Langlands picture of automorphic forms and L-functions

— Lecture series at Shandong University, Mar. 2009

STEPHEN GELBART

$\S3$ Tate's Local theory (Mar. 10)

The local *L*-functions are defined as follows.

If F is non-Archimedean, we set

$$L(c) = L(s, \chi) = \begin{cases} \frac{1}{1-\chi(\varpi)q^{-s}} & \text{if } \chi \text{ is unramified;} \\ 1 & \text{otherwise,} \end{cases}$$

where ϖ is the uniformizer parameter and $|\varpi| = q^{-1}$.

If $F = \mathbb{R}$, then $U_F = \{\pm 1\}$. Set

$$L(c) = L(s, \chi) = \begin{cases} \Gamma_{\mathbb{R}}(s) = \pi^{-s/2} \Gamma(s/2) & \text{if } \chi = 1; \\ \Gamma_{\mathbb{R}}(s+1) & \text{if } \chi = \text{sgn.} \end{cases}$$

If $F = \mathbb{C}$, then $U_F = S^1$, and χ takes the form $\chi_n : e^{i\theta} \mapsto e^{in\theta}$, for some $n \in \mathbb{Z}$. Set

$$L(c) = L(s, \chi_n) = \Gamma_{\mathbb{C}}\left(s + \frac{|n|}{2}\right) = (2\pi)^{-\left(s + \frac{|n|}{2}\right)}\Gamma\left(s + \frac{|n|}{2}\right).$$

Theorem 3.1 (Tate's local theorem). Let $f \in S(F)$ and $c(x) = |x|^s \chi(x)$ with χ unitary of exponent $\sigma = \Re(s)$. Take

$$\zeta(f,c) := \zeta(f,\chi,s) = \int_{F^{\times}} f(x)c(x) \, d^{\times}x$$

and let $c^{\vee} = c^{-1} |\cdot|$. Then the following statements hold: (A) $\zeta(f,c)$ is absolutely convergent for $\sigma > 0$. (B) If $0 < \sigma < 1$, there is a functional equation

$$\zeta(\widehat{f}, c^{\vee}) = \gamma(c, \psi, \mathrm{d}x)\zeta(f, c) \tag{3.1}$$

for some $\gamma(c, \psi, dx)$ independent of f, which in fact is meromorphic as a function of s. (C) For all $s \in \mathbb{C}$, there is a non-zero factor $\varepsilon(c, \psi, dx)$ which satisfies the relation

$$\gamma(c,\psi,\mathrm{d}x) = \varepsilon(c,\psi,\mathrm{d}x) \frac{L(c^{\vee})}{L(c)}.$$
(3.2)

Remark. The global *L*-function is defined as the product of local *L*-functions over $p \leq \infty$. In the next section, we will see that the product of $\gamma(c, \psi, dx)$ over $p \leq \infty$ becomes 1, and so we get the functional equation of the global *L*-function.

Proof of (\mathbf{A}) . Let

$$I(f,c) = \int_{F^{\times}} |f(x)| |x|^{\sigma} \mathrm{d}^{\times} x.$$

It is sufficient to show that I(f,c) is convergent for $\sigma > 0$. This is obvious for F Archimedean, since $f \in \mathcal{S}(F)$ implies that f is smooth and rapidly decreasing. For F non-Archimedean,

 $f \in \mathcal{S}(F)$, i.e. f is locally constant and compact supported. We know $\{\mathfrak{p}^r\}_{r=0}^{\infty}$ forms a basis of compact neighborhoods of $0 \in F$. Thus it suffices to consider the special case $f = 1_{\mathfrak{p}^r}$. We have

$$I(f,c) = \int_{\mathfrak{p}^r - \{0\}} |x|^{\sigma} \mathrm{d}^{\times} x$$

$$= \sum_{j=r}^{\infty} \int_{A_j = \varpi^j U_F} |x|^{\sigma} \mathrm{d}^{\times} x$$

$$= \sum_{j=r}^{\infty} q^{-j\sigma} \int_{U_F} \mathrm{d}^{\times} x$$

$$= \frac{q^{-r\sigma}}{1 - q^{-\sigma}} \mathrm{Vol}(U_F, \mathrm{d}^{\times} x).$$

Obviously I(f, c) converges for $\sigma > 0$.

In order to prove (B), we need the following lemma

Lemma 3.2. Let $\sigma = \Re s$. For any $f, g \in \mathcal{S}(F)$ and $0 < \sigma < 1$, we have

$$\zeta(f,c)\zeta(\widehat{g},c^{\vee}) = \zeta(\widehat{f},c^{\vee})\zeta(g,c).$$
(3.3)

Proof.

$$\begin{split} \zeta(f,c)\zeta(\widehat{g},c^{\vee}) &= \int_{F^{\times}} \int_{F^{\times}} f(x)\widehat{g}(y)c(xy^{-1})|y|\mathrm{d}^{\times}x\mathrm{d}^{\times}y\\ &= \int_{F^{\times}} \int_{F^{\times}} f(x)\widehat{g}(xy)c(y^{-1})|xy|\mathrm{d}^{\times}x\mathrm{d}^{\times}y\\ &= \int_{F^{\times}} \{f,g\}(y)c(y^{-1})|y|\mathrm{d}^{\times}y, \end{split}$$

where

$$\{f,g\}(y) = \int_{F^{\times}} f(x)\widehat{g}(xy)|x| \mathrm{d}^{\times}x.$$

Claim. $\{f, g\} = \{g, f\}.$

Indeed, since $|x|d^{\times}x = c \cdot dx$,

$$\begin{split} \{f,g\}(y) &= \int_{F^{\times}} f(x)\widehat{g}(xy)|x|\mathrm{d}^{\times}x \\ &= \int_{F^{\times}} \int_{F} f(x)g(z)\psi(xyz)|x|\mathrm{d}z\mathrm{d}^{\times}x \\ &= c\int_{F\times F} f(x)g(z)\psi(xyz)\mathrm{d}z\mathrm{d}x \\ &= \{g,f\}(y). \end{split}$$

This establishes the claim and the lemma follows.

Proof of (**B**). Fix a function $f_0 \in \mathcal{S}(F)$ and put

$$\gamma(c,\psi,\mathrm{d}x) = \frac{\zeta(\widehat{f}_0,c^{\vee})}{\zeta(f_0,c)}.$$

Then by the preceding lemma, γ is independent of the choice of f_0 , and we have

$$\zeta(\widehat{f}, c^{\vee}) = \gamma(c, \psi, \mathrm{d}x)\zeta(f, c)$$

as asserted. Since $\zeta(f,c)$ is defined for c with exponent $\sigma = \Re s > 0$, while $\zeta(\widehat{f}, c^{\vee})$ is defined for $\sigma < 1$, we will get the requisite meromorphic continuation of $\zeta(f,c)$ if we can show that $\gamma(c, \psi, dx)$ is meromorphic everywhere. This will follow from the proof of (**C**), where we will in fact compute $\gamma(c, \psi, dx)$ for a suitable f_0 .

Proof of (C). Case $F = \mathbb{R}$.

Take dx to be the usual Lebesgue measure and choose $\psi(x) = e^{-2\pi i x}$. We distinguish two cases.

If $c(x) = |x|^s$, then we take $f(x) = e^{-\pi x^2}$ which is clearly in $\mathcal{S}(\mathbb{R})$. We compute

$$\begin{aligned} \zeta(f,c) &= \int_{\mathbb{R}^{\times}} e^{-\pi x^2} |x|^s \mathrm{d}^{\times} x \\ &= 2 \int_0^\infty e^{-\pi x^2} x^{s-1} \mathrm{d} x \\ &= \pi^{-\frac{s}{2}} \int_0^\infty e^{-u} u^{\frac{s}{2}-1} \mathrm{d} u \\ &= \pi^{-\frac{s}{2}} \Gamma\left(\frac{s}{2}\right). \end{aligned}$$

By the definition of L(c), we know that $\zeta(f,c) = L(c)$ for all characters in this case. On the other hand, we have

$$\widehat{f}(y) = \int_{\mathbb{R}} e^{-\pi x^2} e^{-2\pi i x y} \mathrm{d}x = f(y).$$

Thus

$$\begin{aligned} \zeta(\widehat{f}, c^{\vee}) &= \int_{\mathbb{R}^{\times}} e^{-\pi x^2} |x|^{1-s} \mathrm{d}^{\times} x \\ &= \pi^{-\frac{1-s}{2}} \Gamma\left(\frac{1-s}{2}\right) = L(c^{\vee}). \end{aligned}$$

Therefore, for $c(x) = |x|^s$, we have

$$\gamma(c,\psi,\mathrm{d}x) = \frac{L(c^{\vee})}{L(c)}$$

and $\varepsilon(c, \psi, \mathrm{d}x) = 1$.

If $c(x) = |x|^s \operatorname{sgn}(x)$, then we take $f(x) = xe^{-\pi x^2} \in \mathcal{S}(\mathbb{R})$. Since $\operatorname{sgn}(x) = x/|x|$, we find that

$$\begin{aligned} \zeta(f,c) &= \int_{\mathbb{R}^{\times}} x e^{-\pi x^2} \cdot \frac{x}{|x|} \cdot |x|^s \mathrm{d}^{\times} x \\ &= 2 \int_0^\infty e^{-\pi x^2} x^s \mathrm{d} x \\ &= \pi^{-\frac{s+1}{2}} \Gamma\left(\frac{s+1}{2}\right). \end{aligned}$$

Thus $\zeta(f,c) = L(c)$ by definition. Through integration by contour, we have

$$\widehat{f}(y) = iye^{-\pi y^2}.$$

Thus

$$\begin{aligned} \zeta(\widehat{f}, c^{\vee}) &= i \int_{\mathbb{R}^{\times}} x e^{-\pi x^2} \cdot \frac{x}{|x|} \cdot |x|^{1-s} \mathrm{d}^{\times} x \\ &= i L(c^{\vee}). \end{aligned}$$

Therefore, for $c(x) = |x|^s \operatorname{sgn}(x)$, we have

$$\gamma(c, \psi, \mathrm{d}x) = i \frac{L(c^{\vee})}{L(c)}$$

and $\varepsilon(c, \psi, \mathrm{d}x) = i$.

Case $F = \mathbb{C}$.

For z = x + iy, we have $|z| = z\overline{z} = x^2 + y^2$, dz = 2dxdy, and $d^{\times}z = \frac{2dxdy}{z} = 2\frac{drd\theta}{z}$

$$\mathbf{d}^{\times} z = \frac{2axay}{x^2 + y^2} = 2\frac{aras}{r}$$

The additive character is given by

$$\psi(z) = e^{-2\pi i z \overline{z}}.$$

Since $F^{\times} = \mathbb{C}^* = \mathbb{R}^{\times}_+ \times S^1$, every character of \mathbb{C}^* takes the form

$$c_{s,n}: re^{i\theta} \mapsto r^s e^{in\theta}$$

for some uniquely defined complex s and integral n. Put

$$f_n(z) = \begin{cases} (2\pi)^{-1}\overline{z}^n e^{-2\pi z\overline{z}} & \text{for } n \le 0\\ (2\pi)^{-1} z^{-n} e^{-2\pi z\overline{z}} & \text{for } n < 0. \end{cases}$$

We give the following results as exercise.

$$\gamma(c_{s,n},\psi,\mathrm{d}z) = i^{|n|} \frac{L(c_{s,n}^{\vee})}{L(c_{s,n})},$$

and

$$\varepsilon(c_{s,n},\psi,\mathrm{d}z)=i^{|n|}.$$

Case F is non-Archimedean.

We call \mathfrak{p}^m is the conductor of a non trivial additive character ψ , if $m = \inf\{r \in \mathbb{Z}, \psi|_{\mathfrak{p}^m} \equiv 1\}$, where $\mathfrak{p}^0 = O_F$. We call \mathfrak{p}^n the conductor of a multiplicative character $c : F^{\times} \mapsto \mathbb{C}^*$, if $U_n = 1 + \mathfrak{p}^n (n \leq 0)$ is the largest subgroup on which c is 1. c is unramified if its conductor is $U_0 = U_F = O_F^{\times}$. Assuming c is unramified, i.e. $c(x) = |x|^s$ for $x \in O_F - \{0\}$. Let ψ be an additive character with conductor \mathfrak{p}^m . Define

$$f(x) = \begin{cases} \psi(x) & \text{if } x \in \mathfrak{p}^m \\ 0 & \text{otherwise.} \end{cases}$$

Then we have

$$\begin{aligned} \zeta(f,c) &= \int_{\mathfrak{p}^m - \{0\}} \psi(x) |x|^s \mathrm{d}^{\times} x \\ &= \sum_{j=m}^{\infty} \int_{\varpi^j U_F} |x|^s \mathrm{d}^{\times} x \\ &= \sum_{j=m}^{\infty} q^{-js} \int_{U_F} \mathrm{d}^{\times} x \\ &= q^{-ms} \mathrm{Vol}(U_F, \mathrm{d}^{\times} x) L(c_{s,0}), \end{aligned}$$

where

$$L(c_{s,0}) = L(s,1) = \frac{1}{1 - q^{-s}}.$$

Exercise. $\widehat{f}(y) = \operatorname{Vol}(\mathfrak{p}^{\mathfrak{m}}, \mathrm{d}x) \mathbb{1}_{O_F}(y).$

ζ

According to above , we have

$$(\widehat{f}, c^{\vee}) = \int_{F-0} \widehat{f}(y) c^{\vee}(y) \mathrm{d}^{\times} y$$
(3.4)

$$= \operatorname{Vol}(\mathfrak{p}^m, \mathrm{d}x) \int_{O_F - 0} c^{\vee}(y) \mathrm{d}^{\times} y \tag{3.5}$$

$$= \operatorname{Vol}(\mathfrak{p}^m, \mathrm{d}x) \sum_{k \ge 0} q^{-k(1-s)} \int_{U_F} c^{\vee}(y) \mathrm{d}^{\times} y$$
(3.6)

$$= \operatorname{Vol}(\mathfrak{p}^m, \mathrm{d}x) \operatorname{Vol}(U_F, \mathrm{d}^{\times}x) L(c^{\vee}).$$
(3.7)

Therefore, we get

$$\gamma(c, \psi, \mathrm{d}x) = q^{ms} \mathrm{Vol}(\mathfrak{p}^m, \mathrm{d}x) \frac{L(c^{\vee})}{L(c)},$$

Clearly $\gamma(c,\psi,\mathrm{d} x)$ is meromorphic and $\varepsilon(c,\psi,\mathrm{d} x)$ is nonzero and

$$\varepsilon(c,\psi,\mathrm{d}x) = q^{ms}\mathrm{Vol}(\mathfrak{p}^m,\mathrm{d}x)$$

Assuming c is ramified, one can take $c(x) = |x|^s \omega(\frac{x}{|x|})$, where ω has ramified conductor \mathfrak{p}^n and

$$f(x) = \begin{cases} \psi(x) & \text{if } x \in \mathfrak{p}^{m-n}; \\ 0 & \text{otherwise.} \end{cases}$$

Let ψ be an additive conductor \mathfrak{p}^m and . We state result here and leave caculation to readers.

$$\begin{aligned} \zeta(f,c) &= q^{-(m-n)}g(\omega,\psi_{\varpi^{m-n}}),\\ \zeta(\widehat{f},c^{\vee}) &= \operatorname{Vol}(\mathfrak{p}^{m-n},\mathrm{d}x)\operatorname{Vol}(1+\mathfrak{p}^n,\mathrm{d}^{\times}x)\omega(-1).\\ 5 \end{aligned}$$

where

$$g(\omega, \psi_{\varpi^{m-n}}) = \int_{U_F} \omega(u) \psi_{\varpi^{m-n}}(u) \mathrm{d}^{\times} x$$

is the Gauss sum. Since $L(c^{\vee}) = L(c) = 1$, we get

$$\gamma(c,\psi,\mathrm{d}x) = \varepsilon(\chi,\psi,\mathrm{d}x) = q^{(m-n)s} \frac{\mathrm{Vol}(\mathfrak{p}^{m-n},\mathrm{d}x)\mathrm{Vol}(1+\mathfrak{p}^n,\mathrm{d}^{\times}x)\omega(-1)}{g(\omega,\psi_{\varpi^{m-n}})}.$$

Again $\varepsilon(\chi, \psi, dx)$ is nonzero and equals $\gamma(c, \psi, dx)$, it is easy to see that $\gamma(c, \psi, dx)$ is meromorphic as a function of s.