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Let F be a global number field, A the adele ring of F and ψ an automorphic form on GL1.
Denote G = GLn, Z = center of G. We consider the following space.

L2(ZAGF \GA, ψ) = {ϕ : GF \GA → C measurable;

ϕ(zg) = ψ(z)ϕ(g),∀z ∈ ZA;
∫

ZAGF \GA

|ϕ(g)|2d∗g <∞},

where d∗g is the respective Haar measure on GA.
Let Rψ(g) be the right regular unitary representation of GA on L2(ZAGF \GA, ψ). The rep-

resentation decomposes as follows:

Rψ(g) = ⊕jπj +

∫

πsds,

where πj and πs are irreducible unitary representation of GA, which are in the discrete part and
continuous part, respectively.

An irreducible unitary representation π of GA is called automorphic, if it is realized as some
πj or πs(for some G). π is called cuspidal if it is not one-dimensional and realizable as some πj.

Remark. For G = GL1, we have ZA = GA. Thus

L2(ZAGF \GA, ψ) = {ψ}.

This shows that automorphic forms on GL1 are just Grossencharacters.

Every automorphic representation π has an L-series associated to it. Langlands conjectured
that every L-series that arose in number theory has to appear in the above list of automorphic
forms. This kind of transfer of L-series is called functoriality.

Example 1. Class field theory
Let L/F be an abelian extension of number fields, σ an irreducible representation of G(L/F ),

and L(s, σ) the corresponding Artin L-series. Via Artin’s reciprocity law, one has

L(s, σ) = L(s, χσ),

where χσ is the corresponding Grossencharacter of F , i.e. automorphic form of GL1 over F ,
and L(s, χσ) is the L-series attached to χσ which was studied by Hecke and Tate. This implies
that the Artin-L series are just L-series of automorphic forms of GL1.

Example 2. Non-abelian Artin L-series
Similarly, Let L/F be a Galois extension of number fields, and σ an irreducible represen-

tation of G(L/F ) with dimension n, L(s, σ) the corresponding Artin L-series. Via Langlands
functoriality, it is conjectured that

L(s, σ) = L(s, πσ),

where πσ is an automorphic form on GLn over F . In fact, it is pretty known in the case n = 2.
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Example 3. Symmetric L-series
Assume π is an automorphic form of GL2. It is conjectured that

L(s, symm(π)) = L(s,Πsymm),

where Πsymm is an m+1 dimensional automorhpic form. This conjecture implies the Ramanujan
conjecture and Sato-Tate conjecture.

Example 4. Hasse-Weil L-series
Assume E is an elliptic curve, and L(s,E) the corresponding Hasse-Weil L-series. It was

partly proved by A.Wiles in his famous paper that

L(s,E) = L(s, πE),

where πE is an automorphic form of GL2.

This short sketch of the Langlands Program shows us the real importance of the case GL2

and automorphic forms on it.

1. Classical Definition of Automorphic Forms

Going back to 1940’s, we give the classical defination of automorphic forms. For simplicity,
we only consider the case Γ = SL(2,Z).

Definition 1 (Classical). Let f(z) be a complex valued function on H. Consider the following
conditions.

(1) f is holomorphic;
(2) f is “modular” or “automorphic”, i.e.

f

(

az + b

cz + d

)

= (cz + d)kf(z),

(

a b
c d

)

∈ Γ;

(3) f is “holomorphic at ∞”;
(4) f is “cuspidal at ∞”.

We call f modular form or automorphic form, if f satisfies the first three conditions. Moreover,
we call f cusp form, if f satisfies all the conditions above.

Remark. It follows from condition (2) that f(z + 1) = f(z), thus we have

f(z) =
∑

n

ane
2πinz.

f “holomorphic at ∞” means only non-negative n appear; it is cuspidal at ∞ means only positive
n appear.

Denote Mk(Γ) the space of modular forms and Sk(Γ) the space of cusp forms. We have
Sk(Γ) ⊂ Mk(Γ) and dimSk(Γ) is finite. The Petersson inner product on Sk(Γ) is defined as
follows:

(f, g) =

∫∫

H

f(z)ḡ(z)yk
dxdy

y2
.
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Example 1. The most famous example is the Ramanujan function,

∆(z) = eπiz(1 − e2πiz)24 =

∞
∑

n=1

τ(n)e2πiz .

It is a modular form of weight 12 for Γ = SL2(Z) and generates the one-dimensional space
S12(Γ). Ramanujan conjectured that

τ(p)τ(q) = τ(pq) for (p, q) = 1,

τ(n) = O(n11/2+ε).

These have been proved by Mordell and Deligne respectively.

The Hecke operators T (p) : Sk(Γ) → Sk(Γ) are defined by

T (p)f(z) = pk−1
∑

a>0

ad=p

d−1
∑

b=0

f

(

az + b

d

)

d−k.

One can show T (p) are Hermitian with respect to the Petersson inner product, and commute
with each other. So there exists an orthornormal basis {fj} for Sk(Γ) such that

T (p)fj = λpfj.

Therefore, if f ∈ Sk(Γ) is an eigenfunction of Tp for all p and satisfies a(1) = 1, we have

λp = a(p),

a(p)a(q) = a(pq) for (p, q) = 1.

The L-series attached to f ∈ Sk(Γ) is defined as follows

L(s, f) = (2π)−sΓ(s)D(s, f),

where

D(s, f) =

∞
∑

n=1

ann
−s

is a Dirichlet series. Hecke studied L(s, f) and gave the following theorem.

Theorem 5.1 (Hecke, around 1935). We have

(1) D(s, f) converges in some half-plane. L(s, χ) is analytically continuous for all s in C

and satisfies

L(s, f) = ε(s, f)L(k − s, f),

where

varepsilon(s, f) = ik.

Moreover, the converse is also true.

(2) D(s, f) will be Eulerian if and only if

T (p)f = apf for any p.

In this case,

D(s, f) =
∏

p<∞

(1 − app
−s + pk−1−2s)−1.
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Remark. Hecke Operator is very much like the Grossencharacter.

2. Group theory in Automorphic forms

We start from 1951 when Gelfond firstly looked at H as K\SL2(R). Let G = SL(2,R). We
know G acts on H transitively, and

stab(i) = K = SO(2) =

{(

cos θ sin θ
− sin θ cos θ

)}

.

Therefore we have H = K\G. Iwasawa decomposition implies that G = NAK, where

N =

{(

1 ∗
0 1

)}

A =

{(

a 0
0 a−1

)}

.

Denoting B = NA, we have the bijective H → B given by

x+ iy 7→

(

y1/2 xy−1/2

y−1/2

)

=

(

1 x
1

)(

y1/2

y−1/2

)

Therefore, one can use coordinates (x, y, θ) to determine g. For any g ∈ G, we have

g =

(

1 x
1

) (

y1/2

y−1/2

)(

cos θ sin θ
− sin θ cos θ

)

. (5.1)

With respect to (5.1), the Haar measure d∗g on G can be expressed as
∫

G
ϕ(g)d∗g =

1

2π

∫ ∞

−∞

∫ ∞

0

∫ 2π

0
ϕ(x, y, θ)dx

dy

y
dθ.

Theorem 5.2. Denote j(g, i) = (ci + d). For f ∈ Sk(Γ),

f → ϕ(g) = ϕf (g) = f(gi)j(g, i)−k

gives an isomorphism from Sk(Γ) to Ak(Γ), the space of functions satisfying

(1) ϕ(γg) = ϕ(g),∀γ ∈ Γ.

(2) ϕ(gκ(θ)) = ϕ(g)e−ikθ,∀κ(θ) =

(

cos θ sin θ
− sin θ cos θ

)

.

(3) ϕ is bounded, in particular, ϕ ∈ L2(Γ\G).
(4) ϕ is cuspidal on G, i.e.

∫ 1

0
ϕ

((

1 x
0 1

)

g

)

dx = 0, ∀ g ∈ G.

(5) ∆ϕ = −k
2

(

k
2 − 1

)

ϕ.

Sketch of Proof: It is easy to check that j(γg, i) = j(γ, gi)j(g, i). Thus

ϕ(γg) = j(γg, i)−kf(γgi)

= j(γg, i)−kj(γ, gi)kf(gi)

= j(g, i)−kf(gi)

= ϕ(g).
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Similarly, one can show ϕf satisfies conditions (2),(3),(4) and the map is injective and isometry.
In fact, f being holomorphic implies that ϕf is “nice” for ∆. Thus the injectivity and condition
(5) follow by next theorem. �

Theorem 5.3. Let R(g) be the right regular representation of G on L2(Γ\G). Then ∆ operates

on smooth functions of L2(Γ\G) in terms of the coordinates (x, y, θ) as

∆ = −y2(
∂2

∂x2
+

∂2

∂y2
) + y

∂2

∂x∂θ
.

One has R∆ = ∆R. Via Schur’s lemma, ∆ acts on any G-invariant irreducible subspace of

L2(Γ\G) as scalar.

Remark. Other functions in L(Γ\G) are corresponding to maass wave forms!

Definition 2 (General Definition). An automorphic cuspidal form ϕ on G is a smooth complex
valued function such that

(1) ϕ(γg) = ϕ(g), ∀ γ ∈ Γ;
(2) ϕ is right K-finite;
(3) ϕ is cuspidal on G, i.e.

∫ 1

0
ϕ

((

1 x
0 1

)

g

)

dx = 0, ∀ g ∈ G;

(4) ϕ is bounded;
(5) ϕ is an eigenfunction of ∆.

Example. Maass wave cusp forms
Let Ws(Γ) denote the space of smooth functions on Γ\G, such that ϕ is K-invariant, bounded,

cuspidal and ∆ϕ =
(

1−s2

4

)

ϕ. Then f(z) 7→ ϕ(g) = f(gi) gives an isomorphism from Ws(Γ) to

the space of functions in H which is cuspidal and satisfies

∆∗f =

(

1 − s2

4

)

f,

where

∆∗ = −y2

(

∂2

∂x2
+

∂2

∂y2

)

.

They are the functions that Maass studied.

In the next section, we will use eigenvalues and ∆-eigenspaces to classify the irreducible
cuspidal sub-representations of R(g).
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