denote

ζt(f, c) =

∫

A1

F

f(tx)c(tx)d×x.

Claim:

ζt(f, c) = ζt−1(f̂ , c∨) + f̂(0)

∫

F×\A1

F

c∨(
x

t
)d×x − f(0)

∫

F×\A1

F

c(xt)d×x. (4.1)

In fact, we have

ζt(f, c) =

∫

F×\A1

F

∑

γ∈F×

f(γtx)c(γtx)d×x.

So then

ζt(f, c) + f(0)

∫

F×\A1

F

c(xt)d×x =

∫

F×\A1

F

c(tx)
∑

γ∈F

f(γtx)d×x

Riemann − Roch −→ =

∫

F×\A1

F

c(tx)

|tx|

∑

γ∈F

f̂(γt−1x−1)d×x

replace x with x−1 −→ = f̂(0)

∫

F×\A1

F

c∨(
x

t
)d×x +

∫

F×\A1

F

c∨(
x

t
)

∑

γ∈F×

f̂(γ
x

t
)d×x

= f̂(0)

∫

F×\A1

F

c∨(
x

t
)d×x + ζt−1(f̂ , c∨)

which yields the claim.

Now back to proof of the theorem. We may write

ζ(f, c) =

∫ 1

0
ζt(f, c)

dt

t
+

∫ ∞

1
ζt(t, c)

dt

t
.

The second integral is simply
∫

{x∈A
×

F
:|x|≥1}

f(x)c(x)d×x

which converges normally for all s. Indeed, the convergence is better for small σ, and since we
know it converges for σ > 1, it converges everywhere.

For the first integral, we have
∫ 1

0
ζt(f, c)

dt

t
=

∫ 1

0
ζt−1(f̂ , c∨)

dt

t
+ E,

where

E =

∫ 1

0

[

f̂(0)

∫

F×\A1

F

c∨(
x

t
)d×x − f(0)

∫

F×\A1

F

c(xt)d×x

]
dt

t
.

Via substitution of t−1 for t, we find that
∫ 1

0
ζt−1(f̂ , c∨)

dt

t
=

∫ ∞

1
ζt(f̂ , c∨)

dt

t
,

which is also convergent for all s by the argument above.
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It remains to analyze E. We distinguish the following two cases.
Case 1: c = χ| · |s is nontrivial on F×\A1

F . By the orthogonality of characters on compact
group, we have ∫

F×\A1

F

c(tx)d×x = 0,

which implies that E = 0.
Case 2: c = χ| · |s is trivial on F×\A1

F . We know that in fact c = | · |s
′

, where s′ = s − iτ , for
some real τ , and in this case

∫

F×\A1

F

c(tx)d×x = |t|s
′

Vol(F×\A1
F ).

Thus

E =

∫ 1

0

[
f̂(0)ts

′−1Vol(F×\A1
F ) − f(0)ts

′

Vol(F×\A1
F )

] dt

t

= Vol(F×\A1
F )

[
f̂(0)

s′ − 1
−

f(0)

s′

]
,

which has poles at s′ = 0, 1.
So far, we have

ζ(f, c) =

∫ ∞

1
ζt(f, c)

dt

t
+

∫ ∞

1
ζt(f̂ , c∨)

dt

t
+ E(f, c)

=

∫ ∞

1

∫

A
×

F

f(tx)c(tx)d×x
dt

t
+

∫ ∞

1

∫

A
×

F

f̂(tx)c∨(tx)d×x
dt

t
+ E(f, c)

Since
̂̂
f = f(−x) and ((c)∨)∨ = c,

it follows also that

ζ(f̂ , c∨) =

∫ ∞

1
ζt(f̂ , c∨)

dt

t
+

∫ ∞

1
ζt(

̂̂
f , c∨)

dt

t
+ E(f̂ , c∨)

=

∫ ∞

1

∫

A
×

F

f̂(tx)c∨(tx)d×x
dt

t
+

∫ ∞

1

∫

A
×

F

f(−tx)c(tx)d×x
dt

t
+ E(f̂ , c∨).

So we only need to show

E(f, c) = E(f̂ , c∨).

But

E(f, c) = Vol(F×\A1
F )

[
s′f̂(0) − (s′ − 1)f(0))

s′(1 − s′)

]

= E(f̂ , c∨).

Now the functional equation follows by the above arguments. �

Theorem 4.3 (Tate, Hecke). Let χ be any unitary characters of F×\A×
F , and recall L(s, χ) =

L(χ| · |s) =
∏

p≤∞
L(s, χv). Then L(s, χ) extends meromophically to all s in C and satisfies the

functional equation

L(s, χ) = ε(s, χ)L(1 − s, χ)

where ε(s, χ) is non-zero.
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Proof. Assume L(s, χ) meromorphic. Tate’s main theorem says

ζ(s, f, χ) = ζ(1 − s, f̂ , χ) =
∏

v

ζ(1 − s, f̂v, χv)

Divide by
∏

v ζ(s, fv, χv) to get

1 =
∏

v

ζ(s, f̂v, χv)

ζ(s, fv, χv)
=

∏

v

ε(s, χv)L(1 − s, χv)

L(s, χv)
=

ε(s, χ)L(1 − s, χ)

L(s, χ)
,

where
ε(s, χ) =

∏

v

ε(s, χv)

�

Remark 1. Hecke looked at the function

LS(s, χ) =
∏

v

unramified

L(s, χv)

and had a functional equation between LS(s, χ) and LS(1 − s, χ), i.e., he considered the L-
function constructed only from finite unramified primes.
Remark 2. Taking F = Q, and χ = 1, we get the functional equation of Riemann’s zeta
function

ξ(s) = π− s

2 Γ(
s

2
)ζ(s) = ξ(1 − s).

Remark 3. We give some modern interpretations here. Following Tate, Langlands tries to
give the functional equation of L(s, π) where π =

⊗
πv is an automorphic representation of a

reductive group, and generalizes the theory of GL(1). Sarnak follows Hecke and considers the
L-functions over almost all places.
Automorphic form on GL(1). Assume F is a global field. An automorphic form on GL1(F )
is just a Grossencharacter(a unitary character of idele of F module F×). In the next two weeks,
we will study automorphic forms on GL(2) .
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