Langlands picture of automorphic forms and L-functions
— Lecture series at Shandong University, Mar. 2009

STEPHEN GELBART

§3 Tate’s Local theory (Mar. 10)

The local L-functions are defined as follows.
If F'is non-Archimedean, we set

1 . . .

————— if x is unramified;

L Cc) = L S’ = I_X(w)q s !
(c) (5:) { 1 otherwise,

where @ is the uniformizer parameter and || = ¢~ L.

If F =R, then Up = {£1}. Set
B | Tr(s) = 7T_S/2F(S/2) if y =1;
L(C) = L(Sa X) - { FR(S + 1) if X = sgn.

If F =C, then Up = S', and y takes the form y, : €? — ™, for some n € Z. Set

L(c) = L(s,xn) =Tc <s + %) = (2w)‘(5+@)r <s + @) .

Theorem 3.1 (Tate’s local theorem). Let f € S(F') and c(x) = |z|*x(x) with x unitary of
exponent 0 = R(s). Take

C(f? C) = C(fa X5 S) = o f(!E)C(ﬂj‘) d*x

and let ¢/ = c¢7|-|. Then the following statements hold:
(A) C(f,c) is absolutely convergent for o > 0.
(B) If0 < o < 1, there is a functional equation

C(f.e") = (e, dz)((f,c) (3.1)

for some y(c,,dx) independent of f, which in fact is meromorphic as a function of s.
(C) For all s € C, there is a non-zero factor £(c,,dx) which satisfies the relation

L(cY)
L(c)
Remark. The global L-function is defined as the product of local L-functions over p < co. In

the next section, we will see that the product of v(c,,dz) over p < oo becomes 1, and so we
get the functional equation of the global L-function.

Proof of (A). Let

v(e, ¥, dz) = e(e, ¢, dx) (3.2)

150 = [ 5@l s,

It is sufficient to show that I(f,c) is convergent for ¢ > 0. This is obvious for F' Archimedean,
since f € S(F') implies that f is smooth and rapidly decreasing. For F' non-Archimedean,
1



f e S(F),ie. fislocally constant and compact supported. We know {p"}>2, forms a basis of
compact neighborhoods of 0 € F'. Thus it suffices to consider the special case f = 1,r. We have

I(f,e) = / |z|7d*x
pr—{0}
= Z/ |z|7d™ z
J=r Aj=wiUp

o0
= Zq_]a/ dxx
i=r Ur

—Tro

q
1—gq~
Obviously I(f,c) converges for o > 0. g

—Vol(Ur,d*z).

In order to prove (B), we need the following lemma

Lemma 3.2. Let 0 = Rs. For any f,g € S(F) and 0 < 0 < 1, we have

C(f.)C(G.cY) = C(F,¢V)C(g.c). (3.3)
Proof.
crac@e) = [ [ f@aetar oty
:/ F@)a(ay)e(y™Y)|eyld*zd*y
F>< F><
- / (.9} @)el M) yld"y,
where

{f,9}(y j/ f(@)g(zy)|z|d .

Claim' {f7 g} = {gvf}
Indeed, since |z|d*z = ¢ - dx,

{fady) = | fla)glay)lzld e

_ /F/f b(ayz)|z|dzd” z
C

f(x)g(2)Y(ryz)dzdr
FxF
{9, f} ().

This establishes the claim and the lemma follows. O
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Proof of (B). Fix a function fy € S(F) and put

AV,
eoin = Lo

Then by the preceding lemma, 7 is independent of the choice of fy, and we have

C(f.e") = (e, 9, dz)¢(fc)

as asserted. Since ((f,c) is defined for ¢ with exponent o = Rs > 0, while ¢ (f, c') is defined
for o < 1, we will get the requisite meromorphic continuation of {(f,c) if we can show that
v(e, 1, dx) is meromorphic everywhere. This will follow from the proof of (C), where we will in
fact compute (¢, v, dx) for a suitable fj. O

Proof of (C). Case F =R.

Take dx to be the usual Lebesgue measure and choose 9(x) = e
cases.

If ¢(z) = |x|*, then we take f(z) = ¢~™ which is clearly in S(R). We compute

—2mix

. We distinguish two

e = [ e atas

o0 2
= 2/ e e
0

S o0 S
= 7 2 / e tuz  du
0

By the definition of L(c), we know that ((f,¢) = L(c) for all characters in this case. On the
other hand, we have

fly) = Ae_ﬂx2€_2ﬂixydw = f(y).
Thus
C(J/C\a CV) _ / e—7rx2|x|l—sd><x
RX

_ 5 <1 . 5) = I(cY).

Therefore, for c¢(z) = |x|®, we have

and £(c, v, dx) = 1.



If ¢(x) = |z|*sgn(z), then we take f(z) = ze~™" € S(R). Since sgn(x) = z/|z|, we find that
T

(o) = / v L d¥e
RX |$|

o0 2
= 2/ e ™ 2fda
0

541 S+1
= 7 2T .
()

Thus ((f,¢) = L(c) by definition. Through integration by contour, we have
~ . —r 2
fly) = iye™™".

Thus
C(f,c") = ’L/ pe ™ . T lz['*d"
RX |z|
= iL(c").
Therefore, for ¢(x) = |z|*sgn(z), we have

L(cY)
L(c)

v(e y,dz) =
and £(c, v, dx) = 1.

Case F' =C.
For z = x + iy, we have |z| = 2Z = 2 + 2, dz = 2dady, and
e 2dxdy 2drd9.

2?4y o

The additive character is given by
w(z) — e—27riz2
Since F* = C* = R} x S1, every character of C* takes the form

Csn T‘ew — 'r'sema

for some uniquely defined complex s and integral n. Put

fulz) = (2m)~1z"e 27 for n <0

nE)T (2m) e for n < 0.
We give the following results as exercise.

L(c!,)

dz) = jlnl 28m/

’Y(CS,WJ 1/}7 Z) 1 L(Cs’n)7

and
e(Csm,,dz) = il

Case I’ is non-Archimedean.

We call p™ is the conductor of a non trivial additive character v, if m = inf{r € Z,¢|ymn = 1},
where p® = Op. We call p” the conductor of a multiplicative character ¢ : F* — C*, if
U, =1+p"(n <0) is the largest subgroup on which ¢ is 1. ¢ is unramified if its conductor is
Uy =Ur = Oj}.
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Assuming c¢ is unramified, i.e. c¢(z) = |z|® for z € Op — {0}. Let 1 be an additive character
with conductor p™. Define

Fz) = { P(x) ifxep™

10 otherwise.

Then we have

C(fie) = /pm_{o}zb(:n)|:n|sdxx

[ee]
= Z/ |z|*d*
j=m wiUp

= ¢ "™Vol(Up,d*z)L(csy),

where 1
L(cso) = L(s,1) = =
Exercise. f(y) = Vol(p™,dz)1o, (y).
According to above , we have
(Fey = [ Ty (34)
F—0
— Vollp"de) [ )ty (3.5)
Or—0
= Vol(p™,dxz) Z q_k(l_s)/ c’(y)d*y (3.6)
k>0 Ur
= Vol(p™,dz)Vol(Ur,d*z)L(c"). (3.7)
Therefore, we get
L(cY)

(e, ¢, dz) = ¢™*Vol(p™, dx)

HON

Clearly v(c,,dz) is meromorphic and (¢, 1, dz) is nonzero and

e(e,,dx) = ¢™*Vol(p™, dz).

Assuming c¢ is ramified, one can take c¢(z) = ]az\sw(%‘), where w has ramified conductor p”

and

Fz) = { Y(x) ifxep™™

10 otherwise.

Let ¥ be an additive conductor p'™ and . We state result here and leave caculation to readers.

((f? C) = q_(m_n)g(quﬁwm*”)v

C(f,eY)y = Vol(p™ ™, dz)Vol(1 + p",d” z)w(—1).
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where
o) = [ w@ion o (s
F
is the Gauss sum. Since L(cV) = L(c) = 1, we get
s Vol(p™ ™ dx)Vol(1 + p™, d*x)w(—1)
¢, dz) = e(x, ¢, dz) = ¢ :
/7( ) ( ) g(wv ¢wm7")
Again e(x, ¢, dx) is nonzero and equals (¢, v, dz), it is easy to see that (¢, v, dz) is mero-
morphic as a function of s. O




