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§3 Tate’s Local theory (Mar. 10)

The local L-functions are defined as follows.
If F is non-Archimedean, we set

L(c) = L(s, χ) =

{ 1
1−χ(̟)q−s if χ is unramified;

1 otherwise,

where ̟ is the uniformizer parameter and |̟| = q−1.
If F = R, then UF = {±1}. Set

L(c) = L(s, χ) =

{
ΓR(s) = π−s/2Γ(s/2) if χ = 1;
ΓR(s+ 1) if χ = sgn.

If F = C, then UF = S1, and χ takes the form χn : eiθ 7→ einθ, for some n ∈ Z. Set

L(c) = L(s, χn) = ΓC

(
s+

|n|

2

)
= (2π)

−
(
s+

|n|
2

)

Γ

(
s+

|n|

2

)
.

Theorem 3.1 (Tate’s local theorem). Let f ∈ S(F ) and c(x) = |x|sχ(x) with χ unitary of

exponent σ = ℜ(s). Take

ζ(f, c) := ζ(f, χ, s) =

∫

F×

f(x)c(x) d×x

and let c∨ = c−1| · |. Then the following statements hold:

(A) ζ(f, c) is absolutely convergent for σ > 0.
(B) If 0 < σ < 1, there is a functional equation

ζ(f̂ , c∨) = γ(c, ψ,dx)ζ(f, c) (3.1)

for some γ(c, ψ,dx) independent of f , which in fact is meromorphic as a function of s.
(C) For all s ∈ C, there is a non-zero factor ε(c, ψ,dx) which satisfies the relation

γ(c, ψ,dx) = ε(c, ψ,dx)
L(c∨)

L(c)
. (3.2)

Remark. The global L-function is defined as the product of local L-functions over p ≤ ∞. In
the next section, we will see that the product of γ(c, ψ,dx) over p ≤ ∞ becomes 1, and so we
get the functional equation of the global L-function.

Proof of (A). Let

I(f, c) =

∫

F×

|f(x)||x|σd×x.

It is sufficient to show that I(f, c) is convergent for σ > 0. This is obvious for F Archimedean,
since f ∈ S(F ) implies that f is smooth and rapidly decreasing. For F non-Archimedean,
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f ∈ S(F ), i.e. f is locally constant and compact supported. We know {pr}∞r=0 forms a basis of
compact neighborhoods of 0 ∈ F . Thus it suffices to consider the special case f = 1pr . We have

I(f, c) =

∫

pr−{0}
|x|σd×x

=

∞∑

j=r

∫

Aj=̟jUF

|x|σd×x

=

∞∑

j=r

q−jσ

∫

UF

d×x

=
q−rσ

1 − q−σ
Vol(UF ,d

×x).

Obviously I(f, c) converges for σ > 0. �

In order to prove (B), we need the following lemma

Lemma 3.2. Let σ = ℜs. For any f, g ∈ S(F ) and 0 < σ < 1, we have

ζ(f, c)ζ(ĝ, c∨) = ζ(f̂ , c∨)ζ(g, c). (3.3)

Proof.

ζ(f, c)ζ(ĝ, c∨) =

∫

F×

∫

F×

f(x)ĝ(y)c(xy−1)|y|d×xd×y

=

∫

F×

∫

F×

f(x)ĝ(xy)c(y−1)|xy|d×xd×y

=

∫

F×

{f, g}(y)c(y−1)|y|d×y,

where

{f, g}(y) =

∫

F×

f(x)ĝ(xy)|x|d×x.

Claim. {f, g} = {g, f}.

Indeed, since |x|d×x = c · dx,

{f, g}(y) =

∫

F×

f(x)ĝ(xy)|x|d×x

=

∫

F×

∫

F
f(x)g(z)ψ(xyz)|x|dzd×x

= c

∫

F×F
f(x)g(z)ψ(xyz)dzdx

= {g, f}(y).

This establishes the claim and the lemma follows. �
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Proof of (B). Fix a function f0 ∈ S(F ) and put

γ(c, ψ,dx) =
ζ(f̂0, c

∨)

ζ(f0, c)
.

Then by the preceding lemma, γ is independent of the choice of f0, and we have

ζ(f̂ , c∨) = γ(c, ψ,dx)ζ(f, c)

as asserted. Since ζ(f, c) is defined for c with exponent σ = ℜs > 0, while ζ(f̂ , c∨) is defined
for σ < 1, we will get the requisite meromorphic continuation of ζ(f, c) if we can show that
γ(c, ψ,dx) is meromorphic everywhere. This will follow from the proof of (C), where we will in
fact compute γ(c, ψ,dx) for a suitable f0. �

Proof of (C). Case F = R.
Take dx to be the usual Lebesgue measure and choose ψ(x) = e−2πix. We distinguish two

cases.
If c(x) = |x|s, then we take f(x) = e−πx2

which is clearly in S(R). We compute

ζ(f, c) =

∫

R×

e−πx2

|x|sd×x

= 2

∫ ∞

0
e−πx2

xs−1dx

= π−
s
2

∫ ∞

0
e−uu

s
2
−1du

= π−
s
2 Γ

(s
2

)
.

By the definition of L(c), we know that ζ(f, c) = L(c) for all characters in this case. On the
other hand, we have

f̂(y) =

∫

R

e−πx2

e−2πixydx = f(y).

Thus

ζ(f̂ , c∨) =

∫

R×

e−πx2

|x|1−sd×x

= π−
1−s
2 Γ

(
1 − s

2

)
= L(c∨).

Therefore, for c(x) = |x|s, we have

γ(c, ψ,dx) =
L(c∨)

L(c)

and ε(c, ψ,dx) = 1.
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If c(x) = |x|ssgn(x), then we take f(x) = xe−πx2

∈ S(R). Since sgn(x) = x/|x|, we find that

ζ(f, c) =

∫

R×

xe−πx2

·
x

|x|
· |x|sd×x

= 2

∫ ∞

0
e−πx2

xsdx

= π−
s+1

2 Γ

(
s+ 1

2

)
.

Thus ζ(f, c) = L(c) by definition. Through integration by contour, we have

f̂(y) = iye−πy2

.

Thus

ζ(f̂ , c∨) = i

∫

R×

xe−πx2

·
x

|x|
· |x|1−sd×x

= iL(c∨).

Therefore, for c(x) = |x|ssgn(x), we have

γ(c, ψ,dx) = i
L(c∨)

L(c)

and ε(c, ψ,dx) = i.

Case F = C.
For z = x+ iy, we have |z| = zz = x2 + y2, dz = 2dxdy, and

d×z =
2dxdy

x2 + y2
= 2

drdθ

r
.

The additive character is given by
ψ(z) = e−2πizz.

Since F× = C
∗ = R

×
+ × S1, every character of C

∗ takes the form

cs,n : reiθ 7→ rseinθ

for some uniquely defined complex s and integral n. Put

fn(z) =

{
(2π)−1zne−2πzz for n ≤ 0
(2π)−1z−ne−2πzz for n < 0.

We give the following results as exercise.

γ(cs,n, ψ,dz) = i|n|
L(c∨s,n)

L(cs,n)
,

and
ε(cs,n, ψ,dz) = i|n|.

Case F is non-Archimedean.
We call pm is the conductor of a non trivial additive character ψ, if m = inf{r ∈ Z, ψ|pm ≡ 1},

where p0 = OF . We call pn the conductor of a multiplicative character c : F× 7→ C
∗, if

Un = 1 + pn(n ≤ 0) is the largest subgroup on which c is 1. c is unramified if its conductor is
U0 = UF = O×

F .
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Assuming c is unramified, i.e. c(x) = |x|s for x ∈ OF − {0}. Let ψ be an additive character
with conductor pm. Define

f(x) =

{
ψ(x) if x ∈ pm

0 otherwise.

Then we have

ζ(f, c) =

∫

pm−{0}
ψ(x)|x|sd×x

=

∞∑

j=m

∫

̟jUF

|x|sd×x

=
∞∑

j=m

q−js

∫

UF

d×x

= q−msVol(UF ,d
×x)L(cs,0),

where

L(cs,0) = L(s, 1) =
1

1 − q−s
.

Exercise. f̂(y) = Vol(pm,dx)1OF
(y).

According to above , we have

ζ(f̂ , c∨) =

∫

F−0
f̂(y)c∨(y)d×y (3.4)

= Vol(pm,dx)

∫

OF−0
c∨(y)d×y (3.5)

= Vol(pm,dx)
∑

k≥0

q−k(1−s)

∫

UF

c∨(y)d×y (3.6)

= Vol(pm,dx)Vol(UF ,d
×x)L(c∨). (3.7)

Therefore, we get

γ(c, ψ,dx) = qmsVol(pm,dx)
L(c∨)

L(c)
,

Clearly γ(c, ψ,dx) is meromorphic and ε(c, ψ,dx) is nonzero and

ε(c, ψ,dx) = qmsVol(pm,dx).

Assuming c is ramified, one can take c(x) = |x|sω( x
|x|), where ω has ramified conductor pn

and

f(x) =

{
ψ(x) if x ∈ pm−n;
0 otherwise.

Let ψ be an additive conductor pm and . We state result here and leave caculation to readers.

ζ(f, c) = q−(m−n)g(ω,ψ̟m−n ),

ζ(f̂ , c∨) = Vol(pm−n,dx)Vol(1 + p
n,d×x)ω(−1).
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where

g(ω,ψ̟m−n) =

∫

UF

ω(u)ψ̟m−n(u)d×x

is the Gauss sum. Since L(c∨) = L(c) = 1, we get

γ(c, ψ,dx) = ε(χ,ψ,dx) = q(m−n)s Vol(pm−n,dx)Vol(1 + pn,d×x)ω(−1)

g(ω,ψ̟m−n)
.

Again ε(χ,ψ,dx) is nonzero and equals γ(c, ψ,dx), it is easy to see that γ(c, ψ,dx) is mero-
morphic as a function of s. �
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