Title:Second Moment of Error Term for the Binary Egyptian Fractions
Speaker:Xuanxuan, Xiao
Time:2018.12.21 10:10-11:10
Venue:B1044
Abstract:Let $a$ be a fixed positive integer. For integer $n>0$, denote
$$R(n;a)={\rm card}\left\{(x,y)\in \mathbb{N}^2:\frac{a}{n}=\frac{1}{x}+\frac{1}{y}\right\},$$
and
$$S(x;a)=\sum_{\substack{n\leq x\\(n,a)=1}}R(n;a).$$
Then we have
$$S(x;a)=C_aN((\log N)^3+c_1(a)\log N+c_0(a))+\Delta(x;a).$$
We are interested in the size of the error term $\Delta(x;a)$ and get an asymptotic formula for its second moment, i.e.
$$\int_T^{2T}\Delta(x;a)^2dx=C_1'(a)T^{5/3}+O(T^{5/3-1/360}).$$