Time:the third semester. Credit:3 hours. Period:54 hours. Previous courses:Abstract Algebra Course contents: (1) Numbers and Ideals: the ring of integers, ideals and factorization, embedding in the complex numbers, change of fields; (2) Valuations: valuations and completions, field extensions and ramification, the different, Ideles and Adeles; (3) Special fields: quadratic fields, pure cubic fields, biquadratic fields, cyclotomic fields, class numbers of cyclotomic fields, Fermat's Last Theorem; (4) Analytic methods: zeta functions andL-series, analytic continuation and the functional equation, density theorems; (5) Class field theory: the classical theory, chevalley's reformulation, reciprocity theorems, the Kronecker-Weber Theorem. References: (1) J. W. S. Cassels and A. Frohlich, eds., Algebraic Number Theory, Thompson Publishing Co., 1967. (2) L. J. Goldstein, Analytic Number Theory, Prentice-Hall, Inc. Englewood Cliffs, New Jersey, 1971. (3) S. Lang, Algebraic Number Theory, Springer-Verlag, GTM110. (4) J. S. Milne, Algebraic Number Theory, available athttp://www.jmilne.org/math/ (5) H. P. F. Swinnerton-Dyer, A Brief Guide to Algebraic Number Theory, Cambrige University Press, 2001. (6) A . Weil, Basic Number Theory, Springer-Verlag. |