Final Exam of Real Analysis

School of Mathematics, Shandong University

Instructions: This is a closed book, closed notes exam! Show all details in your proof in English. You have two hours to complete this test. Good luck! 注意事项: 卷面分5分,试题总分95分.其中卷面整洁,书写规范(5分);卷面较整洁,书写较规范(3分);书写潦草, 乱涂乱画(0分).

1. (10 points) Suppose $A \subset E \subset B$, where A and B are measurable sets of finite measure. Prove that if m(A) = m(B), then E is measurable.

- 2. (20 points) (1) State Egorov's theorem and Lusin's theorem.
- (2) Prove Lusin's theorem.
- 3. (10 points) (1) Let $E = \{(x, y) \in [0, 1]^2 : \text{at least one of } x, y \text{ is rational} \}$. Compute mE.
- (2) Compute $\lim_{n\to\infty} \int_0^\infty \frac{1+nx^2}{(1+x^2)^n} dx$.
- 4. (15 points) Prove that
- (1) if $f \in L^p(\mathbb{R}^n)$ $(1 \le p < \infty)$, then $\lim_{t\to 0} \int_{\mathbb{R}^n} |f(x+t) f(x)|^p dx = 0$. (Hint: $C_c(\mathbb{R}^n)$ is dense in $L^p(\mathbb{R}^n)$.)
- (2) if $f \in L^1(\mathbb{R}^n)$ and $\widehat{f}(y) = \int_{\mathbb{R}^n} f(x) e^{-2\pi i x y} dx$, then $\lim_{|y| \to \infty} \widehat{f}(y) = 0$
- 5. (20 points) Let E be a measurable subset of \mathbb{R}^n and $f, f_n \in L^2(E)$. Show that when $n \to \infty$, $||f_n - f||_2 \to 0$ if and only if $||f_n||_2 \to ||f||_2$ and $\langle f_n, g \rangle \to \langle f, g \rangle$ for any $g \in L^2(E)$.
- 6. (20 points) Let $f : \mathbb{R} \to \mathbb{R}$. Prove that f satisfies the Lipschitz condition $|f(x) f(y)| \le M|x y|$ for some M > 0 and all $x, y \in \mathbb{R}$ if and only if f is absolutely continuous and $|f'(x)| \le M$ for a.e. x.