On Some Topics in Automorphic Representations

Dihua Jiang
University of Minnesota

December, 2007
Introduction

Automorphic Representations

Automorphic L-functions

Langlands Functoriality

Beyond the Genericity

Final Remarks
Acknowledgement

My research is supported in part by USA NSF Grants, by US-Israeli BSF Grants, and by the Chinese Academy of Sciences; and also by Project 111 at East China Normal University.
Basic Structures of Numbers

► **Theorem (Fundamental Theorem of Arithmetic)**

For any \(r \in \mathbb{Q} \), there is prime numbers \(p_1, p_2, \cdots, p_t \) and integers \(e_1, e_2, \cdots, e_t \) such that

\[
r = \pm p_1^{e_1} p_2^{e_2} \cdots p_t^{e_t}.
\]

This is unique up to permutation.
Basic Structures of Numbers

▶ Theorem (Fundamental Theorem of Arithmetic)

For any \(r \in \mathbb{Q} \), *there is prime numbers* \(p_1, p_2, \cdots, p_t \) *and integers* \(e_1, e_2, \cdots, e_t \) *such that*

\[
r = \pm p_1^{e_1} p_2^{e_2} \cdots p_t^{e_t}.
\]

This is unique up to permutation.

▶ It is a **multiplicative structure** in terms of primes.
Theorem (Fundamental Theorem of Arithmetic)

For any \(r \in \mathbb{Q} \), there is prime numbers \(p_1, p_2, \cdots, p_t \) and integers \(e_1, e_2, \cdots, e_t \) such that

\[
r = \pm p_1^{e_1} p_2^{e_2} \cdots p_t^{e_t}.
\]

This is unique up to permutation.

- It is a **multiplicative structure** in terms of primes.
- The additive structure in terms of primes should be the **Goldboch Conjecture**, which asserts the expression of even integers as sum of two primes, and is a much harder problem.
It is much easier for kids to learn addition of numbers than the multiplication of numbers.
Basic Structures of Numbers

- It is much easier for kids to learn addition of numbers than the multiplication of numbers.
- However, it seems that the multiplication has much better structure. The local-Global principle in modern number theory is one of the good examples related to the multiplicative structure of numbers.
It is much easier for kids to learn addition of numbers than the multiplication of numbers.

However, it seems that the multiplication has much better structure. The local-Global principle in modern number theory is one of the good examples related to the multiplicative structure of numbers.

From $r = \pm p_1^{e_1} p_2^{e_2} \cdots p_t^{e_t}$, to know r is equivalent to know all $p_i^{e_i}$, individually.
Basic Structures of Numbers

- It is much easier for kids to learn addition of numbers than the multiplication of numbers.
- However, it seems that the multiplication has much better structure. The local-Global principle in modern number theory is one of the good examples related to the multiplicative structure of numbers.
- From $r = \pm p_1^{e_1} p_2^{e_2} \cdots p_t^{e_t}$, to know r is equivalent to know all $p_i^{e_i}$, individually.
- To measure r we use the usual absolute value; and to measure $p_i^{e_i}$ we use the so called p-adic absolute value.
p-adic Absolute Value

Given a prime p, any $r \in \mathbb{Q}^\times$, we have $r = p^e \cdot \frac{a}{b}$, where $(p, a) = (p, b) = 1$.
Given a prime p, any $r \in \mathbb{Q}^\times$, we have $r = p^e \cdot \frac{a}{b}$, where $(p, a) = (p, b) = 1$.

Define the p-adic absolute value

$$|r|_p := \begin{cases} p^{-e}, & \text{if } r \neq 0; \\ 0, & \text{if } r = 0. \end{cases}$$
Given a prime p, any $r \in \mathbb{Q}^\times$, we have $r = p^e \cdot \frac{a}{b}$, where $(p, a) = (p, b) = 1$.

Define the p-adic absolute value

$$|r|_p := \begin{cases} p^{-e}, & \text{if } r \neq 0; \\ 0, & \text{if } r = 0. \end{cases}$$

$| \cdot |_p$ defines a nontrivial metric on \mathbb{Q}.
Given a prime p, any $r \in \mathbb{Q}^\times$, we have $r = p^e \cdot \frac{a}{b}$, where $(p, a) = (p, b) = 1$.

Define the p-adic absolute value

$$|r|_p := \begin{cases} p^{-e}, & \text{if } r \neq 0; \\ 0, & \text{if } r = 0. \end{cases}$$

$| \cdot |_p$ defines a nontrivial metric on \mathbb{Q}.

For $r \in \mathbb{Q}^\times$, we have $\prod_v |r|_v = 1$.
Locally Compact Topological Fields

- Over \mathbb{Q}, we have $| \cdot |_\infty$ and $| \cdot |_p$ for all p's.
Over \(\mathbb{Q} \), we have \(| \cdot |_\infty \) and \(| \cdot |_p \) for all \(p \)'s.

Take the completion, we have

\[
(\mathbb{Q}, | \cdot |_\infty) = \mathbb{R}; \quad (\mathbb{Q}, | \cdot |_p) = \mathbb{Q}_p.
\]
Locally Compact Topological Fields

- Over \mathbb{Q}, we have $| \cdot |_\infty$ and $| \cdot |_p$ for all p’s.
- Take the completion, we have

 $$(\mathbb{Q}, | \cdot |_\infty) = \mathbb{R}; \quad (\mathbb{Q}, | \cdot |_p) = \mathbb{Q}_p.$$

- They are only locally compact topological fields containing \mathbb{Q} as a dense set.
Locally Compact Topological Fields

- Over \(\mathbb{Q} \), we have \(| \cdot |_\infty \) and \(| \cdot |_p \) for all \(p \)'s.
- Take the completion, we have
 \[
 (\mathbb{Q}, | \cdot |_\infty) = \mathbb{R}; \quad (\mathbb{Q}, | \cdot |_p) = \mathbb{Q}_p.
 \]
- They are only locally compact topological fields containing \(\mathbb{Q} \) as a dense set.
- For \(\nu = \infty \) or \(p \), denote the Haar measure \(dx_\nu \) on \(\mathbb{Q}_\nu \), which is unique up to a constant.
Locally Compact Topological Fields

- Over \mathbb{Q}, we have $\cdot |_{\infty}$ and $\cdot |_p$ for all p’s.
- Take the completion, we have

 $$\overline{(\mathbb{Q}, | \cdot |_{\infty})} = \mathbb{R}; \quad \overline{(\mathbb{Q}, | \cdot |_p)} = \mathbb{Q}_p.$$

- They are only locally compact topological fields containing \mathbb{Q} as a dense set.
- For $v = \infty$ or p, denote the Haar measure dx_v on \mathbb{Q}_v, which is unique up to a constant.
- The Harmonic Analysis on (\mathbb{Q}_v, dx_v) is expected to have deep impact in Number Theory.
The Riemann Zeta Function

\[\zeta(s) := \sum_{n=1}^{\infty} \frac{1}{n^s} \text{ converges absolutely for } \text{Re}(s) > 1. \]
The Riemann Zeta Function

\[\zeta(s) := \sum_{n=1}^{\infty} \frac{1}{n^s} \]

converges absolutely for \(\text{Re}(s) > 1 \).

By the Fundamental Theorem of Arithmetic, we have the eulerian product:

\[\zeta(s) = \prod_p \frac{1}{1 - p^{-s}}. \]
The Riemann Zeta Function

- $\zeta(s) := \sum_{n=1}^{\infty} \frac{1}{n^s}$ converges absolutely for $\text{Re}(s) > 1$.
- By the Fundamental Theorem of Arithmetic, we have the eulerian product:
 $$\zeta(s) = \prod_p \frac{1}{1 - p^{-s}}.$$
- The pole at $s = 1$ of $\zeta(s)$ implies there are infinitely many primes!
The Riemann Zeta Function

- \(\zeta(s) := \sum_{n=1}^{\infty} \frac{1}{n^s} \) converges absolutely for \(\text{Re}(s) > 1 \).
- By the Fundamental Theorem of Arithmetic, we have the eulerian product:
 \[
 \zeta(s) = \prod_p \frac{1}{1 - p^{-s}}.
 \]
- The pole at \(s = 1 \) of \(\zeta(s) \) implies there are infinitely many primes!
- The \(p \)-factor has something to do with harmonic analysis over \(\mathbb{Q}_p \).
Adele Ring of \mathbb{Q}

- One might consider $\prod_v \mathbb{Q}_v$, but it is not locally compact.
Adele Ring of \mathbb{Q}

- One might consider $\prod_v \mathbb{Q}_v$, but it is not locally compact.
- For each $r = \pm p_1^{e_1} p_2^{e_2} \cdots p_t^{e_t}$ involves finitely many primes.
Adele Ring of \mathbb{Q}

- One might consider $\prod_v \mathbb{Q}_v$, but it is not locally compact.
- For each $r = \pm p_1^{e_1} p_2^{e_2} \cdots p_t^{e_t}$ involves finitely many primes.
- The ring of adeles is defined to be

$$\mathbb{A} := \{(x_v) \in \prod_v \mathbb{Q}_v : |x_p|_p \leq 1, \text{ for almost all } p\}.$$
Adele Ring of \mathbb{Q}

- One might consider $\prod_v \mathbb{Q}_v$, but it is not locally compact.
- For each $r = \pm p_1^{e_1} p_2^{e_2} \cdots p_t^{e_t}$ involves finitely many primes.
- The ring of adeles is defined to be

$$\mathbb{A} := \{(x_v) \in \prod_v \mathbb{Q}_v : |x_p|_p \leq 1, \text{ for almost all } p\}.$$

- \mathbb{A} is a locally compact ring containing all \mathbb{Q}_v; and \mathbb{Q} is discrete in \mathbb{A} such that \mathbb{A}/\mathbb{Q} is compact.
Adele Ring of \mathbb{Q}

- One might consider $\prod_v \mathbb{Q}_v$, but it is not locally compact.
- For each $r = \pm p_1^{e_1} p_2^{e_2} \cdots p_t^{e_t}$ involves finitely many primes.
- The ring of adeles is defined to be

$$\mathbb{A} := \{(x_v) \in \prod_v \mathbb{Q}_v : |x_p|_p \leq 1, \text{ for almost all } p\}.$$

- \mathbb{A} is a locally compact ring containing all \mathbb{Q}_v; and \mathbb{Q} is discrete in \mathbb{A} such that \mathbb{A}/\mathbb{Q} is compact.
- (\mathbb{A}, \mathbb{Q}) is a modern analogy of the classical pair (\mathbb{R}, \mathbb{Z}).
For each v, there exists a Schwartz function ϕ_v, such that:

$$\int_{\mathbb{Q} \times \mathbb{A}} \phi_v(x)|x|_v^s d^\times x_v = \begin{cases} 1 & \text{if } v = p, \\ \frac{1-p^{-s}}{\pi^{-\frac{s}{2}} \Gamma\left(\frac{s}{2}\right)} & \text{if } v = \infty. \end{cases}$$
Tate’s Thesis

- For each \(v \), \(\exists \) a Schwartz function \(\phi_v \), s.t.
 \[
 \int_{\mathbb{Q}^\times_v} \phi_v(x)|x|_v^s \, dx_v = \begin{cases}
 1 & \text{if } v = p, \\
 \frac{1}{1-p^{-s}} & \text{if } v = \infty.
 \end{cases}
 \]

- \(\exists \) a Schwartz function \(\phi = \otimes_v \phi_v \) on \(\mathbb{A} \), s.t.
 \[
 \int_{\mathbb{A}^\times} \phi(x)|x|_\mathbb{A}^s \, dx = \pi^{-\frac{s}{2}} \Gamma\left(\frac{s}{2}\right) \cdot \prod_p \frac{1}{1-p^{-s}}.
 \]
Tate’s Thesis

- For each ν, \exists a Schwartz function ϕ_ν, s.t.

$$\int_{\mathbb{Q}_\nu^\times} \phi_\nu(x) |x|_\nu^s d^\times x_\nu = \begin{cases}
\frac{1}{1-p^{-s}} & \text{if } \nu = p, \\
\pi^{-\frac{s}{2}} \Gamma\left(\frac{s}{2}\right) & \text{if } \nu = \infty.
\end{cases}$$

- \exists a Schwartz function $\phi = \bigotimes_\nu \phi_\nu$ on \mathbb{A}, s.t.

$$\int_{\mathbb{A}^\times} \phi(x) |x|_\mathbb{A}^s d^\times x = \pi^{-\frac{s}{2}} \Gamma\left(\frac{s}{2}\right) \cdot \prod_p \frac{1}{1 - p^{-s}}.$$

- The local-global relation in harmonic analysis approaches the local-global relation in arithmetic!
Modern Theory of Automorphic Forms

- Generalization from $GL(1)$ to general reductive algebraic groups defined over \mathbb{Q}.
Modern Theory of Automorphic Forms

- Generalization from $GL(1)$ to general reductive algebraic groups defined over \mathbb{Q}.
- Generalization from the trivial representation of $GL(1)$ to ∞-dimensional representations of adelic groups (special locally compact groups).
Modern Theory of Automorphic Forms

- Generalization from $GL(1)$ to general reductive algebraic groups defined over \mathbb{Q}.
- Generalization from the trivial representation of $GL(1)$ to ∞-dimensional representations of adelic groups (special locally compact groups).
- Generalization from $\zeta(s)$ to general automorphic L-functions.
Modern Theory of Automorphic Forms

- Generalization from $GL(1)$ to general reductive algebraic groups defined over \mathbb{Q}.
- Generalization from the trivial representation of $GL(1)$ to ∞-dimensional representations of adelic groups (special locally compact groups).
- Generalization from $\zeta(s)$ to general automorphic L-functions.
- The Langlands Programme is to figure out the deep impacts of these generalizations to Number Theory and Arithmetic.
Algebraic Groups

Algebraic groups G are algebraic varieties with group operations which are morphisms of algebraic varieties.
Algebraic Groups

- Algebraic groups G are algebraic varieties with group operations which are morphisms of algebraic varieties.
- For simplicity, we take $G = GL_n, SO_m, Sp_{2n}$, classical groups.
Algebraic Groups

- Algebraic groups G are algebraic varieties with group operations which are morphisms of algebraic varieties.
- For simplicity, we take $G = GL_n$, SO_m, Sp_{2n}, classical groups.
- For example, $SO_m = \{ g \in GL_m \mid ^t g J_m g = J_m, \det g = 1 \}$, with J_m defined inductively by

$$J_m := \begin{pmatrix} 1 \\ J_{m-2} \\ 1 \end{pmatrix}.$$
Automorphic Functions

- $G(\mathbb{Q})$ is a discrete subgroup of $G(\mathbb{A})$.

\mathbb{G} is a $G(\mathbb{A})$-module by $g \cdot f(x) := f(xg)$.

\begin{itemize}
 \item $L^2(G)$ denotes the space of square-integrable functions:
 \end{itemize}

\[
\phi: \mathbb{Z}G(\mathbb{A}) \to \mathbb{C}
\] such that

\[
\int_{\mathbb{Z}G(\mathbb{A})} |\phi(g)|^2 \, dg < \infty.
\]
Automorphic Functions

- $G(\mathbb{Q})$ is a discrete subgroup of $G(\mathbb{A})$.
- The quotient $Z_G(\mathbb{A})G(\mathbb{Q}) \backslash G(\mathbb{A})$ has finite volume.
Automorphic Functions

- $G(\mathbb{Q})$ is a discrete subgroup of $G(\mathbb{A})$.
- The quotient $Z_G(\mathbb{A})G(\mathbb{Q}) \backslash G(\mathbb{A})$ has finite volume.
- $L^2(G)$ denotes the space of square-integrable functions:

$$
\phi : Z_G(\mathbb{A})G(\mathbb{Q}) \backslash G(\mathbb{A}) \rightarrow \mathbb{C}
$$

such that

$$
\int_{Z_G(\mathbb{A})G(\mathbb{Q}) \backslash G(\mathbb{A})} |\phi(g)|^2 dg < \infty.
$$
Automorphic Functions

- $G(\mathbb{Q})$ is a discrete subgroup of $G(\mathbb{A})$.
- The quotient $Z_G(\mathbb{A})G(\mathbb{Q}) \backslash G(\mathbb{A})$ has finite volume.
- $L^2(G)$ denotes the space of square-integrable functions:

\[
\phi : Z_G(\mathbb{A})G(\mathbb{Q}) \backslash G(\mathbb{A}) \rightarrow \mathbb{C}
\]

such that

\[
\int_{Z_G(\mathbb{A})G(\mathbb{Q}) \backslash G(\mathbb{A})} |\phi(g)|^2 dg < \infty.
\]

- Such functions ϕ are (square-integrable) automorphic functions.
Automorphic Functions

- \(G(\mathbb{Q}) \) is a discrete subgroup of \(G(\mathbb{A}) \).
- The quotient \(Z_G(A)G(\mathbb{Q}) \backslash G(\mathbb{A}) \) has finite volume.
- \(L^2(G) \) denotes the space of square-integrable functions:

\[
\phi : Z_G(A)G(\mathbb{Q}) \backslash G(\mathbb{A}) \to \mathbb{C}
\]

such that

\[
\int_{Z_G(A)G(\mathbb{Q}) \backslash G(\mathbb{A})} |\phi(g)|^2 dg < \infty.
\]

- Such functions \(\phi \) are (square-integrable) automorphic functions.
- \(L^2(G) \) is a \(G(\mathbb{A}) \)-module by \(g \cdot f(x) := f(xg) \).
An automorphic function ϕ is called \textbf{cuspidal} if

$$\int_{N(\mathbb{Q}) \backslash N(\mathbb{A})} \phi(ng) dn = 0$$

for almost all $g \in G(\mathbb{A})$, where N runs over the unipotent radical of all parabolic subgroups of G.
Cuspidal Automorphic Functions

- An automorphic function ϕ is called **cuspidal** if
 \[\int_{N(\mathbb{Q}) \backslash N(\mathbb{A})} \phi(ng) \, dn = 0 \]
 for almost all $g \in G(\mathbb{A})$, where N runs over the unipotent radical of all parabolic subgroups of G.

- An irreducible submodule of $L^2(G)$ generated by cuspidal automorphic functions is called **cuspidal automorphic representation** of $G(\mathbb{A})$.
Cuspidal Automorphic Functions

- An an automorphic functions \(\phi \) is called **cuspidal** if
 \[
 \int_{N(\mathbb{Q}) \backslash N(\mathbb{A})} \phi(ng)dn = 0
 \]
 for almost all \(g \in G(\mathbb{A}) \), where \(N \) runs over the unipotent radical of all parabolic subgroups of \(G \).

- An irreducible submodule of \(L^2(G) \) generated by cuspidal automorphic functions is called **cuspidal automorphic representation** of \(G(\mathbb{A}) \).

- \(L^2_c(G) \) denotes the subspace of \(L^2(G) \) generated by all irreducible cuspidal automorphic representations, which is called the **cuspidal spectrum** of \(G(\mathbb{A}) \).
Cuspidal Spectrum

- Theorem (Gelfand and Piatetski-Shapiro)

\[L^2_c(G) = \bigoplus_{\pi \in G(\mathbb{A})^\vee} m_c(\pi) V_\pi \]

with \(m_c(\pi) < \infty \).
Cuspidal Spectrum

- Theorem (Gelfand and Piatetski-Shapiro)

\[L_c^2(G) = \bigoplus_{\pi \in G(\mathbb{A})^\vee} m_c(\pi) V_\pi \]

with \(m_c(\pi) < \infty \).

- Problem: For each \((\pi, V_\pi) \in G(\mathbb{A})^\vee\), determine \(m_c(\pi) \).
Cuspidal Spectrum

Theorem (Gelfand and Piatetski-Shapiro)

\[L^2_c(G) = \bigoplus_{\pi \in G(\mathbb{A})^\vee} m_c(\pi) V_\pi \]

with \(m_c(\pi) < \infty \).

Problem: For each \((\pi, V_\pi) \in G(\mathbb{A})^\vee\), determine \(m_c(\pi) \).

For classical groups, \(G = SO_m \) or \(Sp_{2n} \), the Arthur conjecture asserts that

\[m_c(\pi) \leq \begin{cases}
1, & \text{if } G = SO_{2n+1}, Sp_{2n} \\
2, & \text{if } G = SO_{2n}.
\end{cases} \]
Known Cases of Cuspidal Multiplicity: \(m_c(\pi) \)

- \(G = GL_n, \ m_c(\pi) \leq 1 \) (J. Shalika; Piatetski-Shapiro)
Known Cases of Cuspidal Multiplicity: $m_c(\pi)$

- $G = GL_n, \ m_c(\pi) \leq 1$ (J. Shalika; Piatetski-Shapiro)
- $G = SL_2, \ m_c(\pi) \leq 1$ (Langlands-Lebasse; D. Ramkrishnan)
Known Cases of Cuspidal Multiplicity: $m_c(\pi)$

- $G = GL_n$, $m_c(\pi) \leq 1$ (J. Shalika; Piatetski-Shapiro)
- $G = SL_2$, $m_c(\pi) \leq 1$ (Langlands-Lebasse; D. Ramkrishnan)
- $G = SL_n (n \geq 3)$, $m_c(\pi) > 1$ (D. Blasius; E. Lapid)
Known Cases of Cuspidal Multiplicity: $m_c(\pi)$

- $G = GL_n$, $m_c(\pi) \leq 1$ (J. Shalika; Piatetski-Shapiro)
- $G = SL_2$, $m_c(\pi) \leq 1$ (Langlands-Lebasse; D. Ramkrishnan)
- $G = SL_n (n \geq 3)$, $m_c(\pi) > 1$ (D. Blasius; E. Lapid)
- $G = U_3$, $m_c(\pi) \leq 1$ (J. Rogawski)
Known Cases of Cuspidal Multiplicity: $m_c(\pi)$

- $G = GL_n$, $m_c(\pi) \leq 1$ (J. Shalika; Piatetski-Shapiro)
- $G = SL_2$, $m_c(\pi) \leq 1$ (Langlands-Lebasse; D. Ramkrishnan)
- $G = SL_n(n \geq 3)$, $m_c(\pi) > 1$ (D. Blasius; E. Lapid)
- $G = U_3$, $m_c(\pi) \leq 1$ (J. Rogawski)
- $G = G_2$, $m_c(\pi)$ unbounded (W.-T. Gan, N. Gurevich, and D.-H. Jiang; and by W.-T. Gan)
Known Cases of Cuspidal Multiplicity: $m_c(\pi)$

- $G = GL_n$, $m_c(\pi) \leq 1$ (J. Shalika; Piatetski-Shapiro)
- $G = SL_2$, $m_c(\pi) \leq 1$ (Langlands-Lebasse; D. Ramkrishnan)
- $G = SL_n (n \geq 3)$, $m_c(\pi) > 1$ (D. Blasius; E. Lapid)
- $G = U_3$, $m_c(\pi) \leq 1$ (J. Rogawski)
- $G = G_2$, $m_c(\pi)$ unbounded (W.-T. Gan, N. Gurevich, and D.-H. Jiang; and by W.-T. Gan)
- $G = GSp_4$, $m_c(\pi) \leq 1$ with π generic (D.-H. Jiang and D. Soudry)
Tensor Structure of Automorphic Representations

- S denotes any finite set of primes p and ∞.

Dihua Jiang
University of Minnesota
Tensor Structure of Automorphic Representations

- S denotes any finite set of primes p and ∞.
- The ring of adeles $\mathbb{A} = \lim_{\longleftarrow} S \mathbb{A}(S)$,
Tensor Structure of Automorphic Representations

- S denotes any finite set of primes p and ∞.
- The ring of adeles $\mathbb{A} = \lim_{\rightarrow S} \mathbb{A}(S)$,
- with $\mathbb{A}(S) = (\prod_{v \in S} \mathbb{Q}_v) \times (\prod_{p \notin S} \mathbb{Z}_p)$
Tensor Structure of Automorphic Representations

- S denotes any finite set of primes p and ∞.
- The ring of adeles $\mathbb{A} = \lim_{\rightarrow}^{S} \mathbb{A}(S)$,
- with $\mathbb{A}(S) = (\prod_{v \in S} \mathbb{Q}_v) \times (\prod_{p \notin S} \mathbb{Z}_p)$
- Hence \mathbb{A} is a restricted direct product of $(\mathbb{Q}_v, \mathbb{Z}_v)$.
Tensor Structure of Automorphic Representations

- S denotes any finite set of primes p and ∞.
- The ring of adeles $\mathbb{A} = \lim_{\rightarrow S} \mathbb{A}(S)$,
- with $\mathbb{A}(S) = (\prod_{v \in S} \mathbb{Q}_v) \times (\prod_{p \notin S} \mathbb{Z}_p)$
- Hence \mathbb{A} is a restricted direct product of $(\mathbb{Q}_v, \mathbb{Z}_v)$.
- Similarly, $G(\mathbb{A}) = \lim_{\rightarrow S} G(\mathbb{A}(S))$
Tensor Structure of Automorphic Representations

- S denotes any finite set of primes p and ∞.
- The ring of adeles $\mathbb{A} = \lim_{\rightarrow} \mathbb{A}(S)$,
- with $\mathbb{A}(S) = (\prod_{v \in S} \mathbb{Q}_v) \times (\prod_{p \notin S} \mathbb{Z}_p)$
- Hence \mathbb{A} is a restricted direct product of $(\mathbb{Q}_v, \mathbb{Z}_v)$.
- Similarly, $G(\mathbb{A}) = \lim_{\rightarrow} G(\mathbb{A}(S))$
- with $G(\mathbb{A}(S)) = (\prod_{v \in S} G(\mathbb{Q}_v)) \times (\prod_{p \notin S} G(\mathbb{Z}_p))$.
Tensor Structure of Automorphic Representations

- S denotes any finite set of primes p and ∞.
- The ring of adeles $\mathbb{A} = \lim_{\rightarrow} \mathbb{A}(S)$,
- with $\mathbb{A}(S) = (\prod_{v \in S} \mathbb{Q}_v) \times (\prod_{p \notin S} \mathbb{Z}_p)$
- Hence \mathbb{A} is a restricted direct product of $(\mathbb{Q}_v, \mathbb{Z}_v)$.
- Similarly, $G(\mathbb{A}) = \lim_{\rightarrow} G(\mathbb{A}(S))$
- with $G(\mathbb{A}(S)) = (\prod_{v \in S} G(\mathbb{Q}_v)) \times (\prod_{p \notin S} G(\mathbb{Z}_p))$.
- Hence $G(\mathbb{A})$ is a restricted direct product of $(G(\mathbb{Q}_v), G(\mathbb{Z}_v))$.
Tensor Structure of Automorphic Representations

- Theorem (Harish-Chandra; Bernstein)

Each $G(\mathbb{Q}_v)$ is tame, i.e. of type I in the sense of C^*-algebras.
Tensor Structure of Automorphic Representations

- Theorem (Harish-Chandra; Bernstein)

 Each $G(\mathbb{Q}_v)$ is tame, i.e. of type I in the sense of C^*-algebras.

- An irreducible unitary representation π of $G(\mathbb{A})$ is a restricted tensor product

 $$\pi = \otimes_v \pi_v.$$
Tensor Structure of Automorphic Representations

▶ Theorem (Harish-Chandra; Bernstein)

Each $G(\mathbb{Q}_v)$ is tame, i.e. of type I in the sense of C^*-algebras.

▶ An irreducible unitary representation π of $G(\mathbb{A})$ is a restricted tensor product

$$\pi = \bigotimes_v \pi_v.$$

▶ π_v is an irreducible admissible unitary representation of $G(\mathbb{Q}_v)$ and π_v is unramified or of type I for almost all local places v of \mathbb{Q}.
Tensor Structure of Automorphic Representations

- Theorem (Harish-Chandra; Bernstein)

Each $G(\mathbb{Q}_v)$ is tame, i.e. of type I in the sense of C^*-algebras.

- An irreducible unitary representation π of $G(\mathbb{A})$ is a restricted tensor product

$$\pi = \bigotimes_v \pi_v.$$

- π_v is an irreducible admissible unitary representation of $G(\mathbb{Q}_v)$ and π_v is unramified or of type I for almost all local places v of \mathbb{Q}.

- π_p is unramified if π_p has nonzero $K_p = G(\mathbb{Z}_p)$-fixed vectors.
The Satake Theory of spherical functions

- \(\dim_{\mathbb{C}} V_{\pi_v}^{K_v} \leq 1 \), where

\[
V_{\pi_v}^{K_v} = \{ u \in V_{\pi_v} \mid \pi_v(h)(u) = u, \text{ for all } h \in K_v \}.
\]
The Satake Theory of spherical functions

- \(\dim_{\mathbb{C}} V_{\pi_v}^{K_v} \leq 1 \), where
 \[V_{\pi_v}^{K_v} = \{ u \in V_{\pi_v} : \pi_v(h)(u) = u, \text{ for all } h \in K_v \}. \]

- Irreducible unramified representations of \(G(\mathbb{Q}_v) \) are parametrized by semi-simple conjugacy classes \(c(\pi_v) \) in the Langlands dual group \(L^G \), which is called the Satake parameter attached to \(\pi_v \).
The Satake Theory of spherical functions

- $\dim_{\mathbb{C}} V_{\pi_v}^{K_v} \leq 1$, where
 $$V_{\pi_v}^{K_v} = \{ u \in V_{\pi_v} : \pi_v(h)(u) = u, \text{ for all } h \in K_v \}.$$

- Irreducible unramified representations of $G(\mathbb{Q}_v)$ are parametrized by semi-simple conjugacy classes $c(\pi_v)$ in the Langlands dual group L^G, which is called the Satake parameter attached to π_v.

- Irreducible unramified representations of $G(\mathbb{Q}_v)$ are realized as the unramified irreducible constituent of the induced representation
 $$\text{Ind}_{B(\mathbb{Q}_v)}^{G(\mathbb{Q}_v)}(\chi_v),$$
 with unramified character χ_v of $T(\mathbb{Q}_v)$, where $B = TU$ is the Borel subgroup of G.

Dihua Jiang University of Minnesota
On Some Topics in Automorphic Representations
The Langlands Dual Group of G

(G, B, T) determines the root datum $(X, \Delta; X^\vee, \Delta^\vee)$.

$\text{GL}_n(C) = \text{GL}_n(C)$ and $\text{SO}_{2n+1}(C) = \text{Sp}_{2n}(C)$.

Dihua Jiang University of Minnesota

On Some Topics in Automorphic Representations
The Langlands Dual Group of G

- (G, B, T) determines the root datum $(X, \Delta; X^\vee, \Delta^\vee)$.
- Over \mathbb{C}, $(X, \Delta; X^\vee, \Delta^\vee)$ determines $G(\mathbb{C})$.
The Langlands Dual Group of G

- (G, B, T) determines the root datum $(X, \Delta; X^\vee, \Delta^\vee)$.
- Over \mathbb{C}, $(X, \Delta; X^\vee, \Delta^\vee)$ determines $G(\mathbb{C})$.
- The Langlands (complex) dual group $G^\vee(\mathbb{C})$ of G

\[G \iff (X, \Delta; X^\vee, \Delta^\vee) \]
\[G^\vee(\mathbb{C}) \iff (X^\vee, \Delta^\vee; X, \Delta) \]
The Langlands Dual Group of G

- (G, B, T) determines the root datum $(X, \Delta; X^\vee, \Delta^\vee)$.
- Over \mathbb{C}, $(X, \Delta; X^\vee, \Delta^\vee)$ determines $G(\mathbb{C})$.
- The Langlands (complex) dual group $G^\vee(\mathbb{C})$ of G

\[
G \iff (X, \Delta; X^\vee, \Delta^\vee)
\]

\[
G^\vee(\mathbb{C}) \iff (X^\vee, \Delta^\vee; X, \Delta)
\]

- $GL^\vee_n(\mathbb{C}) = GL_n(\mathbb{C})$ and $SO^\vee_{2n+1}(\mathbb{C}) = Sp_{2n}(\mathbb{C})$.
Near-Equivalence Classes

- S denotes any finite set of primes p and ∞.
Near-Equivalence Classes

- S denotes any finite set of primes p and ∞.
- For $p \notin S$, take a semisimple conjugacy class $c_p \in G^\vee(\mathbb{C})$.
Near-Equivalence Classes

- S denotes any finite set of primes p and ∞.
- For $p \notin S$, take a semisimple conjugacy class $c_p \in G^\wedge(\mathbb{C})$.
- We set $c(S) := \{c_v \mid v \notin S\}$.
Near-Equivalence Classes

- S denotes any finite set of primes p and ∞.
- For $p \notin S$, take a semisimple conjugacy class $c_p \in G^\vee(\mathbb{C})$.
- We set $c(S) := \{c_v \mid v \notin S\}$.
- For S and S', $c(S)$ and $c'(S')$ are equivalent if \exists a set S'', containing $S \cup S'$, s.t. $c(S'') = c'(S'')$ as conjugacy classes in $G^\vee(\mathbb{C})$.
Near-Equivalence Classes

- S denotes any finite set of primes p and ∞.
- For $p \notin S$, take a semisimple conjugacy class $c_p \in G^\vee(\mathbb{C})$.
- We set $c(S) := \{ c_v \mid v \notin S \}$.
- For S and S', $c(S)$ and $c'(S')$ are equivalent if \exists a set S'', containing $S \cup S'$, s.t. $c(S'') = c'(S'')$ as conjugacy classes in $G^\vee(\mathbb{C})$.
- Denote by $\mathcal{C}(G)$ the equivalence classes of all such sets $c(S)$.
Near-Equivalence Classes

- S denotes any finite set of primes p and ∞.
- For $p \notin S$, take a semisimple conjugacy class $c_p \in G^\vee(\mathbb{C})$.
- We set $c(S) := \{c_v \mid v \notin S\}$.
- For S and S', $c(S)$ and $c'(S')$ are equivalent if there exists a set S'', containing $S \cup S'$, such that $c(S'') = c'(S'')$ as conjugacy classes in $G^\vee(\mathbb{C})$.
- Denote by $\mathcal{C}(G)$ the equivalence classes of all such sets $c(S)$.
- Denote by $\mathcal{A}(G)$ the set of irreducible cuspidal automorphic representations of $G(\mathbb{A})$ up to equivalence.
Near-Equivalence Classes

For $\pi = \otimes_v \pi_v \in \mathcal{A}(G)$, there exists S_π such that for $p \notin S_\pi$, π_p is unramified. Define $c(\pi) := c(S_\pi)$.
Near-Equivalence Classes

- For $\pi = \bigotimes_v \pi_v \in \mathcal{A}(G)$, \exists an S_π s.t. for $p \not\in S_\pi$, π_p is unramified. Define $c(\pi) := c(S_\pi)$.

- \exists a map $c : \pi \mapsto c(\pi)$ from $\mathcal{A}(G)$ to $\mathcal{C}(G)$. The fibre $\Pi_{c(\pi)}$ is called the nearly equivalence classes of π.
Near-Equivalence Classes

For $\pi = \otimes \pi_v \in \mathcal{A}(G)$, there exists an S_{π} such that for $p \notin S_{\pi}$, π_p is unramified. Define $c(\pi) := c(S_{\pi})$.

There exists a map $c : \pi \mapsto c(\pi)$ from $\mathcal{A}(G)$ to $\mathcal{C}(G)$. The fibre $\Pi_{c(\pi)}$ is called the **nearly equivalence classes** of π.

$\pi = \otimes \pi_v$ and $\pi' = \otimes \pi'_v$ are of **near-equivalence** if for almost all primes p, π_p and π'_p are equivalent.
Near-Equivalence Classes

- For $\pi = \otimes_v \pi_v \in \mathcal{A}(G)$, \exists an S_π s.t. for $p \notin S_\pi$, π_p is unramified. Define $c(\pi) := c(S_\pi)$.

- \exists a map $c : \pi \mapsto c(\pi)$ from $\mathcal{A}(G)$ to $\mathcal{C}(G)$. The fibre $\Pi_{c(\pi)}$ is called the **nearly equivalence classes** of π.

- $\pi = \otimes_v \pi_v$ and $\pi' = \otimes_v \pi'_v$ are of **near-equivalence** if for almost all primes p, π_p and π'_p are equivalent.

- **Problems:**
Near-Equivalence Classes

▶ For \(\pi = \otimes_v \pi_v \in \mathcal{A}(G) \), \(\exists \) an \(S_\pi \) s.t. for \(p \notin S_\pi \), \(\pi_p \) is unramified. Define \(c(\pi) := c(S_\pi) \).

▶ \(\exists \) a map \(c : \pi \mapsto c(\pi) \) from \(\mathcal{A}(G) \) to \(\mathcal{C}(G) \). The fibre \(\Pi_{c(\pi)} \) is called the **nearly equivalence classes** of \(\pi \).

▶ \(\pi = \otimes_v \pi_v \) and \(\pi' = \otimes_v \pi'_v \) are of **near-equivalence** if for almost all primes \(p \), \(\pi_p \) and \(\pi'_p \) are equivalent.

▶ **Problems:**

▶ (1) Describe the image \(c(\mathcal{A}(G)) \) in \(\mathcal{C}(G) \).
Near-Equivalence Classes

- For \(\pi = \bigotimes_v \pi_v \in \mathcal{A}(G) \), \(\exists \) an \(S_\pi \) s.t. for \(p \not\in S_\pi \), \(\pi_p \) is unramified. Define \(c(\pi) := c(S_\pi) \).
- \(\exists \) a map \(c : \pi \mapsto c(\pi) \) from \(\mathcal{A}(G) \) to \(\mathcal{C}(G) \). The fibre \(\Pi_{c(\pi)} \) is called the nearly equivalence classes of \(\pi \).
- \(\pi = \bigotimes_v \pi_v \) and \(\pi' = \bigotimes_v \pi'_v \) are of near-equivalence if for almost all primes \(p \), \(\pi_p \) and \(\pi'_p \) are equivalent.

Problems:

1. Describe the image \(c(\mathcal{A}(G)) \) in \(\mathcal{C}(G) \).
2. Describe the fibre \(\Pi_{c(\pi)} \).
Near-Equivalence Classes

For \(\pi = \otimes_v \pi_v \in \mathcal{A}(G) \), \(\exists \) an \(S_\pi \) s.t. for \(p \notin S_\pi \), \(\pi_p \) is unramified. Define \(c(\pi) := c(S_\pi) \).

\(\exists \) a map \(c : \pi \mapsto c(\pi) \) from \(\mathcal{A}(G) \) to \(\mathcal{C}(G) \). The fibre \(\Pi_{c(\pi)} \) is called the **nearly equivalence classes** of \(\pi \).

\(\pi = \otimes_v \pi_v \) and \(\pi' = \otimes_v \pi'_v \) are of **near-equivalence** if for almost all primes \(p \), \(\pi_p \) and \(\pi'_p \) are equivalent.

Problems:

1. Describe the image \(c(\mathcal{A}(G)) \) in \(\mathcal{C}(G) \).
2. Describe the fibre \(\Pi_{c(\pi)} \).
3. Determine the structures of \(\pi \) in terms of \(c(\pi) \).
Rigidity of Cuspidal Automorphic Representations

- Theorem (Jacquet-Shalika, 1981)

For $G = GL_n$, $\prod_{c(\pi)}$ contains one member. (For π, π' in $A(G)$, if $c(\pi) = c(\pi')$, then π, π' are equivalent.)
Rigidity of Cuspidal Automorphic Representations

- Theorem (Jacquet-Shalika, 1981)

For $G = \text{GL}_n$, $\Pi_{c(\pi)}$ contains one member. (For π, π' in $\mathcal{A}(G)$, if $c(\pi) = c(\pi')$, then π, π' are equivalent.)

- Theorem (Jiang-Soudry, 2003)

For $G = \text{SO}_{2n+1}$, $\Pi_{c(\pi)}$ contains at most one generic member; and if π is tempered, $\Pi_{c(\pi)}$ contains at least one generic member.
Rigidity of Cuspidal Automorphic Representations

- **Theorem (Jacquet-Shalika, 1981)**
 \(\text{For } G = GL_n, \Pi_{c(\pi)} \text{ contains one member. (For } \pi, \pi' \text{ in } A(G), \text{ if } c(\pi) = c(\pi'), \text{ then } \pi, \pi' \text{ are equivalent.)}\)

- **Theorem (Jiang-Soudry, 2003)**
 \(\text{For } G = SO_{2n+1}, \Pi_{c(\pi)} \text{ contains at most one generic member; and if } \pi \text{ is tempered, } \Pi_{c(\pi)} \text{ contains at least one generic member.}\)

 - For \(G = SO_{2n+1}, \) if two generic \(\pi, \pi' \) in \(A(G) \) are of near-equivalence, then \(\pi, \pi' \) are equivalent. (rigidity)
Rigidity of Cuspidal Automorphic Representations

- **Theorem (Jacquet-Shalika, 1981)**

 For \(G = GL_n \), \(\Pi_{c(\pi)} \) contains one member. (For \(\pi, \pi' \) in \(\mathcal{A}(G) \), if \(c(\pi) = c(\pi') \), then \(\pi, \pi' \) are equivalent.)

- **Theorem (Jiang-Soudry, 2003)**

 For \(G = SO_{2n+1} \), \(\Pi_{c(\pi)} \) contains at most one generic member; and if \(\pi \) is tempered, \(\Pi_{c(\pi)} \) contains at least one generic member.

 - For \(G = SO_{2n+1} \), if two generic \(\pi, \pi' \) in \(\mathcal{A}(G) \) are of near-equivalence, then \(\pi, \pi' \) are equivalent. (rigidity)

 - It is important to the Arthur trace formula approach.
Rigidity of Cuspidal Automorphic Representations

- **Theorem (Jacquet-Shalika, 1981)**

For $G = GL_n$, $\Pi_{c(\pi)}$ contains one member. (For π, π' in $A(G)$, if $c(\pi) = c(\pi')$, then π, π' are equivalent.)

- **Theorem (Jiang-Soudry, 2003)**

For $G = SO_{2n+1}$, $\Pi_{c(\pi)}$ contains at most one generic member; and if π is tempered, $\Pi_{c(\pi)}$ contains at least one generic member.

- For $G = SO_{2n+1}$, if two generic π, π' in $A(G)$ are of near-equivalence, then π, π' are equivalent. (rigidity)

- It is important to the Arthur trace formula approach.

- A slight modification holds for general reductive groups. For classical groups, it is my on-going joint work with D. Soudry.
Tensor Product L-functions

- For $\pi \in \mathcal{A}(G)$ and $\tau \in \mathcal{A}(GL_m)$, define $S := S_{\pi,\tau}$, s.t. for $p \notin S$, both π_p and τ_p are unramified.
Tensor Product L-functions

- For $\pi \in \mathcal{A}(G)$ and $\tau \in \mathcal{A}(GL_m)$, define $S := S_{\pi,\tau}$, s.t. for $p \not\in S$, both π_p and τ_p are unramified.
- Define the (partial) Rankin-Selberg convolution L-function by

$$L^S(s, \pi \times \tau) := \prod_{p \not\in S} \frac{1}{\det(I - c(\pi_p) \otimes c(\tau_p)p^{-s})}.$$
Tensor Product L-functions

For $\pi \in \mathcal{A}(G)$ and $\tau \in \mathcal{A}(GL_m)$, define $S := S_{\pi, \tau}$, s.t. for $p \notin S$, both π_p and τ_p are unramified.

Define the (partial) Rankin-Selberg convolution L-function by

$$L^S(s, \pi \times \tau) := \prod_{p \notin S} \frac{1}{\det(I - c(\pi_p) \otimes c(\tau_p)p^{-s})}.$$

When G is classical, $L^S(s, \pi \times \tau)$ has meromorphic continuation and functional equation.
Tensor Product L-functions

- For $\pi \in \mathcal{A}(G)$ and $\tau \in \mathcal{A}(GL_m)$, define $S := S_{\pi, \tau}$, s.t. for $p \not\in S$, both π_p and τ_p are unramified.

- Define the (partial) Rankin-Selberg convolution L-function by

$$L^S(s, \pi \times \tau) := \prod_{p \not\in S} \frac{1}{\det(I - c(\pi_p) \otimes c(\tau_p)p^{-s})}.$$

- When G is classical, $L^S(s, \pi \times \tau)$ has meromorphic continuation and functional equation.

- **Problem:** Determine the poles of $L^S(s, \pi \times \tau)$ for $s \geq \frac{1}{2}$.

For $\pi \in A(G)$ and $\tau \in A(GL_m)$, define $S := S_{\pi, \tau}$, s.t. for $p \notin S$, both π_p and τ_p are unramified.

Define the (partial) Rankin-Selberg convolution L-function by

$$L^S(s, \pi \times \tau) := \prod_{p \notin S \text{ } p \neq \text{ ramified}} \frac{1}{\det(I - c(\pi_p) \otimes c(\tau_p)p^{-s})}.$$

When G is classical, $L^S(s, \pi \times \tau)$ has meromorphic continuation and functional equation.

Problem: Determine the poles of $L^S(s, \pi \times \tau)$ for $s \geq \frac{1}{2}$.

This is closely related to the structures of $c(\pi)$ and π, i.e. the local-global relations.
Weak Langlands Transfer Conjecture: Let G and H be k-split reductive algebraic groups and let ρ be any group homomorphism

$$\rho : H^\vee(\mathbb{C}) \rightarrow G^\vee(\mathbb{C}).$$

For any $\sigma \in \mathcal{A}(H)$, \exists a $\pi \in \mathcal{A}(G)$ (may not be cuspidal!) s.t.

$$c(\rho(\sigma)) = c(\pi)$$

as conjugacy classes in $G^\vee(\mathbb{C})$, where $c(\rho(\sigma)) = \{\rho(c(\sigma_v))\}$.
Weak Langlands Transfer Conjecture: Let G and H be k-split reductive algebraic groups and let ρ be any group homomorphism

$$\rho : H^\vee(\mathbb{C}) \to G^\vee(\mathbb{C}).$$

For any $\sigma \in A(H)$, \exists a $\pi \in A(G)$ (may not be cuspidal!) s.t.

$$c(\rho(\sigma)) = c(\pi)$$

as conjugacy classes in $G^\vee(\mathbb{C})$, where $c(\rho(\sigma)) = \{\rho(c(\sigma_v))\}$.

The strong Langlands Functorial Transfer requires compatibility at all local places or can be stated in terms of the complete tensor product L-functions.
Existence of the Weak Langlands Transfers

Existence of the Weak Langlands Transfers

Existence of the Weak Langlands Transfers

- Kim-Krishnamurthy (2004, 2005): $U(n, n)$ and $U(n + 1, n)$.
Existence of the Weak Langlands Transfers

- Kim-Krishnamurthy (2004, 2005): $U(n, n)$ and $U(n + 1, n)$.
- Asgari-Shahidi (2006): $GSpin_m$.
Existence of the Weak Langlands Transfers

- Kim-Krishnamurthy (2004, 2005): $U(n,n)$ and $U(n+1,n)$.
- Asgari-Shahidi (2006): $GSpin_m$.
Refined Properties of Langlands Transfers

- Local-Global Compatibility:

\[\text{Jiang-Soudry (2003): } \text{SO}_{2n+1} \Rightarrow \text{GL}_{2n} \]
With explicit local descent, we obtain the local Langlands reciprocity map for SO_{2n+1}.

\[\text{Cogdell, Kim, Piatetski-Shapiro, and Shahidi (2004): } \text{SO}_{2n} \text{ and } \text{Sp}_{2n} \]
The local descent in these cases are the work in progress of Jiang-Soudry, which also implies the existence of the local Langlands reciprocity map.

Some other cases are known, but I omit the details here.
Refined Properties of Langlands Transfers

- **Local-Global Compatibility:**

- **Jiang-Soudry (2003):** $SO_{2n+1} \rightarrow GL_{2n}$; With explicit local descent, we obtain the local Langlands reciprocity map for SO_{2n+1}.

- Other cases are known, but I omit the details here.
Local-Global Compatibility:

Jiang-Soudry (2003): $SO_{2n+1} \rightarrow GL_{2n}$; With explicit local descent, we obtain the local Langlands reciprocity map for SO_{2n+1}.

Cogdell, Kim, Piatetski-Shapiro, and Shahidi (2004): SO_{2n} and Sp_{2n}; The local descent in these cases are the work in progress of Jiang-Soudry, which also implies the existence of the local Langlands reciprocity map.
Refined Properties of Langlands Transfers

- **Local-Global Compatibility:**
 - Jiang-Soudry (2003): $SO_{2n+1} \rightarrow GL_{2n}$; With explicit local descent, we obtain the local Langlands reciprocity map for SO_{2n+1}.
 - Cogdell, Kim, Piatetski-Shapiro, and Shahidi (2004): SO_{2n} and Sp_{2n}; The local descent in these cases are the work in progress of Jiang-Soudry, which also implies the existence of the local Langlands reciprocity map.
 - Some other cases are known, but I omit the details here.
Refined Properties of Langlands Transfers

- **Image of the Langlands Transfers:**

 - Ginzburg-Rallis-Soudry automorphic descent from GL to classical groups characterizes the image of the Langlands transfer from classical groups to GL (a series of papers in 1997-2005).
 - Jiang-Soudry (2003) prove the irreducibility of the image of the descent for SO_{2n+1}; the other cases are our work in progress.
 - C. Khare, M. Larsen, and G. Savin (2007): Use our result to study the Inverse Galois Problem over \mathbb{Q}.

Dihua Jiang University of Minnesota
Refined Properties of Langlands Transfers

- **Image of the Langlands Transfers:**
- Ginzburg-Rallis-Soudry automorphic descent from GL to classical groups characterizes the image of the Langlands transfer from classical groups to GL (a series of papers in 1997-2005)
- Jiang-Soudry (2003) prove the irreducibility of the image of the descent for SO_{2n+1}; the other cases are our work in progress.
Refined Properties of Langlands Transfers

- **Image of the Langlands Transfers:**
 - Ginzburg-Rallis-Soudry automorphic descent from GL to classical groups characterizes the image of the Langlands transfer from classical groups to GL (a series of papers in 1997-2005).
 - Jiang-Soudry (2003) prove the irreducibility of the image of the descent for SO_{2n+1}; the other cases are our work in progress.
 - C. Khare, M. Larsen, and G. Savin (2007): Use our result to study the Inverse Galois Problem over \mathbb{Q}.
Endoscopy and Poles of Certain L-functions

Theorem (Jiang 2006)

Let $\pi \in \mathcal{A}(SO_{2n+1})$ be cuspidal and generic.

1. The 2nd fundamental L-function $L(s, \pi, \omega_2)$ is holomorphic for $\Re(s) \geq \frac{1}{2}$ with possible pole at $s = 1$

2. The order of the pole at $s=1$ of $L(s, \pi, \omega_2)$ is $r - 1$ if and only if \exists a partition $n = \sum_{i=1}^{r} n_i$ s.t. π is an endoscopy transfer from the elliptic endoscopy group $SO_{2n_1+1} \times \cdots \times SO_{2n_r+1}$.
Endoscopy and Poles of Certain L-functions

Theorem (Jiang 2006)

Let $\pi \in A(SO_{2n+1})$ be cuspidal and generic.

1. The 2nd fundamental L-function $L(s, \pi, \omega_2)$ is holomorphic for $\text{Re}(s) \geq \frac{1}{2}$ with possible pole at $s = 1$

2. The order of the pole at $s=1$ of $L(s, \pi, \omega_2)$ is $r-1$ if and only if there exists a partition $n = \sum_{i=1}^{r} n_i$ such that π is an endoscopy transfer from the elliptic endoscopy group

$$SO_{2n_1+1} \times \cdots \times SO_{2n_r+1}.$$

It is the work in progress of Ginzburg-Jiang to characterize the endoscopy transfers in terms of period of π, which will generalize our preliminary work in this aspect in 2001.
The Generalized Ramanujan Conjecture

- **GRC**: Any irreducible cuspidal automorphic representation is tempered

 - R. Howe and Piatetski-Shapiro (1977): GRC is not true for $G \neq \text{GL}$.
 - One of the refinements (Jiang, 2007): Any irreducible cuspidal automorphic representation with one local generic component is tempered.
 - This formulation holds for all known examples and is compatible with the Arthur conjecture on the discrete automorphic spectrum in general.
The Generalized Ramanujan Conjecture

- **GRC:** Any irreducible cuspidal automorphic representation is tempered
- R. Howe and Piatetski-Shapiro (1977): **GRC** is not true for $G \neq GL$.

GRC: Generalized Ramanujan Conjecture
The Generalized Ramanujan Conjecture

- **GRC**: Any irreducible cuspidal automorphic representation is tempered
- R. Howe and Piatetski-Shapiro (1977): **GRC** is not true for $G \neq GL$.
- One of the refinements (Jiang, 2007): *Any irreducible cuspidal automorphic representation with one local generic component is tempered.*
The Generalized Ramanujan Conjecture

- **GRC**: Any irreducible cuspidal automorphic representation is tempered
- R. Howe and Piatetski-Shapiro (1977): **GRC** is not true for $G \neq GL$.
- One of the refinements (Jiang, 2007): Any irreducible cuspidal automorphic representation with one local generic component is tempered.
- This formulation holds for all known examples and is compatible with the Arthur conjecture on the discrete automorphic spectrum in general.
The CAP Conjecture

Assume that \(G \) is \(\mathbb{Q} \)-quasisplit reductive group and \(G' \) be a \(\mathbb{Q} \)-inner form of \(G \). For any irreducible cuspidal automorphic representation \(\pi' \) of \(G' (\mathbb{A}) \), there exist a standard parabolic subgroup \(P = MN \) of \(G \), an irreducible generic unitary cuspidal automorphic representation \(\sigma \) of \(M (\mathbb{A}) \), and an unramified character \(\chi \) of \(M (\mathbb{A})^1 \setminus M (\mathbb{A}) \), such that \(\pi' \) is nearly equivalent to an irreducible constituent of the unitarily induced representation

\[
\text{Ind}^{G (\mathbb{A})}_{P (\mathbb{A})} (\sigma \otimes \chi).
\]
The CAP Conjecture

- If P is proper parabolic in G, π' is called a CAP representation of G'.
The CAP Conjecture

- If P is proper parabolic in G, π' is called a CAP representation of G'.
- The CAP representations are counter-examples to GRC, but is essential to understand the Arthur conjecture on the discrete automorphic spectrum.
The CAP Conjecture

- If P is proper parabolic in G, π' is called a CAP representation of G'.
- The CAP representations are counter-examples to GRC, but is essential to understand the Arthur conjecture on the discrete automorphic spectrum.
- Jiang-Soudry (2007): For $G = SO_{2n+1}$, the CAP datum (M, σ, χ) is determined by π', which is generalization of the rigidity of cuspidal automorphic representations.
The CAP Conjecture

- If P is proper parabolic in G, π' is called a CAP representation of G'.
- The CAP representations are counter-examples to GRC, but is essential to understand the Arthur conjecture on the discrete automorphic spectrum.
- Jiang-Soudry (2007): For $G = SO_{2n+1}$, the CAP datum $(\mathcal{M}, \sigma, \chi)$ is determined by π', which is generalization of the rigidity of cuspidal automorphic representations.
- For other classical groups, suitable modifications are needed, which is the work in progress of Jiang-Soudry.
The CAP Conjecture

▶ Jacquet-Shalika (1981): the CAP conjecture holds for GL_n.
The CAP Conjecture

- A. Badulescu (2007): it holds for $GL_m(D)$, where D is a division algebra.
The CAP Conjecture

- A. Badulescu (2007): it holds for $GL_m(D)$, where D is a division algebra.
- Jiang-Soudry (2007): it holds for cuspidal automorphic representations of SO_{2n+1} with special Bessel models.
The CAP Conjecture

- A. Badulescu (2007): it holds for $GL_m(D)$, where D is a division algebra.
- Jiang-Soudry (2007): it holds for cuspidal automorphic representations of SO_{2n+1} with special Bessel models.
- Gelbart-Rogawski-Soudry (1997): it holds for $U(3)$.

Many families of CAP representations have been constructed, but we omit the details here.
The CAP Conjecture

- A. Badulescu (2007): it holds for $GL_m(D)$, where D is a division algebra.
- Jiang-Soudry (2007): it holds for cuspidal automorphic representations of SO_{2n+1} with special Bessel models.
- Gelbart-Rogawski-Soudry (1997): it holds for $U(3)$.
- Many families of CAP representations have been constructed, but we omit the details here.

Dihua Jiang University of Minnesota

On Some Topics in Automorphic Representations
Final Remarks

- The modern theory of automorphic forms is to understand the spectrum of $L^2(G)$ as representation of $G(\mathbb{A})$.
Final Remarks

- The modern theory of automorphic forms is to understand the spectrum of $L^2(G)$ as representation of $G(\mathbb{A})$.
- The L-function and the Converse Theorem approach gives the information about $L^2(G)$ via specific families of spectrum, but by constructive methods, based on L-functions.
Final Remarks

- The modern theory of automorphic forms is to understand the spectrum of $L^2(G)$ as representation of $G(\mathbb{A})$.
- The L-function and the Converse Theorem approach gives the information about $L^2(G)$ via specific families of spectrum, but by constructive methods, based on L-functions.
- The Arthur-Selberg trace formula gets the complete structure of the spectrum, which yields the existence of endoscopy transfers in general, and has many potential applications.
Final Remarks

- The modern theory of automorphic forms is to understand the spectrum of $L^2(G)$ as representation of $G(\mathbb{A})$.
- The L-function and the Converse Theorem approach gives the information about $L^2(G)$ via specific families of spectrum, but by constructive methods, based on L-functions.
- The Arthur-Selberg trace formula gets the complete structure of the spectrum, which yields the existence of endoscopy transfers in general, and has many potential applications.
- The rational combination of the Arthur trace formula with the L-function and the Converse Theorem methods is definitely a very interesting approach for the near future.